1932

Abstract

High-energy diffraction microscopy (HEDM) is an implementation of three-dimensional X-ray diffraction microscopy. HEDM yields maps of internal crystal orientation fields, strain states, grain shapes and locations as well as intragranular orientation distributions, and grain boundary character. Because it is nondestructive in hard materials, notably metals and ceramics, HEDM has been used to study responses of these materials to external fields including high temperature and mechanical loading. Currently available sources and detectors lead to a spatial resolution of ∼1 μm and an orientation resolution of <0.1. With the penetration characteristic of high energies ( ≥ 50 keV), sample cross-section dimensions of ∼1 mm can be studied in materials containing elements across much of the Periodic Table. This review describes hardware and software associated with HEDM as well as examples of applications. These applications include studies of grain growth, recrystallization, texture development, orientation gradients, deformation twinning, annealing twinning, plastic deformation, and additive manufacturing. We also describe relationships to other X-ray-based methods as well as prospects for further development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070616-124125
2020-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-070616-124125.html?itemId=/content/journals/10.1146/annurev-matsci-070616-124125&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sorby H 1864. On a new method of illustrating the structure of various kinds of “blister” steel by nature printing Paper presented at Sheffield Literary and Philosophical Society, Febr.
  2. 2. 
    Uchic MD, Groeber MA, Dimiduk DM, Simmons JP 2006. 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scr. Mater. 55:23–28
    [Google Scholar]
  3. 3. 
    Schwartz A, Kumar M, Adams B 2000. Electron Backscatter Diffraction in Materials Science New York: Kluwer
  4. 4. 
    Douglas JE, Echlin MP, Lenthe WC, Seshadri R, Pollock TM 2015. Three-dimensional multimodal imaging and analysis of biphasic microstructure in a Ti–Ni–Sn thermoelectric material. APL Mater. 3:096107
    [Google Scholar]
  5. 5. 
    Poulsen HF 2004. Three-Dimensional X-Ray Diffraction Microscopy Springer Tracts Mod. Phys. 205. Berlin: Springer
  6. 6. 
    Lauridsen E, Schmidt S, Suter R, Poulsen HF 2001. Tracking: a method for structural characterization of grains in powders or polycrystals. J. Appl. Crystallogr. 34:744–50
    [Google Scholar]
  7. 7. 
    Poulsen HF, Nielsen S, Lauridsen E, Schmidt S, Suter R et al. 2001. Three-dimensional maps of grain boundaries and the stress state of individual grains. J. Appl. Crystallogr. 34:751–56
    [Google Scholar]
  8. 8. 
    Poulsen HF, Vaughan GBM 2019. Multi-grain crystallography and three-dimensional grain mapping. International Tables for Crystallography: Powder Diffraction Vol. H, ed. CJ Gilmore, JA Kaduk, H Schenk 606–16 New York: Wiley
    [Google Scholar]
  9. 9. 
    Pokharel R 2018. Overview of high-energy X-ray diffraction microscopy (HEDM) for mesoscale material characterization in three dimensions. Materials Discovery and DesignT Lookman, S Eidenbenz, F Alexander, C Barnes167–201 Cham, Switz.: Springer
    [Google Scholar]
  10. 10. 
    Li S, Suter R 2013. Adaptive reconstruction method for three-dimensional orientation imaging. J. Appl. Crystallogr. 46:512–24
    [Google Scholar]
  11. 11. 
    Suter R, Hennessy D, Xiao C, Lienert U 2006a. Forward modeling method for microstructure reconstruction using X-ray diffraction microscopy: single crystal verification. Rev. Sci. Instrum. 77:123905
    [Google Scholar]
  12. 12. 
    Lind J, Li S, Pokharel R, Lienert U, Rollett A, Suter R 2014. Tensile twin nucleation events coupled to neighboring slip observed in three dimensions. Acta Mater. 76:213–20
    [Google Scholar]
  13. 13. 
    Spear AD, Li SF, Lind JF, Suter RM, Ingraffea AR 2014. Three-dimensional characterization of microstructurally small fatigue-crack evolution using quantitative fractography combined with postmortem X-ray tomography and high-energy X-ray diffraction microscopy. Acta Mater. 76:413–24
    [Google Scholar]
  14. 14. 
    Menasche D, Lind J, Li S, Kenesei P, Bingert J et al. 2016. Shock induced damage in copper: a before and after, three-dimensional study. J. Appl. Phys. 119:154902
    [Google Scholar]
  15. 15. 
    Hefferan C, Li S, Lind J, Lienert U, Rollett A, Suter R 2012. Observation of recovery and recrystallization in high purity aluminum measured with forward modeling analysis of high energy diffraction microscopy. Acta Mater. 60:4311–18
    [Google Scholar]
  16. 16. 
    Pokharel R, Brown D, Clausen B, Byler D, Ickes T et al. 2017. Non-destructive characterization of UO2 + x nuclear fuels. Microsc. Today 25:42–47
    [Google Scholar]
  17. 17. 
    Pokharel R, Lind J, Li S, Kenesei P, Lebensohn R et al. 2015. In situ observation of bulk 3D grain evolution during plastic deformation in polycrystalline copper. Int. J. Plast. 67:217–2343
    [Google Scholar]
  18. 18. 
    Schuren J, Shade P, Bernier J, Li S, Blank B et al. 2015. New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr. Opin. Solid State Mater. Sci. 19:235–44
    [Google Scholar]
  19. 19. 
    Kittel C 2005. Introduction to Solid State Physics New York: Wiley. 8th ed.
  20. 20. 
    Als-Nielsen J, McMorrow D 2011. Elements of Modern X-Ray Physics New York: Wiley. 2nd ed.
  21. 21. 
    Shastri S, Fezzaa K, Mashayekhi A, Lee WK, Fernandez P, Lee P 2002. Cryogenically cooled bent double-Laue monochromator for high-energy undulator X-rays (50–200 keV). J. Synchrotron Radiat. 9:317–22
    [Google Scholar]
  22. 22. 
    Shastri SD 2004. Combining flat crystals, bent crystals and compound refractive lenses for high-energy X-ray optics. J. Synchrotron Radiat. 11:150–56
    [Google Scholar]
  23. 23. 
    Shastri SD, Almer J, Ribbing C, Cederström B 2007. High-energy X-ray optics with silicon saw-tooth refractive lenses. J. Synchrotron Radiat. 14:204–11
    [Google Scholar]
  24. 24. 
    Lienert U, Li S, Hefferan C, Lind J, Suter R et al. 2011. High-energy diffraction microscopy at the advanced photon source. J. Miner. 63:70–77
    [Google Scholar]
  25. 25. 
    Cullity BD 1956. Elements of X-Ray Diffraction Reading, MA: Addison-Wesley
  26. 26. 
    Lee JH, Aydıner CC, Almer J, Bernier J, Chapman KW et al. 2008. Synchrotron applications of an amorphous silicon flat-panel detector. J. Synchrotron Radiat. 15:477–88
    [Google Scholar]
  27. 27. 
    Lee J, Almer J, Aydner C, Bernier J, Chapman K et al. 2007. Characterization and application of a Ge amorphous silicon flat panel detector in a synchrotron light source. Nucl. Instrum. Methods A 582:182–84
    [Google Scholar]
  28. 28. 
    Poulsen HF, Cook PK, Leemreize H, Pedersen AF, Yildirim C et al. 2018. Reciprocal space mapping and strain scanning using X-ray diffraction microscopy. J. Appl. Crystallogr. 51:1428–36
    [Google Scholar]
  29. 29. 
    Schuren JC, Shade PA, Bernier JV, Li SF, Blank B et al. 2015. New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr. Opin. Solid State Mater. Sci. 19:235–44
    [Google Scholar]
  30. 30. 
    Poulsen HF 2012. An introduction to three-dimensional X-ray diffraction microscopy. J. Appl. Crystallogr. 45:1084–97
    [Google Scholar]
  31. 31. 
    Hansen PC, Sørensen HO, Sükösd Z, Poulsen HF 2009. Reconstruction of single-grain orientation distribution functions for crystalline materials. SIAM J. Imaging Sci. 2:593–613
    [Google Scholar]
  32. 32. 
    Barton NR, Bernier JV 2012. A method for intragranular orientation and lattice strain distribution determination. J. Appl. Crystallogr. 45:1145–55
    [Google Scholar]
  33. 33. 
    Pagan DC, Miller MP 2014. Connecting heterogeneous single slip to diffraction peak evolution in high-energy monochromatic X-ray experiments. J. Appl. Crystallogr. 47:887–98
    [Google Scholar]
  34. 34. 
    Pagan DC, Miller MP 2016. Determining heterogeneous slip activity on multiple slip systems from single crystal orientation pole figures. Acta Mater. 116:200–11
    [Google Scholar]
  35. 35. 
    Nisr C, Ribàrik G, Ungàr T, Vaughan GBM, Cordier P, Merkel S 2012. High resolution three-dimensional X-ray diffraction study of dislocations in grains of MgGeO3 postperovskite at 90 GPa. J. Geophys. Res. Solid Earth 117:B03201
    [Google Scholar]
  36. 36. 
    Bernier J, Barton N, Lienert U, Miller M 2011. Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis. J. Strain Anal. Eng. Des. 46:527–47
    [Google Scholar]
  37. 37. 
    Jakobsen B, Poulsen HF, Lienert U, Almer J, Shastri SD et al. 2006. Formation and subdivision of deformation structures during plastic deformation. Science 312:889–92
    [Google Scholar]
  38. 38. 
    Jakobsen B, Poulsen HF, Lienert U, Pantleon W 2007. Direct determination of elastic strains and dislocation densities in individual subgrains in deformation structures. Acta Mater. 55:3421–30
    [Google Scholar]
  39. 39. 
    Lienert U, Almer J, Jakobsen B, Pantleon W, Poulsen HF et al. 2008. Single grain characterization techniques at the APS 1-ID beamline. Final Program of the 137th TMS Annual Meeting and Exhibition: Linking Science and Technology for Global Solutions287 Pittsburgh, PA: TMS
    [Google Scholar]
  40. 40. 
    Pantleon W, Wejdemann C, Jakobsen B, Lienert U, Poulsen HF 2009. Evolution of deformation structures under varying loading conditions followed in situ by high angular resolution 3DXRD. Mater. Sci. Eng. A 524:55–63
    [Google Scholar]
  41. 41. 
    Lienert U, Ribárik G, Ungar T, Wejdemann C, Pantleon W 2017. High-resolution single-grain diffraction of polycrystalline materials. Synchrotron Radiat. News 30:35–40
    [Google Scholar]
  42. 42. 
    Ludwig W, Reischig P, King A, Herbig M, Lauridsen E et al. 2009. Three-dimensional grain mapping by X-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis. Rev. Sci. Instrum. 80:033905
    [Google Scholar]
  43. 43. 
    Suter R, Hennessy D, Xiao C, Lienert U 2006. Forward modeling method for microstructure reconstruction using X-ray diffraction microscopy: single-crystal verification. Rev. Sci. Instrum. 77:123905
    [Google Scholar]
  44. 44. 
    Menasche DB, Shade PA, Suter RM 2020. Accuracy and precision of near-field HEDM forward-model based microstructure reconstructions. J. Appl. Crystallogr. 53:107–16
    [Google Scholar]
  45. 45. 
    Lind J, Rollett A, Pokharel R, Hefferan C, Li S et al. 2014. Image processing in experiments on, and simulations of, plastic deformation of polycrystals. Proceedings of the IEEE International Conference on Image Processing4877–81 Piscataway, NJ: IEEE
    [Google Scholar]
  46. 46. 
    Pokharel R, Lind J, Kanjarla A, Lebensohn R, Li S et al. 2014. Polycrystal plasticity: comparison between grain-scale observations of deformation and simulations. Annu. Rev. Condens. Matter Phys. 5:317–46
    [Google Scholar]
  47. 47. 
    Ivanyushenkov Y, Harkay K, Borland M, Dejus R, Dooling J et al. 2017. Development and operating experience of a 1.1-m-long superconducting undulator at the advanced photon source. Phys. Rev. Accel. Beams 20:100701
    [Google Scholar]
  48. 48. 
    Shade P, Menasche D, Bernier J, Kenesei P, Park JS et al. 2016. Fiducial marker application method for in situ multimodal X-ray experiments. J. Appl. Crystallogr. 49:700–4
    [Google Scholar]
  49. 49. 
    Hommer GM, Park JS, Collins PC, Pilchak AL, Stebner AP 2017. A new in situ planar biaxial far-field high energy diffraction microscopy experiment. Advancement of Optical Methods in Experimental MechanicsVol. 3, ed. S Yoshida, L Lamberti, C Sciammarella61–70 Berlin: Springer
    [Google Scholar]
  50. 50. 
    Park JS, Horn C, Ramanathan P, Kenesei P, Veseli S 2019. Data management and processing workflow for the materials physics and engineering group beamlines at the advanced photon source. J. Synchrotron Radiat. 26:373–381
    [Google Scholar]
  51. 51. 
    Schwarz N, Veseli S, Jarosz D 2019. Data management at the advanced photon source. Synchrotron Radiat. News 32:13–18
    [Google Scholar]
  52. 52. 
    Arkilic A, Allan DB, Caswell T, Li L, Lauer K, Abeykoon S 2017. Towards integrated facility-wide data acquisition and analysis at NSLS. II. Synchrotron Radiat. News 30:44–45
    [Google Scholar]
  53. 53. 
    Oddershede J, Schmidt S, Poulsen HF, Sørensen HO, Wright J, Reimers W 2010. Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffraction. J. Appl. Crystallogr. 43:539–49
    [Google Scholar]
  54. 54. 
    Wejdemann C, Poulsen HF 2016. Multigrain indexing of unknown multiphase materials. J. Appl. Crystallogr. 49:616–21
    [Google Scholar]
  55. 55. 
    Bernier JV, Miller MP, Boyce DE 2006. A novel optimization-based pole-figure inversion method: comparison with WIMV and maximum entropy methods. J. Appl. Crystallogr. 39:697–713
    [Google Scholar]
  56. 56. 
    Sharma H, Huizenga RM, Offerman SE 2012. A fast methodology to determine the characteristics of thousands of grains using three-dimensional X-ray diffraction. I. Overlapping diffraction peaks and parameters of the experimental setup. J. Appl. Crystallogr. 45:693–704
    [Google Scholar]
  57. 57. 
    Sharma H, Huizenga RM, Offerman SE 2012. A fast methodology to determine the characteristics of thousands of grains using three-dimensional X-ray diffraction. II. Volume, centre-of-mass position, crystallographic orientation and strain state of grains. J. Appl. Crystallogr. 45:705–18
    [Google Scholar]
  58. 58. 
    Schmidt S 2014. GrainSpotter: a fast and robust polycrystalline indexing algorithm. J. Appl. Crystallogr. 47:276–84
    [Google Scholar]
  59. 59. 
    Li S, Lind J, Hefferan C, Pokharel R, Lienert U et al. 2012. Three dimensional plastic response in polycrystalline copper via near-field high energy X-ray diffraction microscopy. J. Appl. Crystallogr. 45:1098–108
    [Google Scholar]
  60. 60. 
    Turner TJ, Shade PA, Bernier JV, Li SF, Schuren JC et al. 2017. Crystal plasticity model validation using combined high-energy diffraction microscopy data for a Ti-7Al specimen. Metall. Mater. Trans. A 48:627–47
    [Google Scholar]
  61. 61. 
    Turner TJ, Shade PA, Bernier JV, Li SF, Schuren JC et al. 2016. Combined near- and far-field high-energy diffraction microscopy dataset for Ti-7Al tensile specimen elastically loaded in situ. Integr. Mater. Manuf. Innov. 5:94–102
    [Google Scholar]
  62. 62. 
    Tari V, Lebensohn RA, Pokharel R, Turner TJ, Shade PA et al. 2018. Validation of micro-mechanical FFT-based simulations using high energy diffraction microscopy on Ti-7Al. Acta Mater. 154:273–83
    [Google Scholar]
  63. 63. 
    Lebensohn R, Kanjarla A, Eisenlohr P 2012. An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast. 32-33:59–69
    [Google Scholar]
  64. 64. 
    Pokharel R, Lebensohn RA 2017. Instantiation of crystal plasticity simulations for micromechanical modelling with direct input from microstructural data collected at light sources. Scr. Mater. 132:73–77
    [Google Scholar]
  65. 65. 
    Eshelby JD 1957. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. A 241:376–96
    [Google Scholar]
  66. 66. 
    Hosford W 1993. The Mechanics of Crystals and Textured Polycrystals New York: Oxford Univ. Press
  67. 67. 
    Subedi S, Pokharel R, Rollett AD 2015. Orientation gradients in relation to grain boundaries at varying strain level and spatial resolution. Mater. Sci. Eng. A 638:348–56
    [Google Scholar]
  68. 68. 
    Aydıner CC, Bernier JV, Clausen B, Lienert U, Tomé CN, Brown DW 2009. Evolution of stress in individual grains and twins in a magnesium alloy aggregate. Phys. Rev. B 80:024113
    [Google Scholar]
  69. 69. 
    Abdolvand H, Majkut M, Oddershede J, Wright JP, Daymond MR 2015. Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal. Part I. In-situ three-dimensional synchrotron X-ray diffraction measurement. Acta Mater. 93:246–55
    [Google Scholar]
  70. 70. 
    Lind J 2013. In-situ high-energy diffraction microscopy study of zirconium under uni-axial tensile deformation PhD Thesis, Carnegie Mellon Univ. Pittsburgh, PA:
  71. 71. 
    Pagan DC, Shade PA, Barton NR, Park JS, Kenesei P et al. 2017. Modeling slip system strength evolution in Ti-7Al informed by in-situ grain stress measurements. Acta Mater. 128:406–17
    [Google Scholar]
  72. 72. 
    Pagan DC, Bernier JV, Dale D, Ko JP, Turner TJ et al. 2018. Measuring Ti-7Al slip system strengths at elevated temperature using high-energy X-ray diffraction. Scr. Mater. 142:96–100
    [Google Scholar]
  73. 73. 
    Tayon WA, Nygren KE, Crooks RE, Pagan DC 2019. In-situ study of planar slip in a commercial aluminum–lithium alloy using high energy X-ray diffraction microscopy. Acta Mater. 173:231–41
    [Google Scholar]
  74. 74. 
    Pagan DC, Obstalecki M, Park JS, Miller MP 2018. Analyzing shear band formation with high resolution X-ray diffraction. Acta Mater. 147:133–48
    [Google Scholar]
  75. 75. 
    Chatterjee K, Beaudoin AJ, Pagan DC, Shade PA, Philipp HT et al. 2019. Intermittent plasticity in individual grains: a study using high energy X-ray diffraction. Struct. Dyn. 6:014501
    [Google Scholar]
  76. 76. 
    Beaudoin AJ, Shade PA, Schuren JC, Turner TJ, Woodward C et al. 2017. Bright X-rays reveal shifting deformation states and effects of the microstructure on the plastic deformation of crystalline materials. Phys. Rev. B 96:174116
    [Google Scholar]
  77. 77. 
    Herbig M, King A, Reischig P, Proudhon H, Lauridsen EM et al. 2011. 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography. Acta Mater. 59:590–601
    [Google Scholar]
  78. 78. 
    Cerrone A, Stein C, Pokharel R, Hefferan C, Lind J et al. 2015. Implementation and verification of a microstructure-based capability for modeling microcrack nucleation in LSHR at room temperature. Model. Simul. Mater. Sci. Eng. 23:035006
    [Google Scholar]
  79. 79. 
    Stein CA, Cerrone A, Ozturk T, Lee S, Kenesei P et al. 2014. Fatigue crack initiation, slip localization and twin boundaries in a nickel-based superalloy. Curr. Opin. Solid State Mater. Sci. 18:244–52
    [Google Scholar]
  80. 80. 
    Naragani D, Sangid MD, Shade PA, Schuren JC, Sharma H et al. 2017. Investigation of fatigue crack initiation from a non-metallic inclusion via high energy X-ray diffraction microscopy. Acta Mater. 137:71–84
    [Google Scholar]
  81. 81. 
    Murphy-Leonard AD, Pagan DC, Beaudoin A, Miller MP, Allison JE 2019. Quantification of cyclic twinning–detwinning behavior during low-cycle fatigue of pure magnesium using high energy X-ray diffraction. Int. J. Fatigue 125:314–23
    [Google Scholar]
  82. 82. 
    Lin B, Jin Y, Hefferan C, Li S, Lind J et al. 2015. Observation of annealing twin nucleation at triple lines in nickel during grain growth. Acta Mater. 99:63–68
    [Google Scholar]
  83. 83. 
    Fullman R, Fisher J 1951. Formation of annealing twins during grain growth. J. Appl. Phys. 22:1350–55
    [Google Scholar]
  84. 84. 
    Holm EA, Rohrer GS, Foiles SM, Rollett AD, Miller HM, Olmsted DL 2011. Validating computed grain boundary energies in fcc metals using the grain boundary character distribution. Acta Mater. 59:5250–56
    [Google Scholar]
  85. 85. 
    Hefferan C, Li S, Lind J, Lienert U, Rollet A et al. 2009. Statistics of high purity nickel microstructure from high energy X-ray diffraction microscopy. Comput. Mater. Contin. 14:209–19
    [Google Scholar]
  86. 86. 
    Zhang J, Zhang Y, Ludwig W, Rowenhorst D, Voorhees P, Poulsen H 2018. Three-dimensional grain growth in pure iron. Part I. Statistics on the grain level. Acta Mater. 156:76–85
    [Google Scholar]
  87. 87. 
    Bhattacharya A, Shen YF, Hefferan C, Li S, Lind J et al. 2019. Three-dimensional observations of grain volume changes during annealing of polycrystalline nickel. Acta Mater. 167:40–50
    [Google Scholar]
  88. 88. 
    Shen YF, Maddali S, Menasche D, Bhattacharya A, Rohrer G, Suter R 2019. The importance of outliers: a three dimensional study of grain growth in α-phase iron. Phys. Rev. Mater. 3:063611
    [Google Scholar]
  89. 89. 
    Marthinsen K, Hunderi O, Ryum N 1996. The influence of spatial grain size correlation and topology on normal grain growth in two dimensions. Acta Mater. 44:1681–89
    [Google Scholar]
  90. 90. 
    Bucsek AN, Dale D, Ko JYP, Chumlyakov Y, Stebner AP 2018. Measuring stress-induced martensite microstructures using far-field high-energy diffraction microscopy. Acta Crystallogr. A 74:425–46
    [Google Scholar]
  91. 91. 
    Bucsek A, Casalena L, Pagan D, Paul P, Chumlyakov Y et al. 2019. Three-dimensional in situ characterization of phase transformation induced austenite grain refinement in nickel-titanium. Scr. Mater. 162:361–66
    [Google Scholar]
  92. 92. 
    Bucsek AN, Pagan DC, Casalena L, Chumlyakov Y, Mills MJ, Stebner AP 2019. Ferroelastic twin reorientation mechanisms in shape memory alloys elucidated with 3D X-ray microscopy. J. Mech. Phys. Solids 124:897–928
    [Google Scholar]
  93. 93. 
    Gürsoy D, De Carlo F, Xiao X, Jacobsen C 2014. TomoPy: a framework for the analysis of synchrotron tomographic data. J. Synchrotron Radiat. 21:1188–93
    [Google Scholar]
  94. 94. 
    Liu Y, Meirer F, Williams PA, Wang J, Andrews JC, Pianetta P 2012. TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy. J. Synchrotron Radiat. 19:281–87
    [Google Scholar]
  95. 95. 
    Lieberman EJ, Lebensohn RA, Menasche DB, Bronkhorst CA, Rollett AD 2016. Microstructural effects on damage evolution in shocked copper polycrystals. Acta Mater. 116:270–80
    [Google Scholar]
  96. 96. 
    Chandra S, Samal MK, Chavan VM, Raghunathan S 2018. Void growth in single crystal copper—an atomistic modeling and statistical analysis study. Philos. Mag. 98:577–604
    [Google Scholar]
  97. 97. 
    Nguyen T, Luscher D, Wilkerson J 2019. The role of elastic and plastic anisotropy in intergranular spall failure. Acta Mater. 168:1–12
    [Google Scholar]
  98. 98. 
    Brown AD, Pham Q, Fortin EV, Peralta P, Patterson BM et al. 2017. Correlations among void shape distributions, dynamic damage mode, and loading kinetics. J. Miner. 69:198–206
    [Google Scholar]
  99. 99. 
    Hong C, Fæster S, Hansen N, Huang X, Barabash RI 2017. Non-spherical voids and lattice reorientation patterning in a shock-loaded Al single crystal. Acta Mater. 134:16–30
    [Google Scholar]
  100. 100. 
    Menasche DB, Shade P, Lind J, LI S, Bernier J et al. 2016. Correlation of thermally induced pores with microstructural features using high energy X-rays. Metall. Mater. Trans. A 47:5580–88
    [Google Scholar]
  101. 101. 
    Zhang X, Li M, Park JS, Kenesei P, Sharma H, Almer J 2018. High-energy X-ray diffraction microscopy study of deformation microstructures in neutron-irradiated polycrystalline Fe-9%Cr. J. Nucl. Mater. 508:556–66
    [Google Scholar]
  102. 102. 
    Daniels JE, Majkut M, Cao Q, Schmidt S, Wright J et al. 2016. Heterogeneous grain-scale response in ferroic polycrystals under electric field. Sci. Rep. 6:22820
    [Google Scholar]
  103. 103. 
    Zhang L, Meng Y, Dera P, Yang W, Mao WL, Mao HK 2013. Single-crystal structure determination of (Mg,Fe)SiO3 postperovskite. PNAS 110:6292–95
    [Google Scholar]
  104. 104. 
    Bhattacharya A, Shen YF, Hefferan CM, Li SF, Lind J et al. 2019. Three-dimensional observations of grain volume changes during annealing of polycrystalline Ni. Acta Mater. 167:40–50
    [Google Scholar]
  105. 105. 
    Beaudoin A, Obstalecki M, Storer R, Tayon W, Mach J et al. 2012. Validation of a crystal plasticity model using high energy diffraction microscopy. Model. Simul. Mater. Sci. Eng. 20:024006
    [Google Scholar]
  106. 106. 
    Pagan D, Shade P, Barton N, Park JS, Kenesei P et al. 2017. Modeling slip system strength evolution in Ti-7Al informed by in-situ grain stress measurements. Acta Mater. 128:406–17
    [Google Scholar]
  107. 107. 
    Cereser A, Strobl M, Hall SA, Steuwer A, Kiyanagi R et al. 2017. Time-of-flight three dimensional neutron diffraction in transmission mode for mapping crystal grain structures. Sci. Rep. 7:9561
    [Google Scholar]
  108. 108. 
    Ludwig W, Schmidt S, Lauridsen E, Poulsen H 2008. X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case. J. Appl. Crystallogr. 41:302–9
    [Google Scholar]
  109. 109. 
    King A, Johnson G, Engelberg D, Ludwig W, Marrow J 2008. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science 321:382–85
    [Google Scholar]
  110. 110. 
    King A, Herbig M, Ludwig W, Reischig P, Lauridsen E et al. 2010. Non-destructive analysis of micro texture and grain boundary character from X-ray diffraction contrast tomography. Nucl. Instrum. Methods B 268:291–96
    [Google Scholar]
  111. 111. 
    King A, Reischig P, Adrien J, Ludwig W 2013. First laboratory X-ray diffraction contrast tomography for grain mapping of polycrystals. J. Appl. Crystallogr. 46:1734–40
    [Google Scholar]
  112. 112. 
    McDonald SA, Reischig P, Holzner C, Lauridsen E, Withers P et al. 2015. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy. Sci. Rep. 5:14665:1–11
    [Google Scholar]
  113. 113. 
    Larson B, Yang W, Ice G, Budai J, Tischler J 2002. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415:887–90
    [Google Scholar]
  114. 114. 
    Barabash OM, Santella M, Barabash RI, Ice GE, Tischler J 2010. Measuring depth-dependent dislocation densities and elastic strains in an indented Ni-based superalloy. J. Miner. 62:29–34
    [Google Scholar]
  115. 115. 
    Shechtman Y, Eldar YC, Cohen O, Chapman HN, Miao J, Segev M 2015. Phase retrieval with application to optical imaging. IEEE Signal Proc. Mag. 32:87–109
    [Google Scholar]
  116. 116. 
    Robinson I, Vartanyants I, Williams G, Pfeifer M, Pitney J 2001. Reconstruction of the shapes of gold nanocrystals using coherent X-ray diffraction. Phys. Rev. Lett. 87:195505
    [Google Scholar]
  117. 117. 
    Ulvestad A, Singer A, Clark J, Cho H, Kim J et al. 2015. Topological defect dynamics in operando battery nanoparticles. Science 348:1344–47
    [Google Scholar]
  118. 118. 
    Yau A, Cha W, Kanan M, Stephenson G, Ulvestad A 2017. Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films. Science 356:739–42
    [Google Scholar]
  119. 119. 
    Phillips FHN, Das S, Karamched P, Hughes G, Douglas J et al. 2019. Full, 3D-resolved lattice strain tensor measurements of specific crystallographic defects extracted from a bulk sample. arXiv:1903.04079 [cond-mat]
    [Google Scholar]
  120. 120. 
    Maddali S, Allain M, Cha W, Harder R, Park JS et al. 2019. Phase retrieval for Bragg coherent diffraction imaging at high X-ray energies. Phys. Rev. A 99:053838
    [Google Scholar]
  121. 121. 
    Simons H, King A, Ludwig W, Detlefs C, Pantleon W et al. 2015. Dark-field X-ray microscopy for multiscale structural characterization. Nat. Commun. 6:6098
    [Google Scholar]
  122. 122. 
    Poulsen HF, Jakobsen A, Simons H, Ahl S, Cook P, Detlefs C 2017. X-ray diffraction microscopy based on refractive optics. J. Appl. Crystallogr. 50:1441–56
    [Google Scholar]
  123. 123. 
    Jakobsen AC, Simons H, Ludwig W, Yildirim C, Leemreize H et al. 2019. Mapping of individual dislocations with dark-field X-ray microscopy. J. Appl. Crystallogr. 52:122–32
    [Google Scholar]
  124. 124. 
    Lyckegaard A, Poulsen HF, Ludwig W, Fonda RW, Lauridsen EM 2012. Box-scan: a novel 3DXRD method for studies of recrystallization and grain growth. Mater. Sci. Forum 715/716:518–20
    [Google Scholar]
  125. 125. 
    Hayashi Y, Setoyama D, Hirose Y, Yoshida T, Kimura H 2019. Intragranular three-dimensional stress tensor fields in plastically deformed polycrystals. Science 366:1492–96
    [Google Scholar]
  126. 126. 
    Hayashi Y, Setoyama D, Seno Y 2017. Scanning three-dimensional X-ray diffraction microscopy with a high-energy microbeam at SPring-8. Mater. Sci. Forum 905:157–64
    [Google Scholar]
  127. 127. 
    Hayashi Y, Seno Y, Yoshida T 2017. Orientation mapping of steel by scanning three-dimensional X-ray diffraction microscopy. Acta Crystallogr. A 70:C854
    [Google Scholar]
  128. 128. 
    Laanait N, Zhang Z, Schlepütz CM 2016. Imaging nanoscale lattice variations by machine learning of X-ray diffraction microscopy data. Nanotechnology 27:374002
    [Google Scholar]
  129. 129. 
    Cherukara MJ, Nashed YSG, Harder RJ 2018. Real-time coherent diffraction inversion using deep generative networks. Sci. Rep. 8:16520
    [Google Scholar]
  130. 130. 
    Nygren KE, Pagan DC, Bernier JV, Miller MP 2020. An algorithm for resolving intragranular orientation fields using coupled far-field and near-field high energy X-ray diffraction microscopy. Mater. Charact. 165:110366
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070616-124125
Loading
/content/journals/10.1146/annurev-matsci-070616-124125
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error