1932

Abstract

We examine ice crystallization from liquid water and from water vapor, focusing on the underlying physical processes that determine growth rates and structure formation. Ice crystal growth is largely controlled by a combination of molecular attachment kinetics on faceted surfaces and large-scale diffusion processes, yielding a remarkably rich phenomenology of solidification behaviors under different conditions. Layer nucleation plays an especially important role, with nucleation rates determined primarily by step energies on faceted ice/water and ice/vapor interfaces. The measured step energies depend strongly on temperature and other factors, and it appears promising that molecular dynamics simulations could soon be used in conjunction with experiments to better understand the energetics of these terrace steps. On larger scales, computational techniques have recently demonstrated the ability to accurately model the diffusion-limited growth of complex structures that are both faceted and branched. Together with proper boundary conditions determined by surface attachment kinetics, this opens a path to fully reproducing the variety of complex structures that commonly arise during ice crystal growth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070616-124135
2017-07-03
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/matsci/47/1/annurev-matsci-070616-124135.html?itemId=/content/journals/10.1146/annurev-matsci-070616-124135&mimeType=html&fmt=ahah

Literature Cited

  1. Nakaya U.1.  1954. Snow Crystals Cambridge, MA: Harvard Univ. Press [Google Scholar]
  2. Hobbs PV.2.  1974. Ice Physics Oxford, UK: Oxford Univ. Press [Google Scholar]
  3. Petrenko VF, Whitworth RW. 3.  1999. Physics of Ice Oxford, UK: Oxford Univ. Press [Google Scholar]
  4. Pruppacher HR, Klett JD. 4.  1997. Microphysics of Clouds and Precipitation Dordrecht, Neth.: Kluwer Academic Publishers [Google Scholar]
  5. Mason BJ.5.  1971. The Physics of Clouds Oxford, UK: Clarendon Press [Google Scholar]
  6. Kobayashi T, Kuroda T. 6.  1987. Snow Crystals: Morphology of Crystals—Part B Tokyo: Terra Scientific [Google Scholar]
  7. Wang PK.7.  2002. Shape and microdynamics of ice particles and their effects in cirrus clouds. Adv. Geophys. 45:1–258 [Google Scholar]
  8. Libbrecht KG.8.  2005. The physics of snow crystals. Rep. Prog. Phys. 68:855–95 [Google Scholar]
  9. Libbrecht K, Wing R. 9.  2015. The Snowflake: Winter's Frozen Artistry Stillwater, MN: Voyageur Press [Google Scholar]
  10. Libbrecht K.10.  2006. Ken Libbrecht's Field Guide to Snowflakes Stillwater, MN: Voyageur Press [Google Scholar]
  11. Libbrecht K.11.  2011. The Secret Life of a Snowflake Stillwater, MN: Voyageur Press [Google Scholar]
  12. Saito Y.12.  1996. Statistical Physics of Crystal Growth Singapore: World Scientific [Google Scholar]
  13. Mutaftschiev B.13.  2002. The Atomistic Nature of Crystal Growth Berlin: Springer-Verlag [Google Scholar]
  14. Markov IV.14.  2004. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy Singapore: World Scientific [Google Scholar]
  15. Pimpinelli A, Villain J. 15.  1999. Physics of Crystal Growth Cambridge: Cambridge Univ. Press [Google Scholar]
  16. Mullins WW, Sekerka RF. 16.  1964. Stability of a planar interface during solidification of dilute binary alloy. J. Appl. Phys. 35:444–51 [Google Scholar]
  17. Knight CA.17.  1996. A simple technique for growing large, optically perfect ice crystals. J. Glaciol. 42:585–87 [Google Scholar]
  18. Shibkov AA, Golovin YI, Zheltov MA, Korolev AA, Lenov AA. 18.  2003. Morphology diagram of nonequilibrium patterns of ice crystals growing in supercooled water. Phys. A 319:65–79 [Google Scholar]
  19. Shibkov AA, Zheltov MA, Korolev AA, Kazakov AA, Lenov AA. 19.  2005. Crossover from diffusion-limited to kinetics-limited growth of ice crystals. J. Cryst. Growth 285:215–27 [Google Scholar]
  20. Maruyama M, Kishimoto Y, Sawada T. 20.  1997. Optical study of roughening transition on ice Ih (1010) planes under pressure. J. Cryst. Growth 172:521–27 [Google Scholar]
  21. Maruyama M.21.  2005. Roughening transition of prism faces of ice crystals grown from melt under pressure. J. Cryst. Growth 275:598–605 [Google Scholar]
  22. Deville S, Saiz E, Tomsia AP. 22.  2007. Ice-templated porous alumina structures. Acta Mater. 55:1965–74 [Google Scholar]
  23. Munch E, Saiz E, Tomsia AP, Deville S. 23.  2009. Architectural control of freeze-cast ceramics through additives and templating. J. Am. Ceram. Soc. 92:1534–39 [Google Scholar]
  24. Wang W.24.  2000. Lyophilization and development of solid protein pharmaceuticals. Int. J. Pharm. 203:1–60 [Google Scholar]
  25. Ryan BF, Macklin WC. 25.  1966. The growth of ice in supercooled aqueous solutions. J. Cryst. Growth 2:337–40 [Google Scholar]
  26. Ryan BF.26.  1969. The growth of ice parallel to the basal plane in supercooled water and supercooled metal fluoride solutions. J. Cryst. Growth 5:284–88 [Google Scholar]
  27. Knight CA, Cheng CC, Devries AL. 27.  1991. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surfaces. Biophys. J. 59:409–18 [Google Scholar]
  28. Knight CA, Wierzbicki A. 28.  2001. Adsorption of biomolecules to ice and their effects on ice growth. 2. A discussion of the basic mechanism of antifreeze phenomena. Cryst. Growth. Des. 1:439–46 [Google Scholar]
  29. Libbrecht KG.29.  2009. Identification of a novel “fishbone” structure in the dendritic growth of columnar ice crystals. arXiv0912.2522 [cond-mat.mtrl-sci]
  30. Sears GW.30.  1955. A growth mechanism for mercury whiskers. Acta Metal. 3:361–66 [Google Scholar]
  31. Nelson J, Knight C. 31.  1998. Snow crystal habit changes explained by layer nucleation. J. Atmos. Sci. 55:1452–65 [Google Scholar]
  32. Knight CA.32.  2012. Ice growth from the vapor at −5°C. J. Atmos. Sci. 69:2031–40 [Google Scholar]
  33. Lamb D, Scott WD. 33.  1972. Linear growth rates of ice crystals grown from the vapor phase. J. Cryst. Growth 12:21–31 [Google Scholar]
  34. Furukawa Y, Kohata S. 34.  1993. Temperature dependence of the growth form of negative crystal in an ice single crystal and evaporation kinetics for its surfaces. J. Cryst. Growth 129:571–81 [Google Scholar]
  35. Bailey M, Hallett J. 35.  2004. Growth rates and habits of ice crystals between −20°and −70°C. J. Atmos. Sci. 61:514–44 [Google Scholar]
  36. Libbrecht KG, Bell R. 36.  2010. Chemical influences on ice crystal growth from vapor. arXiv1101.0127 [cond-mat.mtrl-sci]
  37. Gonda T.37.  1976. The growth of small ice crystal in gases of high and low pressures. J. Meteor. Soc. Jpn. 54:233–40 [Google Scholar]
  38. Libbrecht KG.38.  2015. An experimental apparatus for observing deterministic structure formation in plate-on-pedestal ice crystal growth. arXiv1503.01019 [cond-mat.mtrl-sci]
  39. Libbrecht KG.39.  2014. A dual diffusion chamber for observing ice crystal growth on c-axis ice needles. arXiv1405.1384 [cond-mat.mtrl-sci]
  40. Mason BJ, Bryant GW, Van den Heuvel AP. 40.  1963. The growth habits and surface structure of ice crystals. Philos. Mag. 8:505–26 [Google Scholar]
  41. Libbrecht KG.41.  2016. Toward a comprehensive model of snow crystal growth dynamics: 5. Measurements of changes in attachment kinetics from background gas interactions at −5C. arXiv1602.08528 [cond-mat.mtrl-sci]
  42. Libbrecht K, Miller C, Potter R, Budaeva N, Lemon C, Thomas S. 42.  2015. Toward a comprehensive model of snow crystal growth dynamics: 4. Measurements of diffusion-limited growth at −15 C. arXiv1512.03389 [cond-mat.mtrl-sci]
  43. Libbrecht KG.43.  2013. Quantitative modeling of faceted ice crystal growth from water vapor using cellular automata. J. Comput. Methods Phys. 2013174806 [Google Scholar]
  44. Jeffery CA, Austin PH. 44.  1997. Homogeneous nucleation of supercooled water—results from a new equation of state. J. Geophys. Res. 102:25269–79 [Google Scholar]
  45. Libbrecht KG.45.  2012. On the equilibrium shape of an ice crystal. arXiv:12051452 [cond-mat.mtrl-sci]
  46. Michaels AS, Brian PLT, Sperry PR. 46.  1966. Impurity effects on the basal plane solidification kinetics of supercooled water. J. Appl. Phys. 37:4649–61 [Google Scholar]
  47. Hillig WB.47.  1958. The kinetics of freezing of ice in the direction perpendicular to the basal plane. Growth and Perfection of Crystals RH Doremus, BW Roberts, D Turnbull, 350–60 New York: Wiley [Google Scholar]
  48. Libbrecht KG.48.  2014. Toward a comprehensive model of snow crystal growth dynamics: 3. The correspondence between ice growth from water vapor and ice growth from liquid water. arXiv1407.0740 [cond-mat.mtrl-sci]
  49. Dash JG, Rempel AW, Wettlaufer JS. 49.  2006. The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78:695–741 [Google Scholar]
  50. Lindemann FA.50.  1910. The calculation of molecular natural frequencies. Z. Phys. 11:609–12 [Google Scholar]
  51. Furukawa Y, Nada H. 51.  1997. Anisotropic surface melting of an ice crystal and its relationship to growth forms. J. Phys. Chem. B 101:6167–70 [Google Scholar]
  52. Ikeda-Fukazawa T, Kawamura K. 52.  2004. Molecular-dynamics studies of ice Ih. J. Chem. Phys. 120:1395–401 [Google Scholar]
  53. Carignano MA, Shepson PB, Szleifer I. 53.  2005. Molecular dynamics simulations of ice growth from supercooled water. Mol. Phys. 103:2957–67 [Google Scholar]
  54. Neshyba S, Nugent E, Roeselová M, Jungwirth P. 54.  2009. Molecular dynamics study of ice-vapor interactions via the quasi-liquid layer. J. Phys. Chem. 113:4597–604 [Google Scholar]
  55. Kuroda T, Gonda T. 55.  1984. Rate determining processes of growth of ice crystals from the vapour phase. Part II: investigation of surface kinetic processes. J. Meteor. Soc. Jap. 62:563–72 [Google Scholar]
  56. Libbrecht KG, Crosby T, Swanson M. 56.  2002. Electrically enhanced free dendrite growth in polar and non-polar systems. J. Cryst. Growth 240:241–54 [Google Scholar]
  57. Hillig WB, Turnbull D. 57.  1956. Theory of crystal growth in undercooled pure liquids. J. Chem. Phys. 24:914 [Google Scholar]
  58. Hallett J.58.  1964. Experimental studies of the crystallization of supercooled water. J. Atmos. Sci. 21:671–82 [Google Scholar]
  59. Pruppacher HR.59.  1967. On the growth of ice aqueous solutions contained in capillaries. Z. Naturforschung A 22:895–901 [Google Scholar]
  60. Beckmann W, Lacmann R, Blerfreund A. 60.  1983. Growth rates and habits of ice crystals grown from the vapor phase. J. Phys. Chem. 87:4142–46 [Google Scholar]
  61. Sei T, Gonda T. 61.  1989. The growth mechanism and the habit change of ice crystals growing from the vapor phase. J. Cryst. Growth 94:697–707 [Google Scholar]
  62. Libbrecht KG, Yu H. 62.  2001. Crystal growth in the presence of surface melting: superstaturation dependence of the growth of columnar ice crystals. J. Cryst. Growth 222:822–31 [Google Scholar]
  63. Nelson J.63.  2001. Growth mechanisms to explain the primary and secondary habits of snow crystals. Philos. Mag. 81:2337–73 [Google Scholar]
  64. Libbrecht KG.64.  2004. A critical look at ice crystal growth data. arXivcond–mat/0411662 [cond-mat.mtrl-sci]
  65. Libbrecht KG, Rickerby ME. 65.  2013. Measurements of surface attachment kinetics for faceted ice crystal growth. J. Cryst. Growth (377):1–8 [Google Scholar]
  66. Libbrecht KG.66.  2003. Explaining the formation of thin ice-crystal plates with structure-dependent attachment kinetics. J. Cryst. Growth 258:168–75 [Google Scholar]
  67. Libbrecht KG.67.  2012. An edge-enhancing crystal growth instability caused by structure-dependent attachment kinetics. arXiv1209.4932 [cond-mat.mtrl-sci]
  68. Broekmann P, Mewe A, Wormeester H, Poelsema B. 68.  2002. Step edge selection during ion erosion of Cu(001). Phys. Rev. Lett. 89:146102 [Google Scholar]
  69. Karim OA, Haymet ADJ. 69.  1987. The ice water interface. Chem. Phys. Lett. 138:531–34 [Google Scholar]
  70. Karim OA, Haymet ADJ. 70.  1988. The ice water interface—a molecular-dynamics study. J. Chem. Phys. 89:6889–96 [Google Scholar]
  71. Nada H, Furukawa Y. 71.  1996. Anisotropic growth kinetics of ice crystals from water studied by molecular dynamics simulation. J. Cryst. Growth 169:587–97 [Google Scholar]
  72. Rozmanov D, Kusalik PG. 72.  2012. Anisotropy in the crystal growth of hexagonal ice, Ih. J. Chem. Phys. 137:094702 [Google Scholar]
  73. Seo M, Jang E, Kim K, Choi S, Kim JS. 73.  2012. Understanding anisotropic growth behavior of hexagonal ice on a molecular scale: a molecular dynamics simulation study. J. Chem. Phys. 137:154503 [Google Scholar]
  74. Rozmanov D, Kusalik PG. 74.  2011. Temperature dependence of crystal growth of hexagonal ice (Ih). Phys. Chem. Chem. Phys. 13:15501–11 [Google Scholar]
  75. Frolov T, Asta M. 75.  2012. Step free energies at faceted solid-liquid interfaces from equilibrium molecular dynamics simulations. J. Chem. Phys. 137:214108 [Google Scholar]
  76. Schwalbach EJ, Warren JA, Wu K-A, Voorhees PW. 76.  2013. Phase-field crystal model with a vapor phase. Phys. Rev. E 88:023306 [Google Scholar]
  77. Asakawa H, Sazaki G, Yokoyama E, Nagashima K, Nakatsubo S, Furukawa Y. 77.  2014. Roles of surface/volume diffusion in the growth kinetics of elementary spiral steps on ice basal facets grown from water vapor. Cryst. Growth Des. (14):3210–20 [Google Scholar]
  78. Libbrecht KG.78.  2015. The surface diffusion length of water molecules on faceted ice: A reanalysis of “Roles of surface/volume diffusion in the growth kinetics of elementary spiral steps on ice fasal faces grown from water vapor” by Asakawa et al.. arXiv1509.06609 [cond-mat.mtrl-sci]
  79. Libbrecht KG.79.  2016. Measurements of cylindrical ice crystal growth limited by combined particle and heat diffusion. arXiv1602.02683 [cond-mat.mtrl-sci]
  80. Ivantsov GP.80.  1947. Dokl. Akad. Nauk USSR 58567 [Google Scholar]
  81. Brener EA.81.  1996. Three-dimensional dendritic growth. J. Cryst. Growth 166:339–46 [Google Scholar]
  82. Brener EA, Melnikov VI. 82.  1991. Pattern selection in 2-dimensional dendritic growth. Adv. Phys. 40:53–97 [Google Scholar]
  83. Kessler DA, Koplik J, Levine H. 83.  1988. Pattern selection in fingered growth phenomena. Adv. Phys. 37:255–339 [Google Scholar]
  84. Libbrecht KG, Tanusheva VM. 84.  1998. Electrically induced morphological instabilities in free dendrite growth. Phys. Rev. Lett. 81:176–79 [Google Scholar]
  85. Brener EA, Muller-Krumbhaar H. 85.  1998. Comment on “Electrically induced morphological instabilities in free dendrite growth”. Phys. Rev. Lett. 83:1698 [Google Scholar]
  86. Libbrecht KG, Tanusheva VM. 86.  1998. Comment on “Electrically induced morphological instabilities in free dendrite growth”—Libbrecht and Tanusheva reply. Phys. Rev. Lett. 83:1699 [Google Scholar]
  87. Karma A, Rappel WJ. 87.  2006. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53:R3017–20 [Google Scholar]
  88. Karma A, Rappel WJ. 88.  1998. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57:4323–49 [Google Scholar]
  89. Takaki T.89.  2014. Phase-field modeling and simulations of dendrite growth. ISIJ Int. (54):437–44 [Google Scholar]
  90. Wang S, Zaeem MA, Horstemeyer MF, Wang PT. 90.  2012. Investigating thermal effects on morphological evolution during crystallisation of hcp metals: three-dimensional phase field study. Mater. Technol. (27):355–63 [Google Scholar]
  91. Jones DWR, Wells AL. 91.  2015. Solidification of a disk-shaped crystal from a weakly supercooled binary melt. Phys. Rev. E (92):022406 [Google Scholar]
  92. Barrett JW, Garcke H, Nürnberg R. 92.  2012. Numerical computations of faceted pattern formation in snow crystal growth. Phys. Rev. E 86:011604 [Google Scholar]
  93. Barrett JW, Garcke H, Nurnberg R. 93.  2014. Stable phase field approximations of anisotropic solidification. IMA J. Numer. Anal. (34):1289–1327 [Google Scholar]
  94. Reiter CA.94.  2005. A local cellular model for snow crystal growth. Chaos Solitons Fractals 23:1111–19 [Google Scholar]
  95. Gravner J, Griffeath D. 95.  2008. Modeling snow crystal growth II: a mesoscopic lattice map with plausible dynamics. Phys. D 237:385–404 [Google Scholar]
  96. Gravner J, Griffeath D. 96.  2009. Modeling snow-crystal growth: a three-dimensional mesoscopic approach. Phys. Rev. E 79:011601 [Google Scholar]
  97. Kelly JG, Boyer EC. 97.  2013. Physical improvements to a mesoscopic cellular automaton model for three-dimensional snow crystal growth. arXiv1308.4910 [cond-mat.mtrl-sci]
  98. Libbrecht KG.98.  2015. Incorporating surface diffusion into a cellular automata model of ice growth from water vapor. arXiv1509.08543 [cond-mat.mtrl-sci] [Google Scholar]
  99. Li J, Schaposnik LP. 99.  2016. Interface control and snow crystal growth. Phys. Rev. E (93):023302 [Google Scholar]
  100. Libbrecht KG.100.  2012. Toward a comprehensive model of snow crystal growth dynamics: 1. Overarching features and physical origins. arXiv1211.5555 [cond-mat.mtrl-sci]
  101. Libbrecht KG.101.  2013. Toward a comprehensive model of snow crystal growth dynamics: 2. Structure dependent attachment kinetics near −5 C. arXiv1302.1231 [cond-mat.mtrl-sci]
  102. Brener EA, Melnikov VI. 102.  1991. Roughening transition observed on the prism facet of ice. Phys. Rev. Lett. 67:2982–85 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070616-124135
Loading
/content/journals/10.1146/annurev-matsci-070616-124135
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error