Directed crystallization of a large variety of nanoparticles, including proteins, via DNA hybridization kinetics has led to unique materials with a broad range of crystal symmetries. The nanoparticles are functionalized with DNA chains that link neighboring functionalized units. The shape of the nanoparticle, the DNA length, the sequence of the hybridizing DNA linker, and the grafting density determine the crystal symmetries and lattice spacing. By carefully selecting these parameters, one can, in principle, achieve all the symmetries found for both atomic and colloidal crystals of asymmetric shapes as well as new symmetries and can drive transitions between them. A scale-accurate coarse-grained model with explicit DNA chains provides the design parameters, including the degree of hybridization, to achieve specific crystal structures. The model also provides surface energy values to determine the shape of defect-free single crystals with macroscopic anisotropic properties, which has potential for the fabrication of materials with specific optical and mechanical properties.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alivisatos AP, Johnsson KP, Peng XG, Wilson TE, Loweth CJ. 1.  et al. 1996. Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–11 [Google Scholar]
  2. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. 2.  1996. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–9 [Google Scholar]
  3. Biancaniello PL, Kim AJ, Crocker JC. 3.  2005. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94:058302 [Google Scholar]
  4. Hill HD, Macfarlane RJ, Senesi AJ, Lee B, Park SY, Mirkin CA. 4.  2008. Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers. Nano Lett 8:2341–44 [Google Scholar]
  5. Nykypanchuk D, Maye MM, van der Lelie D, Gang O. 5.  2008. DNA-guided crystallization of colloidal nanoparticles. Nature 451:549–52 [Google Scholar]
  6. Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA. 6.  2008. DNA-programmable nanoparticle crystallization. Nature 451:553–56 [Google Scholar]
  7. Macfarlane RJ, Jones MR, Senesi AJ, Young KL, Lee B. 7.  et al. 2010. Establishing the design rules for DNA-mediated colloidal crystallization. Angew. Chem. Int. Ed. 49:4589–92 [Google Scholar]
  8. Macfarlane RJ, Lee B, Jones MR, Harris N, Schatz GC, Mirkin CA. 8.  2011. Nanoparticle superlattice engineering with DNA. Science 334:204–8 [Google Scholar]
  9. O'Brien MN, Girard M, Lin H-X, Millan JA, Olvera de la Cruz M. 9.  et al. 2016. Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization. PNAS 113:10485–90 [Google Scholar]
  10. Brodin JD, Auyeung E, Mirkin CA. 10.  2015. DNA-mediated engineering of multicomponent enzyme crystals. PNAS 112:4564–69 [Google Scholar]
  11. Li T, Sknepnek R, Macfarlane RJ, Mirkin CA, Olvera de la Cruz M. 11.  2012. Modeling the crystallization of spherical nucleic acid nanoparticle conjugates with molecular dynamics simulations. Nano Lett 12:2509–14 [Google Scholar]
  12. Knorowski C, Burleigh S, Travesset A. 12.  2011. Dynamics and statics of DNA-programmable nanoparticle self-assembly and crystallization. Phys. Rev. Lett. 106:215501 [Google Scholar]
  13. Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC. 13.  2000. What controls the optical properties of DNA-linked gold nanoparticle assemblies?. J. Am. Chem. Soc. 122:4640–50 [Google Scholar]
  14. Jones MR, Macfarlane RJ, Lee B, Zhang JA, Young KL. 14.  et al. 2010. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 9:913–17 [Google Scholar]
  15. Ting L, Sknepnek R, Olvera de la Cruz M. 15.  2013. Thermally active hybridization drives the crystallization of DNA-functionalized nanoparticles. J. Am. Chem. Soc. 135:8535–41 [Google Scholar]
  16. Auyeung E, Li TING, Senesi AJ, Schmucker AL, Pals BC. 16.  et al. 2014. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505:73–77 [Google Scholar]
  17. Wulff G.17.  1901. On the question of speed of growth and dissolution of crystal surfaces. Z. Krystallographie Mineral. 34:449–530 [Google Scholar]
  18. Li TING, Olvera de la Cruz M. 18.  2015. Surface energy fluctuation effects in single crystals of DNA-functionalized nanoparticles. J. Chem. Phys. 143:243156 [Google Scholar]
  19. Scarlett RT, Crocker JC, Sinno T. 19.  2010. Computational analysis of binary segregation during colloidal crystallization with DNA-mediated interactions. J. Chem. Phys. 132:234705 [Google Scholar]
  20. Leunissen ME, Frenkel D. 20.  2011. Numerical study of DNA-functionalized microparticles and nanoparticles: explicit pair potentials and their implications for phase behavior. J. Chem. Phys. 134:084702 [Google Scholar]
  21. Dhakal S, Kohlstedt KL, Schatz GC, Mirkin CA, Olvera de la Cruz M. 21.  2013. Growth dynamics for DNA-guided nanoparticle crystallization. ACS Nano 7:10948–59 [Google Scholar]
  22. Zwanikken JW, Guo PJ, Mirkin CA, Olvera de la Cruz M. 22.  2011. Local ionic environment around polyvalent nucleic acid–functionalized nanoparticles. J. Phys. Chem. C 115:16368–73 [Google Scholar]
  23. Kewalramani S, Zwanikken JW, Macfarlane RJ, Leung CY, Olvera de la Cruz M. 23.  et al. 2013. Counterion distribution surrounding spherical nucleic acid–Au nanoparticle conjugates probed by small-angle X-ray scattering. ACS Nano 7:11301–9 [Google Scholar]
  24. Frenkel D, Ladd AJC. 24.  1984. New Monte-Carlo method to compute the free-energy of arbitrary solids: application to the fcc and hcp phases of hard spheres. J. Chem. Phys. 81:3188–93 [Google Scholar]
  25. Bolhuis P, Frenkel D. 25.  1997. Tracing the phase boundaries of hard spherocylinders. J. Chem. Phys. 106:666–87 [Google Scholar]
  26. Glotzer SC, Solomon MJ. 26.  2007. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6:557–62 [Google Scholar]
  27. Damasceno PF, Engel M, Glotzer SC. 27.  2012. Predictive self-assembly of polyhedra into complex structures. Science 337:453–57 [Google Scholar]
  28. Lekkerkerker H, Tuinier R. 28.  2011. Colloids and the Depletion Interaction Dordrecht/New York: Springer
  29. Rossi L, Sacanna S, Irvine WTM, Chaikin PM, Pine DJ, Philipse AP. 29.  2011. Cubic crystals from cubic colloids. Soft Matter 7:4139–42 [Google Scholar]
  30. Biben T, Bladon P, Frenkel D. 30.  1996. Depletion effects in binary hard-sphere fluids. J. Phys. Condens. Matter 8:10799–821 [Google Scholar]
  31. Dijkstra M, van Roij R, Evans R. 31.  1999. Phase diagram of highly asymmetric binary hard-sphere mixtures. Phys. Rev. E 59:5744–71 [Google Scholar]
  32. Karas AS, Glaser J, Glotzer SC. 32.  2016. Using depletion to control colloidal crystal assemblies of hard cuboctahedra. Soft Matter 12:5199–204 [Google Scholar]
  33. Lu F, Yager KG, Zhang YG, Xin HL, Gang O. 33.  2015. Superlattices assembled through shape-induced directional binding. Nat. Commun. 6:6912 [Google Scholar]
  34. O'Brien MN, Jones MR, Lee B, Mirkin CA. 34.  2015. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater. 14:833–39 [Google Scholar]
  35. McGinley JT, Wang YF, Jenkins IC, Sinno T, Crocker JC. 35.  2015. Crystal-templated colloidal clusters exhibit directional DNA interactions. ACS Nano 9:10817–25 [Google Scholar]
  36. Manoharan VN, Elsesser MT, Pine DJ. 36.  2003. Dense packing and symmetry in small clusters of microspheres. Science 301:483–87 [Google Scholar]
  37. Vo T, Lu F, Zhang Y, Gang O, Kumar S. 37.  2016. Anisotropic packing of DNA-mediated colloidal self-assembly Presented at APS Meet., March, Abstr S42.009
  38. Knorowski C, Travesset A. 38.  2014. Self-assembly and crystallization of hairy (f-star) and DNA-grafted nanocubes. J. Am. Chem. Soc. 136:653–59 [Google Scholar]
  39. Senesi AJ, Lee B. 39.  2015. Small-angle scattering of particle assemblies. J. Appl. Crystallogr. 48:1172–82 [Google Scholar]
  40. Haji-Akbari A, Glotzer SC. 40.  2015. Strong orientational coordinates and orientational order parameters for symmetric objects. J. Phys. A Math. Theor. 48:485201 [Google Scholar]
  41. Takae K, Onuki A. 41.  2014. Orientational glass in mixtures of elliptic and circular particles: structural heterogeneities, rotational dynamics, and rheology. Phys. Rev. E 89:022308 [Google Scholar]
  42. Harada J, Shimojo T, Oyamaguchi H, Hasegawa H, Takahashi Y. 42.  et al. 2016. Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules. Nat. Chem. 8:946–52 [Google Scholar]
  43. Knorowski C, Travesset A. 43.  2012. Dynamics of DNA-programmable nanoparticle crystallization: gelation, nucleation and topological defects. Soft Matter 8:12053–59 [Google Scholar]
  44. Thaner RV, Kim Y, Li TING, Macfarlane RJ, Nguyen ST. 44.  et al. 2015. Entropy-driven crystallization behavior in DNA-mediated nanoparticle assembly. Nano Lett 15:5545–51 [Google Scholar]
  45. Phillips CL, Anderson JA, Glotzer SC. 45.  2014. Molecular dynamics models of shaped particles using filling solutions. Phys. Procedia 53:75–81 [Google Scholar]
  46. He Y, Ye T, Su M, Zhang C, Ribbe AE. 46.  et al. 2008. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–201 [Google Scholar]
  47. Zhang C, Li X, Tian C, Yu GM, Li YL. 47.  et al. 2014. DNA nanocages swallow gold nanoparticles (AuNPs) to form AuNP@DNA cage core-shell structures. ACS Nano 8:1130–35 [Google Scholar]
  48. Tian Y, Zhang YG, Wang T, Xin HLL, Li HL, Gang O. 48.  2016. Lattice engineering through nanoparticle-DNA frameworks. Nat. Mater. 15:654–61 [Google Scholar]
  49. Liu WY, Tagawa M, Xin HLL, Wang T, Emamy H. 49.  et al. 2016. Diamond family of nanoparticle superlattices. Science 351:582–86 [Google Scholar]
  50. Veneziano R, Ratanalert S, Zhang KM, Zhang F, Yan H. 50.  et al. 2016. Designer nanoscale DNA assemblies programmed from the top down. Science 352:1534–aaf4388-8 [Google Scholar]
  51. Mann S.51.  2008. Life as a nanoscale phenomenon. Angew. Chem. Int. Ed. 47:5306–20 [Google Scholar]
  52. McPherson A.52.  1991. A brief history of protein crystal growth. J. Cryst. Growth 110:1–10 [Google Scholar]
  53. McPherson A.53.  2004. Introduction to protein crystallization. Methods 34:254–65 [Google Scholar]
  54. Dumetz AC, Snellinger-O'Brien AM, Kaler EW, Lenhoff AM. 54.  2007. Patterns of protein-protein interactions in salt solutions and implications for protein crystallization. Protein Sci 16:1867–77 [Google Scholar]
  55. Kewalramani S, Guerrero-Garcia GI, Moreau LM, Zwanikken JW, Mirkin CA. 55.  et al. 2016. Electrolyte-mediated assembly of charged nanoparticles. ACS Central Sci 2:219–24 [Google Scholar]
  56. Dotan N, Arad D, Frolow F, Freeman A. 56.  1999. Self-assembly of a tetrahedral lectin into predesigned diamondlike protein crystals. Angew. Chem. Int. Ed. 38:2363–66 [Google Scholar]
  57. Padilla JE, Colovos C, Yeates TO. 57.  2001. Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. PNAS 98:2217–21 [Google Scholar]
  58. Ringler P, Schulz GE. 58.  2003. Self-assembly of proteins into designed networks. Science 302:106–9 [Google Scholar]
  59. Brodin JD, Ambroggio XI, Tang CY, Parent KN, Baker TS, Tezcan FA. 59.  2012. Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat. Chem. 4:375–82 [Google Scholar]
  60. Verwey EJW.60.  1947. Theory of the stability of lyophobic colloids. J. Phys. Colloid Chem. 51:631–36 [Google Scholar]
  61. Lomakin A, Asherie N, Benedek GB. 61.  1996. Monte Carlo study of phase separation in aqueous protein solutions. J. Chem. Phys. 104:1646–56 [Google Scholar]
  62. Collins KD.62.  1997. Charge density–dependent strength of hydration and biological structure. Biophys. J. 72:65–76 [Google Scholar]
  63. Xu D, Tsai CJ, Nussinov R. 63.  1997. Hydrogen bonds and salt bridges across protein-protein interfaces. Protein Eng 10:999–1012 [Google Scholar]
  64. Tavares FW, Bratko D, Blanch HW, Prausnitz JM. 64.  2004. Ion-specific effects in the colloid-colloid or protein-protein potential of mean force: role of salt-macroion van der Waals interactions. J. Phys. Chem. B 108:9228–35 [Google Scholar]
  65. Boon N, Guerrero-Garcia GI, van Roij R, Olvera de la Cruz M. 65.  2015. Effective charges and virial pressure of concentrated macroion solutions. PNAS 112:9242–46 [Google Scholar]
  66. Liu H, Kumar SK, Sciortino F. 66.  2007. Vapor-liquid coexistence of patchy models: relevance to protein phase behavior. J. Chem. Phys. 127:084902 [Google Scholar]
  67. Kastelic M, Kalyuzhnyi YV, Hribar-Lee B, Dill KA, Vlachy V. 67.  2015. Protein aggregation in salt solutions. PNAS 112:6766–70 [Google Scholar]
  68. Lomakin A, Asherie N, Benedek GB. 68.  1999. Aeolotopic interactions of globular proteins. PNAS 96:9465–68 [Google Scholar]
  69. Margolin AL, Navia MA. 69.  2001. Protein crystals as novel catalytic materials. Angew. Chem. Int. Ed. 40:2204–22 [Google Scholar]
  70. McMillan JR, Brodin JD, Millan JA, Lee B, Olvera de la Cruz MO, Mirkin CA. 70.  2007. Modulating nanoparticle superlattice structure using proteins with tunable bond distributions. J. Am. Chem. Soc. 139:1754–57 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error