Metamaterials provide a challenge for materials analysis, as large-scale 3D geometries confound traditional methods. X-ray optics that allow for novel beam geometries and for more efficient use of conventional X-ray sources can be important in defect and structure analysis to close the loop between design and performance. Fortunately, metamaterials have also provided a new variety of array and structured X-ray optics. Because X-rays barely interact with materials, their index of refraction in any material is only slightly different from unity, so it is very difficult to make the sort of refractive optics that are used for visible light. Instead, diffraction can be used to control the direction or wavelength of X-rays. Structured diffractive optics include transmission gratings, artificial multilayers, and arrays of curved crystals. X-rays also have very high reflectivity at grazing incidence. This phenomenon allows for reflective arrays such as multipore and polycapillary optics.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. MacDonald CA.1.  2017. An Introduction to X-Ray Physics, Optics, and Applications Princeton, NJ: Princeton Univ. Press [Google Scholar]
  2. Bittel D, Kimball J. 2.  1993. Surface roughness and the scattering of glancing-angle X-rays: application to X-ray lenses. J. Appl. Phys. 74:877–83 [Google Scholar]
  3. Harvey J.3.  1996. X-ray optics. Handbook of Optics, Vol. II M Bass 11.1–11.34 New York: McGraw-Hill [Google Scholar]
  4. Rath BK, Gibson WM, Wang L, Homan BE, MacDonald CA. 4.  1998. Measurement and analysis of radiation effects in polycapillary X-ray optics. J. Appl. Phys. 83:7424–35 [Google Scholar]
  5. Owens SM, Ullrich JB, Ponomarev IY, Carter DC, Sisk RC. 5.  et al. 1996. Polycapillary X-ray optics for macromolecular crystallography. Proc. SPIE 2859:200–9 [Google Scholar]
  6. Sun T, Ding X. 6.  2004. Study on the measurement of properties of polycapillary X-ray lens. Nucl. Instrum. Methods Phys. Res. B 226:651–58 [Google Scholar]
  7. Bingölbali A, Zhou W, Mahato DN, MacDonald CA. 7.  2008. Focused beam powder diffraction with polycapillary and curved crystal optics. Proc. SPIE 7077:70770M [Google Scholar]
  8. Fujii Y.8.  2011. Improved X-ray reflectivity calculations for rough surfaces and interfaces. IOP Conf. Ser. Mater. Sci. Eng. 24:1–21 [Google Scholar]
  9. Spiller E.9.  1988. Characterization of multilayer coatings by X-ray reflection. Rev. Phys. Appl. 23:101687–700 [Google Scholar]
  10. Dietsch R, Holz T, Krämer M, Weißbach D. 10.  2010. High precision deposition of single and multilayer X-ray optics and their application in X-ray analysis. Proc. SPIE 7995:79951U [Google Scholar]
  11. Schuster M, Schuster R, Goebel H, Bruegemann L, Bahr D. 11.  et al. 1999. Laterally graded multilayer optics for X-ray analysis. Proc. SPIE 3767:183–98 [Google Scholar]
  12. Wohlschlogel M, Schulli TU, Lantz B, Welzel U. 12.  2008. Application of a single-reflection collimating multilayer optic for X-ray diffraction experiments employing parallel-beam geometry. J. Appl. Crystallogr. 41:124–33 [Google Scholar]
  13. Wang Z, Cheng X, Zhu J, Huang Q, Zhang Z, Chen L. 13.  2011. Investigation of aperiodic W/C multi-layer mirror for X-ray optics. Thin Solid Films 519:6712–15 [Google Scholar]
  14. Michaelsen C, Ricardo P, Anders D, Schuster M, Schilling J, Göbel H. 14.  2000. Improved graded multilayer mirrors for XRD applications. Adv. X-Ray Anal. 42:308–20 [Google Scholar]
  15. Kozhevnikov IV, Voronov AS, Roshchin BS, Asadchikov VE, Mednikov KN. 15.  et al. 2006. Design, fabrication, and study of wideband multilayer X-ray mirrors. Crystallogr. Rep. 51:1075–81 [Google Scholar]
  16. Pershyn YP, Gullikson EM, Artyukov IA, Kondratenko VV, Sevryukova VA. 16.  et al. 2011. The influence of working gas pressure on interlayer mixing in magnetron-deposited Mo/Si multilayers. Proc. SPIE 8139:81390N1–11 [Google Scholar]
  17. Stormer M, Andre J, Michaelsen C, Benbalagh R, Jonnard P. 17.  2007. X-ray scattering from etched and coated multilayer gratings. J. Phys. D Appl. Phys. 40:4253–58 [Google Scholar]
  18. Schulz T, Meindl K, Leusser D, Stern D, Graf J. 18.  et al. 2009. A comparison of a microfocus X-ray source and a conventional sealed tube for crystal structure determination. J. Appl. Crystallogr. 42:885–91 [Google Scholar]
  19. Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D. 19.  2015. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 48:3–10 [Google Scholar]
  20. Gubarev M, Ciszak E, Ponomarev I, Gibson W, Joy M. 20.  2000. A compact X-ray system for macromolecular crystallography. Rev. Sci. Instrum. 71:3900–4 [Google Scholar]
  21. Macchi P, Burgi HB, Chimpri AS, Hauser J, Galc Z. 21.  2011. Low-energy contamination of Mo microsource X-ray radiation: analysis and solution of the problem. J. Appl. Crystallogr. 44:736–71 [Google Scholar]
  22. Misture ST.22.  2008. Application of single and dual multilayer optics for powder X-ray diffraction. X-Ray Opt. Instrum 2008:408702 http://dx.doi.org/10.1155/2008/408702 [Crossref] [Google Scholar]
  23. Hertlein F.23.  2008. Nanoscaled multilayer coatings for X-ray optics. Adv. Eng. Mater. 10:686–91 [Google Scholar]
  24. Shimizu K, Omote K. 24.  2008. Multilayer optics for X-ray analysis. Rigaku J 24:1–9 [Google Scholar]
  25. Shymanovich U, Nicoul M, Sokolowski-Tinten K, Tarasevitch A, Michaelsen C, von der Linde D. 25.  2008. Characterization and comparison of X-ray focusing optics for ultrafast X-ray diffraction experiments. Appl. Phys. B 92:493–99 [Google Scholar]
  26. Nguyen T, Song S, Jung J, Jeon I. 26.  2012. Development of a multilayer mirror for high-intensity monochromatic X-ray using lab-based X-ray source. Opt. Lett. 37:3777–79 [Google Scholar]
  27. Chon KS, Juhng SK, Yoon K-H. 27.  2012. Design study of hard X-ray tomography system to obtain a spatial resolution of 100 nm. Curr. Appl. Phys. 12:134–40 [Google Scholar]
  28. Niese S, Braun S, Dietsch R, Gluch J, Holz T. 28.  et al. 2016. A dedicated illumination for full-field X-ray microscopy with multilayer Laue lenses. AIP Conf. Proc 1764:020002 [Google Scholar]
  29. Fitzgerald R.29.  2000. Phase-sensitive X-ray imaging. Phys. Today 53:23–27 [Google Scholar]
  30. Uehara M, Yashiro W, Momose A. 30.  2013. Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices. J. Appl. Phys. 114:134901 [Google Scholar]
  31. Petruccelli JC, Hayden D, Starr-Baier S, Tahir S, Ur Rehman M. 31.  et al. 2016. Phase and coherent scatter imaging for improved discrimination of low-density materials. Proc. SPIE 9847:C1–9 [Google Scholar]
  32. Chen ZW, Gibson WM, Huang H. 32.  2008. High definition X-ray fluorescence: principles and techniques. X-Ray Opt. Instrum 2008:318171 https://www.hindawi.com/archive/2008/318171 [Google Scholar]
  33. Gibson WM, Chen ZW, Li D. 33.  2008. High-definition X-ray fluorescence: applications. X-Ray Opt. Instrum 2008:709692 http://dx.doi.org/10.1155/2008/709692 [Crossref] [Google Scholar]
  34. Bingölbali A, MacDonald CA. 34.  2009. Analysis of focused-beam powder X-ray diffraction resolution using doubly curved crystal optics. J. Appl. Crystallogr. 42:4715–23 https://doi.org/10.1107/S0021889809022572 [Crossref] [Google Scholar]
  35. Schmidt WKH.35.  1975. A proposed X-ray focusing device with wide field of view for use in X-ray astronomy. Nucl. Instrum. Methods 127:285–92 [Google Scholar]
  36. Brunton AN, Fraser GW, Lees JE, Turcu ICE. 36.  1997. Metrology and modeling of microchannel plate X-ray optics. Appl. Opt. 36:5461–70 [Google Scholar]
  37. Beijersbergen MW.37.  2010. Pore optics. See Ref. 148 49.1–49.9
  38. Tichýa V, Hudec R, Barbera M. 38.  2015. Analytical description of lobster eye and similar multi-foil optics. Proc. SPIE 9510:95100C [Google Scholar]
  39. Collon MJ, Beijersbergen MW, Wallace K, Bavdaz M, Fairbend R. 39.  et al. 2007. X-ray imaging glass micro-pore optics. Proc. SPIE 6688:668812 [Google Scholar]
  40. Irving THK, Peele AG, Nugent KA. 40.  2003. Optical metrology for analysis of lobster-eye X-ray optics. Appl. Opt. 42:2422–30 [Google Scholar]
  41. Fraser GW, Brunton AN, Lees JE, Emberson DL. 41.  1993. Production of quasi-parallel X-ray beams using microchannel plate ‘X-ray lenses’. Nucl. Instrum. Methods A579–88 [Google Scholar]
  42. Bavdaz M, Collon M, Beijersbergen M, Wallace K, Wille E. 42.  2010. X-ray pore optics technologies and their application in space telescopes. X-Ray Opt. Instrum 2010:295095 http://dx.doi.org/10.1155/2010/295095 [Crossref] [Google Scholar]
  43. Riekerink MBO, Lansdorp B, de Vreede LJ, Blom MT, van't Oever R. 43.  et al. 2009. Production of silicon mirror plates. Proc. SPIE 7437:74370U [Google Scholar]
  44. Collon M, Günther R, Ackermann R, Partapsing R, Kelly C. 44.  et al. 2009. Stacking of silicon pore optics for IXO. Proc. SPIE 7437:74371A [Google Scholar]
  45. Hudec R.45.  2010. Kirkpatrick-Baez (KB) and lobster eye (LE) optics for astronomical and laboratory applications. X-Ray Opt. Instrum 2010:139148 http://dx.doi.org/10.1155/2010/139148 [Crossref] [Google Scholar]
  46. Riverosa RR, Yamaguchia H, Mitsuishib I, Takagic U, Ezoec Y. 46.  et al. 2009. Magnetic field assisted finishing of ultra-lightweight and high-resolution MEMS X-ray micro-pore optics. Proc. SPIE 7360:736013 [Google Scholar]
  47. Peele AG, Irving THK, Nugent KA, Mancini DC, Christenson TR. 47.  et al. 2001. LIGA for lobster: first observation of lobster-eye focusing from lithographically produced optics. Rev. Sci. Instrum. 72:1843–49 [Google Scholar]
  48. Bartnik A, Fiedorowicz H, Jarocki R, Kostecki J, Rakowski R. 48.  et al. 2006. Lobster eye optics for collecting radiation of a laser-plasma soft X-ray source based on a gas puff target. Adv. X-Ray Anal. 49:395–400 [Google Scholar]
  49. Gertsenshteyn M, Jannson T, Savant G. 49.  2005. Staring/focusing lobster-eye hard x-ray imaging for non-astronomical objects. Proc. SPIE 5922:59220N [Google Scholar]
  50. Gertsenshteyn M, Grubsky V, Jannson T. 50.  2006. Hard X-ray devices for target detection at longer distances. Proc. SPIE 6319:63190F [Google Scholar]
  51. Ackermann MD, Barrière N, Willingale R, Butcher G, Collon MJ. 51.  et al. 2012. Novel applications of silicon pore optics technology. Proc. SPIE 8443:84430V [Google Scholar]
  52. MacDonald CA, Gibson WM. 52.  2010. Polycapillary optics. See Ref. 148, pp. 53:1–53.23 [Google Scholar]
  53. MacDonald CA.53.  2010. Focusing polycapillary optics and their applications. X-Ray Opt. Instrum 2010:867049 http://dx.doi.org/10.1155/2010/867049 [Crossref] [Google Scholar]
  54. MacDonald CA.54.  1996. Applications and measurements of polycapillary X-ray optics. J. X-Ray Sci. Technol. 6:32–47 [Google Scholar]
  55. Arkad'ev VA, Kumakhov MA, Ognev LI. 55.  1986. Total external reflection of γ rays from a surface. Sov. Tech. Phys. Lett. 12:540–42 [Google Scholar]
  56. Kumakhov MA, Komorov FF. 56.  1990. Multiple reflection for surface X-ray optics. Phys. Rep. 191:290–350 [Google Scholar]
  57. Gibson WM, MacDonald CA, Kumakhov MS. 57.  1991. The Kumakhov lens; a new X-ray and neutron optics with potential for medical applications. Technology Requirements for Biomedical Imaging SK Mun 43–48 New York: IEEE Press [Google Scholar]
  58. Abreu CC, MacDonald CA. 58.  1997. Beam collimation, focusing, filtering and imaging with polycapillary X-ray and neutron optics. Phys. Med. 13:79–89 [Google Scholar]
  59. Kumakhov MA.59.  1997. Development of X-ray and neutron capillary optics. Proc. SPIE 3113:362–68 [Google Scholar]
  60. Ullrich JB, Kovantsev V, MacDonald CA. 60.  1993. Measurements of polycapillary X-ray optics. J. Appl. Phys 74:5933–39 [Google Scholar]
  61. Rath B, Youngman R, MacDonald CA. 61.  1994. An automated test system for measuring polycapillary X-ray optics. Rev. Sci. Instrum. 65:3393–98 [Google Scholar]
  62. Arkadiev VA, Bzhaumikhov AA, Gorny HE, Ibraimov NS. 62.  1995. Experimental investigation of Kumakhov lenses. Proc. SPIE 2515:103–13 [Google Scholar]
  63. Cappuccio G, Dabagov SB. 63.  2000. Capillary optics as an X-ray condensing lens: an alignment procedure. Proc. SPIE 4155:40–47 [Google Scholar]
  64. Li D, Sugiro FR, MacDonald CA. 64.  2004. Source-optic optimization for compact monochromatic imaging. Proc. SPIE 5537:105–14 [Google Scholar]
  65. Schmitz R, MacDonald CA. 65.  2011. Polycapillary optics: comparison of computational modeling and experimental results. Proc. SPIE 8141:81410D [Google Scholar]
  66. Erko A, Langhoff N, Bjeoumikhov AA, Beloglasov VI. 66.  2001. High-order harmonic suppression by a glass capillary array. Nucl. Instrum. Methods A 467–468:832–35 [Google Scholar]
  67. Albertini VR, Paci B, Generosi A, Dabagov SB, Mikhin O, Kumakhov MA. 67.  2007. On the use of polycapillary structures to improve laboratory energy-dispersive X-ray diffractometry and reflectometry. Spectrochim. Acta B 62:1203–7 [Google Scholar]
  68. Hofmann FA, Gao N, Owens SM, Gibson WM, MacDonald CA, Lee SM. 68.  1998. Polycapillary optics for in-situ process diagnostics. MRS Proc 502:133–38 [Google Scholar]
  69. Rath BK, Hagelberg FB, Homan BE, MacDonald CA. 69.  1997. Synchrotron white beam thermal loading on polycapillary X-ray optics. Nucl. Instrum. Methods A 401:421–28 [Google Scholar]
  70. Wang L, Rath BK, Gibson WM, Kimball JC, MacDonald CA. 70.  1996. Performance study of polycapillary optic performance for hard X-rays. J. Appl. Phys. 80:3628–38 [Google Scholar]
  71. Kumakhov MA.71.  2000. X-ray capillary optics. History of development and present status. Proc. SPIE 4155:2–12 [Google Scholar]
  72. Janssens K, De Nolf W, Van Der Snickt G, Vincze L, Vekemans B. 72.  et al. 2010. Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis. Trends Anal. Chem. 29:464–78 [Google Scholar]
  73. Tsuji K, Nakano K, Hayashi H, Hayashi K, Ro C-U. 73.  2008. X-ray spectrometry. Anal. Chem. 80:124421–54 [Google Scholar]
  74. Janssens KHA, Adams FCV, Rindby A. 74. , eds. 2000. Microscopic X-Ray Fluorescence Analysis New York: Wiley [Google Scholar]
  75. Yan Y, Gibson WM. 75.  2002. Polycapillary optics and X-ray analytical techniques. Adv. X-Ray Anal. 45:298–304 [Google Scholar]
  76. Iqbal M, Urrehman Z, Im H, Son JG, Seo O. 76.  et al. 2014. Performance improvement of a Kα source by a high-resolution thin-layer-graphite spectrometer and a polycapillary lens. Appl. Phys. B 116:305–11 [Google Scholar]
  77. Formica SP, Lee SM. 77.  2005. X-ray fluorescence system for thin film composition analysis during deposition. Thin Solid Films 491:71–77 [Google Scholar]
  78. Luo Z, Geng B, Bao J, Liu C, Liu W. 78.  et al. 2005. High-throughput X-ray characterization system for combinatorial materials studies. Rev. Sci. Instrum. 76:095105 [Google Scholar]
  79. Borgese L, Zacco A, Bontempi E, Pellegatta M, Vigna L. 79.  et al. 2010. Use of total reflection X-ray fluorescence (TRXRF) for the evaluation of heavy metal poisoning due to the improper use of a traditional ayurvedic drug. J. Pharm. Biomed. Anal 52:787–90 [Google Scholar]
  80. Nikitina SV, Shcherbakov AS, Ibraimov NS. 80.  1999. X-ray fluorescence analysis on the base of polycapillary Kumakhov optics. Rev. Sci. Instrum. 70:2950–56 [Google Scholar]
  81. Buzanich G, Wobrauschek P, Streli C, Markowicz A, Wegrzynek D. 81.  et al. 2007. A portable micro-X-ray fluorescence spectrometer with polycapillary optics and vacuum chamber for archaeometric and other applications. Spectrochim. Acta B 62:111252–56 [Google Scholar]
  82. Vittiglio G, Bichlmeier S, Klinger P, Heckel J, Fuzhong W. 82.  et al. 2004. A compact μ-XRF spectrometer for (in situ) analyses of cultural heritage and forensic materials. Nucl. Instrum. Methods B 213:693–98 [Google Scholar]
  83. Kanngieber B, Kemf N, Malzer W. 83.  2002. Spectral and lateral resolved characterisation of X-ray microbeams. Nucl. Instrum. Methods B 198:230–37 [Google Scholar]
  84. Langer E, Dabritz S, Hauffe W, Haschke M. 84.  2005. Advances in X-ray excitation of Kossel patterns by a focusing polycapillary lens. Appl. Surf. Sci. 252:240–44 [Google Scholar]
  85. Revenko AG.85.  2007. Specific features of X-ray fluorescence analysis techniques using capillary lenses and synchrotron radiation. Spectrochim. Acta B 62:567–76 [Google Scholar]
  86. Kantarelou V, Karydas AG. 86.  2016. A simple calibration procedure of polycapillary based portable micro-XRF spectrometers for reliable quantitative analysis of cultural heritage materials. X-Ray Spectrom 45:85–91 [Google Scholar]
  87. Smit Z, Janssens K, Proost K, Langus I. 87.  2004. Confocal μ-XRF depth analysis of paint layers. Nucl. Instrum. Methods B 219–220:35–40 [Google Scholar]
  88. Zitnik M, Pelicon P, Grlj N, Karydas AG, Sokaras D. 88.  et al. 2008. Three-dimensional imaging of aerosol particles with scanning proton microprobe in a confocal arrangement. Appl. Phys. Lett. 93:094104 [Google Scholar]
  89. Grassi N, Guazzoni C, Alberti R, Klatka T, Bjeoumikhov A. 89.  2010. External scanning micro-PIXE for the characterization of a polycapillary lens: measurement of the collected X-ray intensity distribution. Nucl. Instrum. Methods B 268:1945–48 [Google Scholar]
  90. Alberti R, Bjeoumikhov A, Grassi N, Guazzoni C, Klatka T. 90.  et al. 2008. Use of silicon drift detectors for the detection of medium-light elements in PIXE. Nucl. Instrum. Methods B 266:2296–300 [Google Scholar]
  91. Cong W, Xi Y, Wang G. 91.  2014. X-ray fluorescence computed tomography with polycapillary focusing. IEEE Access 2:1138–42 [Google Scholar]
  92. Gibson WM, Kumakhov MA. 92.  1992. Applications of X-ray and neutron capillary optics. Proc. SPIE 1736:172–90 [Google Scholar]
  93. Tsuji K, Nakano K, Ding X. 93.  2007. Development of confocal micro X-ray fluorescence instrument using two X-ray beams. Spectrochim. Acta B 62:549–53 [Google Scholar]
  94. Sun T, Liu Z, Li Y, Lin X, Wang G. 94.  et al. 2010. Quantitative analysis of single aerosol particles with confocal micro-X-ray fluorescence spectrometer. Nucl. Instrum. Methods A 622:295–97 [Google Scholar]
  95. Castoldi A, Guazzoni C, Hartmann R, Ozkan C, Struder L, Visconti A. 95.  2007. Application of controlled-drift detectors to spectroscopic X-ray imaging. IEEE Nucl. Sci. Symp. Conf. Rec. N18-8:1003–8 [Google Scholar]
  96. Lühl L.96.  2012. Reconstruction procedure for 3D micro X-ray absorption fine structure. Anal. Chem. 84:1907–14 [Google Scholar]
  97. 97.  Deleted in proof
  98. Sun T, Xie Y, Liu Z, Liu T, Hu T, Ding X. 98.  2006. Application of a combined system of polycapillary X-ray lens and toroidal mirror in micro-X-ray-absorption fine-structure facility. Appl. Phys. 99:094907 [Google Scholar]
  99. Boone M, Dewanckele J, Boone M, Cnudde V, Silversmit G. 99.  et al. 2011. Three-dimensional phase separation and identification in granite. Geosphere 7:79–86 [Google Scholar]
  100. Er AO, Chen J, Rentzepis PM. 100.  2012. Ultrafast time resolved X-ray diffraction, extended X-ray absorption fine structure and X-ray absorption near edge structure. J. Appl. Phys 112:031101 [Google Scholar]
  101. Li P-W, Bi R-C. 101.  1998. Applications of polycapillary X-ray optics in protein crystallography. J. Appl. Crystallogr. 31:806–11 [Google Scholar]
  102. Hofmann FA, Gibson WM, MacDonald CA, Carter DA, Ho JX, Ruble JR. 102.  2001. Polycapillary optic–source combinations for protein crystallography. J. Appl. Crystallogr. 34:330–35 [Google Scholar]
  103. MacDonald CA, Owens SM, Gibson WM. 103.  1999. Polycapillary X-ray optics for microdiffraction. J. Appl. Crystallogr. 32:160–67 [Google Scholar]
  104. Owens SM, Hofmann FA, MacDonald CA, Gibson WM. 104.  1997. Microdiffraction using collimating and convergent beam polycapillary optics. Adv. X-Ray Anal. 41:314–18 [Google Scholar]
  105. Ho JX, Snell EH, Sisk CR, Ruble JR, Carter DA. 105.  et al. 1998. Stationary crystal diffraction with a monochromatic convergent X-ray beam source and application for macromolecular crystal data collection. Acta Crystallogr. D 54:200–14 [Google Scholar]
  106. Zhou W, Mahato D, MacDonald CA. 106.  2010. Analysis of powder X-ray diffraction resolution using collimating and focusing polycapillary optics. Thin Solid Films 518:5047–56 [Google Scholar]
  107. Clapp RA, Haller M. 107.  2000. Parallel beam methods in powder diffraction and texture in the laboratory. Adv. X-Ray Anal. 43:135–40 [Google Scholar]
  108. Chen X, Bates S, Morris KR. 108.  2001. Quantifying amorphous content of lactose using parallel beam X-ray powder diffraction and whole pattern fitting. J. Pharm. Biomed. Anal 26:63–72 [Google Scholar]
  109. Misture ST, Haller M. 109.  2000. Application of polycapillary optics for parallel beam powder diffraction. Adv. X-Ray Anal. 43:248–53 [Google Scholar]
  110. Guo F, Zhao W, Wang X, Lin X, Li Y. 110.  2015. Application of polycapillary X-ray optics in residual stress measurement. Instrum. Exp. Tech. 58:545–51 [Google Scholar]
  111. Li F, Liu Z, Sun T, Yang C, Sun W. 111.  et al. 2015. In situ analysis of electrocrystallization process of metal electrodeposition with confocal energy dispersive X-ray diffraction based on polycapillary X-ray optics. Nucl. Instrum. Methods A 785:201–5 [Google Scholar]
  112. Sun W, Liu Z, Sun T, Peng S, Ma Y. 112.  et al. 2014. Measurement of grain size of polycrystalline materials with confocal energy dispersive micro-X-ray diffraction technology based on polycapillary X-ray optics. Nucl. Instrum. Methods A 764:1–6 [Google Scholar]
  113. Gibson WM, Huang H, Nicolich J, Klein P, MacDonald CA. 113.  2002. Polycapillary optics for angular filtering of X-rays and neutrons in two dimensions. Adv. X-Ray Anal. 45:313–18 [Google Scholar]
  114. Leoni M, Welzel U, Scardi P. 114.  2004. Polycapillary optics for materials science studies: instrumental effects and their correction. J. Res. NIST 109:27–48 [Google Scholar]
  115. Marchitto L, Hampai D, Dabagov SB, Allocca L, Alfuso S. 115.  et al. 2015. GDI spray structure analysis by polycapillary X-ray μ-tomography. Int. J. Multiphase Flow 70:15–21 [Google Scholar]
  116. Ozkan C, Castoldi A, Guazzoni C, Dreossi D, Bjeoumikhov A. 116.  2011. Experimental characterization of a parallel polycapillary collimator for X-ray scatter imaging. IEEE Trans. Nucl. Sci. 58:2124–28 [Google Scholar]
  117. Sugiro FR, Li D, MacDonald CA. 117.  2004. Beam collimation with polycapillary X-ray optics for high contrast high resolution monochromatic imaging. Med. Phys 31:3288–97 [Google Scholar]
  118. Schmitz R, Bingölbali A, Hussain A, MacDonald CA. 118.  2008. Development of polarized and monochromatic X-ray beams from tube sources. Proc. SPIE 7077:70770Y [Google Scholar]
  119. MacDonald CA, Mail N, Li D, Roy M, Sugiro F. 119.  2003. Monochromatic applications of polycapillary optics. Proc. SPIE 5196:405–11 [Google Scholar]
  120. Li F, Liu Z, Sun T, Ma Y, Ding X. 120.  2015. Confocal three-dimensional micro X-ray scatter imaging for nondestructive detecting foreign bodies with low density and low-Z materials in food products. Food Control 54:120–25 [Google Scholar]
  121. Sun T, MacDonald CA. 121.  2013. Full-field transmission X-ray imaging with confocal polycapillary X-ray optics. J. Appl. Phys 113:053104 [Google Scholar]
  122. Sun X, Liu Z, Sun T, Yi L, Sun W. 122.  et al. 2015. Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source. Nucl. Instrum. Methods A 802:5–9 [Google Scholar]
  123. Baumbach S, Kanngiesser B, Malzer W, Stiel H, Wilhein T. 123.  2015. A laboratory 8 keV transmission full-file X-ray microscope with a polycapillary as condenser for bright and dark field imaging. Rev. Sci. Instrum. 86:083708 [Google Scholar]
  124. Sun T, MacDonald CA. 124.  2015. Monochromatic X-ray imaging using a combination of doubly curved crystal and a polycapillary X-ray lens. J. X-Ray Sci. Technol. 23:141–46 [Google Scholar]
  125. Kanwal B, Petrescu AF, Sun T, MacDonald CA. 125.  2014. Modeling of a compound imaging system with a curved monochromator and polycapillary optics. Proc. SPIE 9209:92090O [Google Scholar]
  126. Dabrowski KM.126.  2013. X-ray imaging inside the focal spot of polycapillary optics using the coded aperture concept. Opt. Express 21:2920–27 [Google Scholar]
  127. Dabrowski KM, Dul DT, Wróbel A, Korecki P. 127.  2013. X-ray microlaminography with polycapillary optics. Appl. Phys. Lett. 102:224104 [Google Scholar]
  128. Bashir S, Tahir S, MacDonald CA, Petruccelli JC. 128.  2016. Phase imaging using focused polycapillary optics. Opt. Commun. 369:28–37 [Google Scholar]
  129. Sun W, Liu Z, Sun T, Sun X, Li F. 129.  et al. 2015. Numerical design of X-ray tabletop Talbot interferometer using polycapillary optics as two-dimensional gratings with high aspect ratio. Opt. Commun. 356:202–7 [Google Scholar]
  130. Abbas H, Sun T, MacDonald CA. 130.  2012. Phase contrast imaging with polycapillary optics. Proc. SPIE 8509:85090A [Google Scholar]
  131. Liu A.131.  2006. The X-ray distribution after a focusing polycapillary: a shadow simulation. Nucl. Instrum. Methods B 243:223–26 [Google Scholar]
  132. Sancez del Rio M, Rebuffi L, Demšar J, Canestrari N, Chubar O. 132.  2014. A proposal for an open source graphical environment for simulating X-ray optics. Proc. SPIE 9209:92090X [Google Scholar]
  133. Welnak C, Chen GJ, Cerrina F. 133.  1994. Shadow: a synchrotron radiation and X-ray optics simulation tool. Nucl. Instrum. Methods A 347:344–47 [Google Scholar]
  134. Schmitz R, MacDonald CA. 134.  2010. Modeling complex optical systems. Proc. SPIE 7802:78020R [Google Scholar]
  135. Hampai D, Cappuccio G, Cibin G, Dabagov SB, Sessa V. 135.  2007. Modeling of X-ray transport through polycapillary optics. Nucl. Instrum. Methods A 580:85–89 [Google Scholar]
  136. Hampai D, Dabagov SB, Cappuccio G, Cibin G. 136.  2007. X-ray propagation through polycapillary optics studied through a ray tracing approach. Spectrochim. Acta B 62:608–14 [Google Scholar]
  137. Xiaoyan L, Yude L, Guotai T, Tianxi S. 137.  2007. Evaluation of transmitting performance of cylindrical polycapillary. Nucl. Instrum. Methods A 572:729–33 [Google Scholar]
  138. Peng S, Liu Z, Sun T, Wang K, Yi L. 138.  et al. 2015. Simulation of transmitted X-rays in a polycapillary X-ray lens. Nucl. Instrum. Methods A 795:186–91 [Google Scholar]
  139. Wang H, Wang L, Gibson WM, MacDonald CA. 139.  1998. Simulation study of polycapillary X-ray optics. Proc. SPIE 3444:643–51 [Google Scholar]
  140. Kanwal B.140.  2015. Phase imaging using X-ray optics PhD Diss. Univ. Albany Albany, NY: [Google Scholar]
  141. MacDonald CA, Gibson WM. 141.  2003. Applications and advances in polycapillary optics. X-ray Spectrom 32:258–68 [Google Scholar]
  142. Sugiro FR, Padiyar SD, MacDonald CA. 142.  2000. Characterization of pre- and post-patient X-ray polycapillary optics for mammographic imaging. Proc. SPIE 4144:204–15 [Google Scholar]
  143. Bilderback D.143.  2003. Review of capillary X-ray optics from the 2nd International Capillary Optics Meeting. X-Ray Spectrom 32:195–207 [Google Scholar]
  144. Padiyar Cari, Suparmi, Padiyar SD, Gibson WM, MacDonald CA. 144.  et al. 2000. Characterization of a long focal length polycapillary optic for high energy X-rays. Proc. SPIE 4144:183–92 [Google Scholar]
  145. Bjeoumikhov A, Langhott N, Bjeoumikhova S, Wedell R. 145.  2005. Capillary optics for micro X-ray fluorescence analysis. Rev. Sci. Instrum. 76:063115 [Google Scholar]
  146. Dittrich S.146.  2006. Energy sensitive measurements of X-ray beam focusing with polycapillary optics MS Thesis Univ. Albany Albany, NY: [Google Scholar]
  147. Wang L, Gibson WM, MacDonald CA. 147.  1999. Potential of polycapillary X-ray optics in medical imaging applications. Proc. SPIE 3767:102–12 [Google Scholar]
  148. Bass M, DeCusatis C, Enoch J, Lakshminarayanan V, Li G, MacDonald C. 148.  et al. 2010. Handbook of Optics, Vol. V New York: McGraw-Hill, 3rd ed.. [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error