Most X-ray optics for use at synchrotron beamlines are structured to achieve a desired performance level. The fabrication steps needed to achieve a certain structure usually limit the final performance, such as for energy resolution and focus size. This review illustrates this point for monochromators, mirrors, multilayers, and zone plates, with a special emphasis on focusing optics because these provide some of the best examples of structuring. Elliptically shaped mirrors, Fresnel zone plates, and multilayer Laue lenses are reviewed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Erko A, Aristov VV, Vidal B. 1.  1996. Diffraction X-Ray Optics, transl. S. Chromet. Bristol, UK: Inst. Phys.
  2. Authier A.2.  2006. Dynamical X-Ray Diffraction Oxford, UK: Oxford Univ. Press
  3. Zhong Z, Kao CC, Siddons DP, Hastings JB. 3.  2001. Sagittal focusing of high-energy synchrotron X-rays with asymmetric Laue crystals. I. Theoretical considerations. J. Appl. Cryst. 34:504–9 [Google Scholar]
  4. Sparks CJ, Borie BS, Hastings JB. 4.  1980. X-ray monochromator geometry for focusing synchrotron radiation above 10 keV. Nucl. Instrum. Meth. Phys. Res. 172:237–42 [Google Scholar]
  5. Kushnir VI, Quintana JP, Georgopoulos P. 5.  1993. On the sagittal focusing of synchrotron radiation with a double crystal monochromator. Nucl. Instrum. Meth. Phys. Res. A 238:588–91 [Google Scholar]
  6. James RW.6.  1982. The Optical Principles of the Diffraction of X-Rays Woodbridge, CT: Ox Bow Press
  7. Tolan M.7.  1989. X-Ray Scattering from Soft-Matter Thin Films Berlin: Springer
  8. Born M, Wolf E. 8.  1980. Principles of Optics New York: Pergamon, 6th ed..
  9. Windt DL.9.  1998. IMD: software for modeling the optical properties of multilayer films. Comput. Phys. 12:360–70 [Google Scholar]
  10. Sinha SK, Sirota EB, Garoff S, Stanley HB. 10.  1988. X-ray and neutron scattering from rough surfaces. Phys. Rev. B 38:2297–311 [Google Scholar]
  11. Sinha SK.11.  1994. X-ray diffuse scattering as a probe for thin film and interface structure. J. Phys. III 4:1543–57 [Google Scholar]
  12. Beckmann P, Spizzichino A. 12.  1963. The Scattering of Electromagnetic Waves From Rough Surfaces New York: Pergamon
  13. Névot L, Croce P. 13.  1980. Caractérisation des surfaces par réflexion rasante de rayons X. Application à l'étude du polissage de quelques verres silicates. Rev. Phys. Appl. 15:761–79 [Google Scholar]
  14. Howells M, Paquin R. 14.  1997. Optical substrate materials for synchrotron radiation beamlines. SPIE Adv. Mater. Opt. Precis. Struct. Crit. Rev. CR67:339–72 [Google Scholar]
  15. Kirkpatrick P, Baez AV. 15.  1948. Formation of optical images by X-rays. J. Opt. Soc. Am. 38:766–74 [Google Scholar]
  16. Yamamura K, Yamauchi K, Mimura H, Sano Y, Saito A. 16.  et al. 2003. Fabrication of elliptical mirror at nanometer-level accuracy for hard X-ray focusing by numerically controlled plasma chemical vaporization machining. Rev. Sci. Instrum. 74:4549–53 [Google Scholar]
  17. Dabin Y, Rostaing G, Hignette O, Rommeveaux A, Freund A. 17.  2002. The present state of Kirkpatrick-Baez mirror systems at the ESRF. Proc. SPIE 4782:235–45 [Google Scholar]
  18. Ice GE, Chung J-S, Tischler JZ, Lunt A, Assoufid L. 18.  2000. Elliptical X-ray microprobe mirrors by differential deposition. Rev. Sci. Instrum. 71:2635–39 [Google Scholar]
  19. Liu C, Assoufid L, Conley R, Macrander AT, Ice GE, Tischler JZ. 19.  2003. Profile coating and its application for Kirkpatrick-Baez mirrors. Opt. Eng. 42:3622–28 [Google Scholar]
  20. Liu C, Conley R, Assoufid L, Macrander AT, Ice GE. 20.  et al. 2003. Profile coatings and their applications. J. Vac. Sci. Technol. A 21:1579–84 [Google Scholar]
  21. Liu W, Ice GE, Tischler JZ, Khounsary A, Liu C. 21.  et al. 2005. Short focal length Kirkpatrick-Baez mirrors for a hard X-ray nanoprobe. Rev. Sci. Instrum. 76:113701 [Google Scholar]
  22. Kujala N, Marathe S, Shu D, Shi B, Qian J. 22.  et al. 2014. Kirkpatrick-Baez mirror to focus hard X-rays in two dimensions as fabricated, tested and installed at the Advanced Photon Source. J. Synchr. Radiat. 21:662–68 [Google Scholar]
  23. Liu W, Ice GE, Assoufid L, Liu C, Shi B. 23.  et al. 2011. Achromatic nested Kirkpatrick-Baez mirror optics for hard X-ray nanofocusing. J. Synchr. Radiat. 18:575–79 [Google Scholar]
  24. Kim J, Shi X, Casa D, Qian J, Huang X, Gog T. 24.  2016. Collimating Montel mirror as part of a multi-crystal analyzer system for resonant inelastic X-ray scattering. J. Synchr. Radiat. 23:880–86 [Google Scholar]
  25. Montel M.25.  1957. X-Ray Microscopy and Microradiography VE Cosslett, A Engstrom, HH Pattee 177–85 New York: Academic
  26. Kewish CM, Assoufid L, Macrander AT, Qian J. 26.  2007. Wave-optical simulation of hard X-ray nanofocusing by precisely figured elliptical mirrors. Appl. Opt. 46:2010–21 [Google Scholar]
  27. Hecht E.27.  1990. Optics Reading, MA: Addison-Wesley, 2nd ed..
  28. Jenkins FA, White H. 28.  1957. Fundamentals of Optics New York: McGraw Hill
  29. Spiller E.29.  1983. Soft X-ray optics and microscopy. Handbook on Synchrotron Radiation, Vol. 1 EA Stern, SM Heald, EE Koch 1091–29 Amsterdam: North-Holland [Google Scholar]
  30. Bergmann C, Keymeulen H, van der Veen JF. 30.  2003. Focusing X-ray beams to nanometer dimensions. Phys. Rev. Lett. 91:204801 [Google Scholar]
  31. Mimura H, Handa S, Kimura T, Yumoto H, Yamakawa D. 31.  et al. 2010. Breaking the 10 nm barrier in hard X-ray focusing. Nat. Phys. 6:122–25 [Google Scholar]
  32. Barbee TW.32.  1986. Multilayers for X-ray optics. Opt. Eng. 25:898–915 [Google Scholar]
  33. Gibaud A, Chebil MS, Beuvier T. 33.  2003. X-ray reflectivity. Surface Science Techniques (Springer Series in Surface Sciences , Vol. 51 G Bracco, B Holst 191–216 New York: Springer [Google Scholar]
  34. Spiller E.34.  2010. Multilayers. Handbook of Optics, Vol. 5 M Bass, C MacDonald, G Li, CM Decusatis, VN Mahajan, Ch 41 New York: McGraw-Hill, 3rd ed.. [Google Scholar]
  35. Sanchez del Rio M, Dejus RJ. 35.  1997. XOP: a multiplatform graphical user interface for synchrotron radiation spectral and optics calculations. Proc. SPIE 3152:148–57 [Google Scholar]
  36. Stearns DG.36.  1989. The scattering of X rays from nonideal multilayer structures. J. Appl. Phys. 65:491–506 [Google Scholar]
  37. Daillant J, Gibaud A. 37.  1999. X-Ray and Neutron Reflectivity: Principles and Applications Berlin: Springer
  38. Kiessig H.38.  1931. Interferenz von Röntgenstrahlen an dünnen Schichten. Ann. Phys. 402:769–88 [Google Scholar]
  39. Warren BE.39.  1969. X-ray Diffraction Reading, MA: Addison-Wesley
  40. Guinier A.40.  1963. X-Ray Diffraction San Francisco: WH Freeman
  41. Morawe C, Peffen J-C, Dufresne EM, Chu YS, Macrander AT. 41.  2003. Double gradient multilayers for broadband focusing. Proc. SPIE 5195:1–11 [Google Scholar]
  42. Morawe C.42.  2001. High resolution Al2O3/B4C multilayers. Proc. SPIE 4501:127–34 [Google Scholar]
  43. Martynov VV, Platonov Y, Kazimirov A, Bilderback DH. 43.  2003. High selective multilayers. Proc. SPIE 5195:46–53 [Google Scholar]
  44. MacArthur K, Shi B, Conley R, Macrander AT. 44.  2011. Periodic variation of stress in sputter deposited Si/WSi2 multilayers. Appl. Phys. Lett. 99:081905 [Google Scholar]
  45. Macrander A, Kubec A, Conley R, Bouet N, Zhou J. 45.  et al. 2015. Efficiency of a multilayer-Laue-lens with a 102 micron aperture. Appl. Phys. Lett. 107:081904 [Google Scholar]
  46. Kozhevnikov IV, Bukreeva IN, Lebedev PN, Ziegler E. 46.  1998. Theoretical study of multilayer X-ray mirrors with a wide spectral band of reflection. Proc. SPIE 3448:322–31 [Google Scholar]
  47. Kozhevnikov IV, Bukreeva IN, Ziegler E. 47.  2001. Design of X-ray supermirrors. Nucl. Instrum. Meth. Phys. Res. A 460:424–43 [Google Scholar]
  48. Christensen FE, Hornstrup A, Westergaard NJ, Schnopper HW, Wood JL, Parker K. 48.  1992. Graded d-spacing multilayer telescope for high-energy X-ray astronomy. Proc. SPIE 1546:160–67 [Google Scholar]
  49. Ziegler E, Morawe C, Kozhevnikov IV, Lebedev PN, Bigault T. 49.  et al. 2002. Wideband multilayer mirrors for medium to hard X-ray applications. Proc. SPIE 4782:169–75 [Google Scholar]
  50. Morawe C, Peffen J-C, Hignette O, Ziegler E. 50.  1999. Design and performance of graded multilayers. Proc. SPIE 3773:90–99 [Google Scholar]
  51. Macrander AT, Als-Nielsen J, Liu C, Krasnicki SF, Maj J. 51.  et al. 1999. Laterally graded multilayer double-monochromator. Proc. SPIE 3773:100–6 [Google Scholar]
  52. Chu YS, Liu C, Mancini DC, DeCarlo F, Macrander AT. 52.  et al. 2002. Performance of a double-multilayer monochromator at beamline 2-BM at the APS. Rev. Sci. Instrum. 73:1485–87 [Google Scholar]
  53. Headrick RL, Smolenski KW, Kazimirov A, Liu C, Macrander AT. 53.  2002. Multilayer optics for a wiggler beamline. Rev. Sci. Instrum. 73:1476–79 [Google Scholar]
  54. Kirz J.54.  1974. Phase zone plates for X-rays and the extreme UV. J. Opt. Soc. Am. 64:301–9 [Google Scholar]
  55. Baez A.55.  1952. A study in diffraction microscopy with special reference to X-rays. J. Opt. Soc. Am. 42:756–62 [Google Scholar]
  56. Thieme J.56.  1988. Theoretical investigations of imaging properties of zone plates using diffraction theory. X-Ray Microscopy II D Sayre, J Kirz, M Howells, H Rarback 70–79 Amsterdam: Springer [Google Scholar]
  57. Simpson MJ, Michette AG. 57.  1983. The effects of manufacturing inaccuracies on the imaging properties of Fresnel zone plates. Opt. Acta 30:1455–62 [Google Scholar]
  58. Chu YS, Yi JM, De Carlo F, Shen Q, Lee W-K. 58.  et al. 2008. Hard-X-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution. Appl. Phys. Lett. 92:103119 [Google Scholar]
  59. Jefimovs K, Vila-Comamala J, Pilvi T, Raabe J, Ritala M, David C. 59.  2007. Zone-doubling technique to produce ultrahigh-resolution X-ray optics. Phys. Rev. Lett. 99:264801 [Google Scholar]
  60. Kang H-C, Maser J, Stephenson GB, Liu C, Conley R. 60.  et al. 2006. Nanometer focusing of hard X-rays by a multilayer Laue lens. Phys. Rev. Lett. 96:127401 [Google Scholar]
  61. Saitoh K, Inagawa K, Kohra K, Hayashi C, Iida A, Kato N. 61.  1988. Fabrication and characterization of multilayer zone plate for hard X-rays. Jpn. J. Appl. Phys. 27:Part 2, No. 11L2131 [Google Scholar]
  62. Bionta RM, Skulina KM, Weinberg J. 62.  1994. Hard X‐ray sputtered‐sliced phase zone plates. Appl. Phys. Lett. 64:945–47 [Google Scholar]
  63. Kang H-C, Stephenson GB, Liu C, Conley R, Khachatryan R. 63.  et al. 2007. Sectioning of multilayers to make a multilayer Laue lens. Rev. Sci. Instrum. 78:046103 [Google Scholar]
  64. Maser J, Stephenson GB, Vogt S, Yun W, Macrander A. 64.  et al. 2004. Multilayer Laue lenses as high resolution X-ray optics. Proc. SPIE 5539:185–94 [Google Scholar]
  65. Kogelnik H.65.  1969. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48:2909–47 [Google Scholar]
  66. Huang X, Yan H, Nazaretski E, Conley R, Bouet N. 66.  et al. 2013. 11 nm hard X-ray focus from large-aperture multilayer Laue lens. Sci. Rep. 3:3562 [Google Scholar]
  67. Yan H, Rose V, Shu D, Lima E, Kang HC. 67.  et al. 2011. Two dimensional hard X-ray nanofocusing with crossed multilayer Laue lenses. Opt. Express 19:15069–76 [Google Scholar]
  68. Conley R, Bouet N, Chu YS, Huang X, Kang H-C. 68.  et al. 2016. Multilayer Laue lens: a brief history and current status. Synchrotron Radiat. News 29:16–20 [Google Scholar]
  69. Conley R, Liu C, Kewish CM, Macrander AT, Yan H. 69.  et al. 2008. Wedged multilayer Laue lens. Rev. Sci. Instrum. 79:053104 [Google Scholar]
  70. Huang X, Conley R, Bouet N, Zhou J, Macrander A. 70.  et al. 2015. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens. Opt. Express 23:12496–507 [Google Scholar]
  71. Morgan AJ, Prasciolu M, Andrejczuk A, Krzywinski J, Meents A. 71.  et al. 2015. High numerical aperture multilayer Laue lenses. Sci. Rep. 5:09892 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error