1932

Abstract

Ferroelectric relaxors continue to be one of the most mysterious solid-state materials. Since their discovery by Smolenskii and coworkers, there have been many attempts to understand the properties of these materials, which are exotic, yet useful for applications. On the basis of the numerous experimental data, several theories have been established, but none of them can explain all the properties of relaxors. The recent advent of piezoresponse force microscopy (PFM) has allowed for polarization mapping on the surface of relaxors with subnanometer resolution. This development thus leads to the question of whether the polar nanoregions that contribute to diffuse X-ray scattering and a range of macroscopic properties can be visualized. This review summarizes recent advancements in the application of PFM to a number of ferroelectric relaxors and provides a tentative explanation of the peculiar polarization distributions related to the intriguing physical phenomena in these materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-071312-121632
2013-07-01
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/matsci/43/1/annurev-matsci-071312-121632.html?itemId=/content/journals/10.1146/annurev-matsci-071312-121632&mimeType=html&fmt=ahah

Literature Cited

  1. Smolenskii GA, Isupov VA, Agranovskaya AI, Popov SN. 1.  1961. Ferroelectrics with diffuse phase transitions. Sov. Phys. Solid State 2:2584–94 [Google Scholar]
  2. Cross LE. 2.  1987. Relaxor ferroelectrics. Ferroelectrics 76:241–67 [Google Scholar]
  3. Bokov AA, Ye ZG. 3.  2006. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41:31–52 [Google Scholar]
  4. Kleemann W. 4.  2006. The relaxor enigma—charge disorder and random fields in ferroelectrics. J. Mater. Sci. 41:129–36 [Google Scholar]
  5. Cowley RA, Gvasalia SN, Lushnikov SG, Roessli B, Rotaru GM. 5.  2011. Relaxing with relaxor: a review of relaxor ferroelectrics. Adv. Phys. 60:229–327 [Google Scholar]
  6. Burns G, Dacol FH. 6.  1983. Glassy polarization behavior in ferroelectric compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3. Solid State Commun. 48:853–56 [Google Scholar]
  7. Viehland D, Jang SJ, Cross LE, Wuttig M. 7.  1990. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68:2916–21 [Google Scholar]
  8. Ye ZG, Schmid H. 8.  1993. Optical, dielectric and polarization studies of the electric field-induced phase transition in Pb(Mg1/3Nb2/3)O3 [PMN]. Ferroelectrics 145:83–108 [Google Scholar]
  9. Colla EV, Yushin NK, Viehland D. 9.  1998. Dielectric properties of (PMN)1−x(PT)x single crystals for various electrical and thermal histories. J. Appl. Phys. 83:3298–304 [Google Scholar]
  10. Kleemann W, Samara GA, Dec J. 10.  2005. Relaxor ferroelectrics: from random field models to glassy relaxation and domain states. Polar Oxides: Properties, Characterization and Imaging R Waser, U Boettger, S Tiedke 129–206 Weinheim, Ger.: Wiley [Google Scholar]
  11. Hirota K, Wakimoto S, Cox DE. 11.  2006. Neutron and X-ray scattering studies of relaxors. J. Phys. Soc. Jpn. 75:111006 [Google Scholar]
  12. Xu G, Shirane G, Copley JRD, Gehring PM. 12.  2004. Neutron elastic diffuse scattering study of Pb(Mg1/3Nb2/3)O3. Phys. Rev. B 69:064112 [Google Scholar]
  13. Dkhil B, Gemeiner P, Al-Barakaty A, Bellaiche L, Dul'kin E. 13.  et al. 2009. Intermediate temperature scale T* in lead-based relaxor systems. Phys. Rev. B 80:064103 [Google Scholar]
  14. Mihailova B, Maier B, Paulmann C, Malcherek T, Ihringer J. 14.  et al. 2008. High-temperature structural transformations in relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3. Phys. Rev. B 77:174106 [Google Scholar]
  15. Dul'kin E, Mojaev E, Roth M, Raevski IP, Prosandeev SA. 15.  2009. Nature of thermally stimulated acoustic emission from PbMg1/3Nb2/3O3-PbTiO3 solid solutions. Appl. Phys. Lett. 94:252904 [Google Scholar]
  16. Hlinka J. 16.  2012. Do we need the ether of polar nanoregions?. J. Adv. Dielectr. 2:1241006 [Google Scholar]
  17. Kleemann W. 17.  2012. Random fields in relaxor ferroelectrics—a jubilee review. J. Adv. Dielectr. 2:1241001 [Google Scholar]
  18. Shvartsman VV, Lupascu DC. 18.  2012. Lead free relaxor ferroelectrics. J. Am. Ceram. Soc. 95:1–26 [Google Scholar]
  19. Park SE, Shrout TR. 19.  1997. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82:1804–11 [Google Scholar]
  20. Uchino K. 20.  1996. Piezoelectric Actuators and Ultrasonic Motors Boston: Kluwer Acad. [Google Scholar]
  21. Gering PM. 21.  2012. Neutron diffuse scattering in lead-based relaxor ferroelectrics and its relationship to the ultra-high piezoelectricity. J. Adv. Dielectr. 2:1241005 [Google Scholar]
  22. Shvartsman VV, Kleemann W, Kiselev DA, Bdikin IK, Kholkin AL. 22.  2011. Polar structures in relaxors by piezoresponse force microscopy. Scanning Probe Microscopy of Functional Materials SV Kalinin, A Gruverman 345–83 New York: Springer [Google Scholar]
  23. Kholkin A, Morozovska A, Kiselev D, Bdikin I, Rodriguez B. 23.  et al. 2011. Surface domain structures and mesoscopic phase transition in relaxor ferroelectrics. Adv. Funct. Mater. 21:1977–87 [Google Scholar]
  24. Shvartsman VV, Kholkin AL. 24.  2012. Polar structure of PbMg1/3Nb2/3O3-PbTiO3 relaxors: piezoresponse force microscopy approach. J. Adv. Dielectr. 2:1241003 [Google Scholar]
  25. Lehnen P, Kleemann W, Woike T, Pankrath R. 25.  2001. Ferroelectric nanodomains in the uniaxial relaxor system Sr0.61−xBa0.39Nb2O6:Cex3+. Phys. Rev. B 64:224109 [Google Scholar]
  26. Shvartsman VV, Kleemann W, Łukasiewicz T, Dec J. 26.  2008. Nanopolar structure in SrxBa1−xNb2O6 single crystals tuned by the Sr/Ba ratio and investigated by piezoelectric force microscopy. Phys. Rev. B 77:054105 [Google Scholar]
  27. Liu XY, Liu YM, Takekawa S, Kitamura K, Ohuchi FS, Li JY. 27.  2009. Nanopolar structures and local ferroelectricity of Sr0.61Ba0.39Nb2O6 relaxor crystal across Curie temperature by piezoresponse force microscopy. J. Appl. Phys. 106:124106 [Google Scholar]
  28. Shur VYa, Shikhova VA, Ievlev AV, Zelenovskiy PS, Neradovskiy MM. 28.  et al. 2012. Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals. J. Appl. Phys. 112:064117 [Google Scholar]
  29. Shvartsman VV, Kholkin AL. 29.  2004. Domain structure of 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 studied by piezoresponse force microscopy. Phys. Rev. B 69:014102 [Google Scholar]
  30. Bai F, Li J, Viehland D. 30.  2004. Domain hierarchy in annealed (001)-oriented PbMg1/3Nb2/3O3-x%PbTiO3 single crystals. Appl. Phys. Lett. 85:2313–15 [Google Scholar]
  31. Bai F, Li J, Viehland D. 31.  2005. Domain engineered states over various length scales in (001)-oriented PbMg1/3Nb2/3O3-x%PbTiO3 crystals: electrical history dependence of hierarchal domains. J. Appl. Phys. 97:054103 [Google Scholar]
  32. Zhao X, Dai JY, Wang J, Chan HLW, Choy CL. 32.  et al. 2005. Relaxor ferroelectric characteristics and temperature-dependent domain structure in a (110)-cut (PbMg1/3Nb2/3O3)0.75(PbTiO3)0.25 single crystal. Phys. Rev. B 72:064114 [Google Scholar]
  33. Shvartsman VV, Kholkin AL. 33.  2007. Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 single crystals. J. Appl. Phys. 101:064108 [Google Scholar]
  34. Wong KS, Dai JY, Zhao XY, Luo HS. 34.  2007. Time- and temperature-dependent domain evolutions in poled (111)-cut (Pb(Mg1/3Nb2/3)O3)0.7(PbTiO3)0.3 single crystal. Appl. Phys. Lett. 90:162907 [Google Scholar]
  35. Kalinin SV, Rodriguez BJ, Jesse S, Morozovska AN, Bokov AA, Ye ZG. 35.  2009. Spatial distribution of relaxation behaviour on the surface of a ferroelectric relaxor in the ergodic state. Appl. Phys. Lett. 95:092904 [Google Scholar]
  36. Kalinin SV, Rodriguez BJ, Budai JD, Jesse S, Morozovska AN. 36.  et al. 2010. Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors. Phys. Rev B 81:064107 [Google Scholar]
  37. Rodriguez BJ, Jesse S, Morozovska AN, Svechnikov SV, Kiselev DA. 37.  et al. 2010. Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3-PbTiO3 solid solutions. J. Appl. Phys. 108:042006 [Google Scholar]
  38. Rodriguez BJ, Jesse S, Bokov AA, Ye ZG, Kalinin SV. 38.  2009. Mapping bias-induced phase stability and random fields in relaxor ferroelectrics. Appl. Phys. Lett. 95:092904 [Google Scholar]
  39. Shvartsman VV, Kholkin AL. 39.  2011. Spontaneous and induced surface piezoresponse in PbMg1/3Nb2/3O3 single crystals. Z. Kristallogr. 226:108–12 [Google Scholar]
  40. Okino H, Sakamoto J, Yamamoto T. 40.  2005. Cooling-rate-dependence of dielectric constant and domain structures in (1−x)Pb(Mg1/3Nb2/3)O3xPbTiO3 single crystals. Jpn. J. Appl. Phys. 44:7160–64 [Google Scholar]
  41. Abplanalp M, Barošova D, Bridenbaugh P, Erhart J, Fousek J. 41.  et al. 2001. Ferroelectric domain structures in PZN-8%PT single crystals studied by scanning force microscopy. Solid State Commun. 119:7–12 [Google Scholar]
  42. Bdikin IK, Shvartsman VV, Kholkin AL. 42.  2003. Nanoscale domains and local piezoelectric hysteresis in Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals. Appl. Phys. Lett. 83:4232–34 [Google Scholar]
  43. Shvartsman VV, Kholkin AL, Orlova A, Kiselev D, Bogomolov AA, Sternberg A. 43.  2005. Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics. Appl. Phys. Lett. 86:202907 [Google Scholar]
  44. Kiselev DA, Bdikin IK, Selezneva EK, Bormanis K, Sternberg A, Kholkin AL. 44.  2007. Grain size effect and local disorder in polycrystalline relaxors via scanning probe microscopy. J. Phys. D 40:7109–12 [Google Scholar]
  45. Kholkin AL, Kiselev DA, Bdikin IK, Sternberg A, Dkhil B. 45.  et al. 2010. Mapping disorder in polycrystalline relaxors: a piezoresponse force microscopy approach. Materials 3:4860–70 [Google Scholar]
  46. Shvartsman VV, Kholkin AL. 46.  2010. Investigation of the ferroelectric-relaxor transition in PbMg1/3Nb2/3O3–PbTiO3 ceramics by piezoresponse force microscopy. J. Appl. Phys. 108:042007 [Google Scholar]
  47. Salak AN, Shvartsman VV, Seabra MP, Kholkin AL, Ferreira VM. 47.  2004. Ferroelectric-to relaxor transition behaviour of BaTiO3 ceramics doped with La(Mg1/2Ti1/2)O3. J. Phys. Condens. Matter 16:2785–94 [Google Scholar]
  48. Shvartsman VV, Kleemann W, Dec J, Xu ZK, Lu SG. 48.  2006. Diffuse phase transition in BaTi1−xSnxO3 ceramics: an intermediate state between ferroelectric and relaxor behaviour. J. Appl. Phys. 99:124111 [Google Scholar]
  49. Zeng JT, Zhao KY, Zeng HR, Zhen LY, Li GR, Yin QR. 49.  2009. Domain structure of [(Na0.7K0.2Li0.1)0.5Bi0.5]TiO3 ceramics studied by piezoresponse force microscopy. Mater. Lett. 63:1468–70 [Google Scholar]
  50. Shvartsman VV, Emelyanov AYu, Kholkin AL, Safari A. 50.  2002. Local hysteresis and grain size effect in PMN-PT thin films. Appl. Phys. Lett. 81:117–19 [Google Scholar]
  51. Shvartsman VV, Kholkin AL, Tyunina M, Levoska J. 51.  2005. Relaxation of induced polar state in relaxor PbMg1/3Nb2/3O3 thin films studied by piezoresponse force microscopy. Appl. Phys. Lett. 86:222907 [Google Scholar]
  52. John NS, Saranya D, Parui J, Krupanidi SB. 52.  2011. Effect of oxygen pressure on the grain and domain structure of polycrystalline 0.85PbMg1/3Nb2/3O3-0.15PbTiO3 thin films studied by scanning probe microscopy. J. Phys. D: Appl. Phys. 44:415401 [Google Scholar]
  53. Uršič H, Ricote J, Amorín H, Holc J, Kosec M, Algueró M. 53.  2012. Ferroelectric domain configurations in 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 thick films determined by piezoresponse force microscopy. J. Phys. D 45:265402 [Google Scholar]
  54. Balke N, Bdikin I, Kalinin SV, Kholkin AL. 54.  2009. Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J. Am. Ceram. Soc. 92:1629–47 [Google Scholar]
  55. Jamieson PB, Abrahams SC, Bernstein JL. 55.  1968. Ferroelectric tungsten bronze-type crystal structures. I. Barium strontium niobate Ba0.27Sr0.75Nb2O5.78. J. Phys. Chem. 48:5048–57 [Google Scholar]
  56. Shvartsman VV, Dec J, Miga S, Lukasiewicz T, Kleemann W. 56.  2008. Ferroelectric domains in SrxBa1−xNb2O6 single crystals (0.4 < x < 0.75). Ferroelectrics 376:1–8 [Google Scholar]
  57. Kim M-S, Wang P, Lee J-H, Kim J-J, Lee HY, Cho S-H. 57.  2002. Site occupancy and dielectric characteristics of strontium barium niobate ceramics: Sr/Ba ratio dependence. Jpn. J. Appl. Phys. 41:7042–47 [Google Scholar]
  58. Glass AM. 58.  1969. Investigation of the electrical properties of Sr1−xBaxNb2O6 with special references to pyroelectric detection. J. Appl. Phys. 40:4699–713 [Google Scholar]
  59. Kleemann W, Dec J, Lehnen P, Blinc R, Zalar B, Pankrath R. 59.  2002. Uniaxial relaxor ferroelectrics: the ferroic random-field Ising model materialized at last. Europhys. Lett. 57:14–19 [Google Scholar]
  60. Nowak U, Esser J, Usadel KD. 60.  1996. Dynamics of domains in diluted antiferromagnets. Physica A 232:40–50 [Google Scholar]
  61. Esser J, Nowak U, Usadel KD. 61.  1997. Exact ground-state properties of disordered Ising systems. Phys. Rev. B 55:5866–72 [Google Scholar]
  62. Likodimos V, Orlik XK, Pardi L, Labardi M, Allegrini M. 62.  2000. Dynamical studies of the ferroelectric domain structure in triglycine sulfate by voltage-modulated scanning force microscopy. J. Appl. Phys. 87:443–51 [Google Scholar]
  63. Shvartsman VV, Dec J, Łukasiewicz T, Kholkin AL, Kleemann W. 63.  2008. Evolution of the polar structure in relaxor ferroelectrics close to the Curie temperature studied by piezoresponse force microscopy. Ferroelectrics 373:77–85 [Google Scholar]
  64. Dec J, Kleemann W, Shvartsman VV, Lupascu DC, Łukasiewicz T. 64.  2012. From mesoscopic to global polar order in the uniaxial relaxor ferroelectric Sr0.8Ba0.2Nb2O6. Appl. Phys. Lett. 100:052903 [Google Scholar]
  65. Kleemann W, Dec J, Shvartsman VV, Kutnjak Z, Braun T. 65.  2006. Two-dimensional Ising model criticality in a three-dimensional uniaxial relaxor ferroelectric with frozen polar nanoregions. Phys. Rev. Lett. 97:065702 [Google Scholar]
  66. Dec J, Shvartsman VV, Kleemann W. 66.  2006. Domainlike precursor clusters in the paraelectric phase of the uniaxial relaxor Sr0.61Ba0.39Nb2O6. Appl. Phys. Lett. 89:212901 [Google Scholar]
  67. Lehnen P, Kleemann W, Woike Th, Pankrath P. 67.  2000. Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+. II. Linear birefringence studies of spontaneous and precursor polarization. Eur. Phys. J. B 14:633–37 [Google Scholar]
  68. Ko JH, Kojima S. 68.  2007. Intrinsic and extrinsic central peaks in the Brillouin light scattering spectrum of the uniaxial ferroelectric relaxor Sr0.61Ba0.39Nb2O6. Appl. Phys. Lett. 91:082903 [Google Scholar]
  69. Dul'kin E, Kojima S, Roth M. 69.  2011. Dielectric maximum temperature non-monotonic behavior in unaxial Sr0.75Ba0.25Nb2O6 relaxor seen via acoustic emission. J. Appl. Phys. 110:044106 [Google Scholar]
  70. Belanger DP, Young AP. 70.  1991. The random field Ising model. J. Magn. Magn. Mater. 100:272–91 [Google Scholar]
  71. Scott JF. 71.  2006. Absence of true critical exponents in relaxor ferroelectrics: the case for defect dynamics. J. Phys. Condens. Matter 18:7123–34 [Google Scholar]
  72. Kleemann W. 72.  2006. Absence of true critical exponents in relaxor ferroelectrics: the case for nanodomain freezing. J. Phys. Condens. Matter 18:L523–26 [Google Scholar]
  73. Gainutdinov RV, Volk TR, Lysova OA, Razgonov II, Tolstkhina AL, Ivleva LI. 73.  2009. Recording of domains and regular domain patterns in strontium–barium niobate crystals in the field of atomic force microscope. Appl. Phys. B 95:505–12 [Google Scholar]
  74. Gladkii VV, Kirikov VA, Volk TR, Ivleva LI. 74.  2001. The kinetic characteristics of polarization in relaxor ferroelectrics. J. Exp. Theor. Phys. 93:596–603 [Google Scholar]
  75. Granzow T, Doerfler U, Woike Th, Woehlecke M, Pankrath R. 75.  et al. 2001. Influence of pinning effects on the ferroelectric hysteresis in cerium doped Sr0.61Ba0.39Nb2O6. Phys. Rev. B 63:174101 [Google Scholar]
  76. Volk TR, Simagina LV, Gainutdinov RV, Tolstikhina AL, Ivleva LI. 76.  2010. Ferroelectric microdomains and microdomain arrays recorded in strontium-barium niobate crystals in the field of atomic force microscope. J. Appl. Phys. 108:042010 [Google Scholar]
  77. Miller RC, Weinreich G. 77.  1960. Mechanism for the sidewise motion of 180° domain walls in barium titanate. Phys. Rev. 117:1460–66 [Google Scholar]
  78. Kleemann W. 78.  2007. Universal domain wall dynamics in disordered ferroic materials. Annu. Rev. Mater. Res. 37:415–48 [Google Scholar]
  79. Tybell T, Paruch P, Giamarchi T, Triscone JM. 79.  2002. Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89:097601 [Google Scholar]
  80. Volk TR, Simagina LV, Gainutdinov RV, Ivanova ES, Ivleva LI, Mit'ko SV. 80.  2011. Scanning probe microscopy investigation of ferroelectric properties of barium strontium niobate crystals. Phys. Solid State 53:2468–75 [Google Scholar]
  81. Pirc R, Blinc R. 81.  1999. Spherical random-bond-random-field model of relaxor ferroelectrics. Phys. Rev. B 60:13470–78 [Google Scholar]
  82. Koo T, Gehring PM, Shirane G, Kiryukhin V, Lee SG, Cheong SW. 82.  2002. Anomalous transverse acoustic phonon broadening in the relaxor ferroelectric Pb(Mg1/3Nb2/3)0.8Ti0.2O3. Phys. Rev. B 65:144113 [Google Scholar]
  83. Ye ZG, Bing Y, Gao J, Bokov AA, Stephens P. 83.  et al. 2003. Development of ferroelectric order in relaxor (1−x)Pb(Mg1/3Nb2/3)O3xPbTiO3(0 ≤ x ≤ 0.15). Phys. Rev. B 67:104104 [Google Scholar]
  84. Xu G, Gehring PM, Stock C, Conlon K. 84.  2006. The anomalous skin effect in single crystal relaxor ferroelectrics PZN-xPT and PMN-xPT. Phase Transit. 79:135–52 [Google Scholar]
  85. Noheda B, Cox DE, Shirane G, Gao J, Ye ZG. 85.  2002. Phase diagram of the ferroelectric relaxor (1−x)PbMg1/3Nb2/3O3-xPbTiO3. Phys. Rev. B 66:054104 [Google Scholar]
  86. Noblanc O, Gaucher P, Calvarin G. 86.  1996. Structural and dielectric studies of Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric solid solutions around the morphotropic boundary. J. Appl. Phys. 79:4291–97 [Google Scholar]
  87. Iwata M, Katsuraya K, Tachizaki S, Hlinka J, Suzuki I. 87.  et al. 2004. Domain wall structure in Pb(Zn1/3Nb2/3)O3-PbTiO3-mixed crystals by atomic force microscopy. Jpn. J. Appl. Phys. 43:6812–15 [Google Scholar]
  88. Conlon KH, Luo H, Viehland D, Li JF, Whan T. 88.  et al. 2004. Direct observation of the near-surface layer in Pb(Mg1/3Nb2/3)O3 using neutron diffraction. Phys. Rev. B 70:172204 [Google Scholar]
  89. Kleemann W, Lindner R. 89.  1997. Dynamic behaviour of polar nanodomains in PbMg1/3Nb2/3O3. Ferroelectrics 199:1–10 [Google Scholar]
  90. Arlt G, Hennings D, With G. 90.  1985. Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58:1619–25 [Google Scholar]
  91. Gruverman A, Kholkin AL. 91.  2006. Nanoscale ferroelectrics: processing, characterization and future trends. Rep. Prog. Phys. 69:2443–74 [Google Scholar]
  92. Buessem WR, Cross LE, Goswami AK. 92.  1966. Phenomenological theory of high permittivity in fine-grained barium titanate. J. Am. Ceram. Soc. 49:33–36 [Google Scholar]
  93. Wada S, Suzuki T, Noma T. 93.  1995. The effect of the particle sizes and the correlational sizes of dipoles introduced by the lattice defects on the crystal structure of barium titanate fine particles. Jpn. J. Appl. Phys. 34:5368–79 [Google Scholar]
  94. Tyunina M, Levoska J. 94.  2001. Dielectric anomalies in epitaxial films of relaxor ferroelectric (PbMg1/3Nb2/3O3)0.68-(PbTiO3)0.32. Phys. Rev. B 63:224102 [Google Scholar]
  95. Nagarajan V, Ganpule CS, Nagaraj B, Aggarwal S, Alpay SP. 95.  et al. 1999. Effect of mechanical constraint on the dielectric and piezoelectric behavior of epitaxial Pb(Mg1/3Nb2/3)O3(90%)–PbTiO3(10%) relaxor thin films. Appl. Phys. Lett. 75:4183–85 [Google Scholar]
  96. Jimenez R, Amorin H, Ricote J, Carreaud J, Kiat JM. 96.  et al. 2008. Effect of grain size on the transition between ferroelectric and relaxor states in 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 ceramics. Phys. Rev. B 78:094103 [Google Scholar]
  97. Carreaud J, Gemeiner P, Kiat JM, Dkhil B, Bogicevic C. 97.  et al. 2005. Size-driven relaxation and polar states in PbMg1/3Nb2/3O3-based system. Phys. Rev. B 72:174115 [Google Scholar]
  98. Carreaud J, Bogisevic C, Dkhil B, Kiat JM. 98.  2008. Dielectric evidences of core-shell-like effects in nanosized relaxor PbMg1/3Nb2/3O3. Appl. Phys. Lett. 92:242902 [Google Scholar]
  99. Samara GA. 99.  2003. The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys. Condens. Matter. 15:R367–411 [Google Scholar]
  100. Samara GA. 100.  1998. Pressure as a probe of the glassy properties of compositionally disordered soft mode ferroelectrics: (Pb0.82La0.12)(Zr0.40Ti0.60)O3 (PLZT 12/40/60). J. Appl. Phys. 84:2538–45 [Google Scholar]
  101. Okazaki K, Nagata K. 101.  1973. Effects of grain size and porosity on electrical and optical properties of PLZT ceramics. J. Am. Ceram. Soc. 56:82–86 [Google Scholar]
  102. Lin WK, Chang YH. 102.  1989. Properties and microstructures of PLZT ceramics hot-pressed from commercial powders. Ferroelectrics 99:133–44 [Google Scholar]
  103. Fu H, Cohen RE. 103.  2000. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403:281–83 [Google Scholar]
  104. Kutnjak Z, Petzelt J, Blinc R. 104.  2006. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441:956–59 [Google Scholar]
  105. Raevskaya SI, Emelyanov AS, Savenko FI, Panchelyuga MS, Raevski IP. 105.  et al. 2007. Quasivertical line in the phase diagram of single crystals of PbMg1/3Nb2/3O3-xPbTiO3 (x = 0.00, 0.06, 0.13, and 0.24) with a giant piezoelectric effect. Phys. Rev. B 76:060101 [Google Scholar]
  106. Colla EV, Koroleva EY, Okuneva NM, Vakhrushev SB. 106.  1995. Long-time relaxation of the dielectric response in lead magnoniobate. Phys. Rev. Lett. 74:1681–84 [Google Scholar]
  107. Dkhil B, Kiat JM. 107.  2001. Electric-field-induced polarization in the ergodic and nonergodic states of PbMg1/3Nb2/3O3 relaxor. J. Appl. Phys. 90:4676–81 [Google Scholar]
  108. Isupov VA, Yushin NK, Smirnova EP, Sotnikov AV, Tarakanov EA, Maksimov AY. 108.  1994. Electrostrictive actuators on base of PMN-PSN solid solution ceramics. Ferroelectrics 160:239–42 [Google Scholar]
  109. Bdikin IK, Grácio J, Kiselev DA, Raevskaya SI, Raevski IP. 109.  et al. 2011. Local domain engineering in relaxor 0.77PbMg1/3Nb2/3O3-0.23PbSc1/2Nb1/2O3 single crystals. J. Appl. Phys. 110:052002 [Google Scholar]
  110. Vakhrushev SB, Kiat JM, Dkhil B. 110.  1997. X-ray study of the kinetics of field induced transition from the glass-like to the ferroelectric phase in lead magnoniobate. Solid State Commun. 103:477–82 [Google Scholar]
/content/journals/10.1146/annurev-matsci-071312-121632
Loading
/content/journals/10.1146/annurev-matsci-071312-121632
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error