1932

Abstract

This article examines recent advances in the field of antiferromagnetic spintronics from the perspective of potential device realization and applications. We discuss advances in the electrical control of antiferromagnetic order by current-induced spin–orbit torques, particularly in antiferromagnetic thin films interfaced with heavy metals. We also review possible scenarios for using voltage-controlled magnetic anisotropy as a more efficient mechanism to control antiferromagnetic order in thin films with perpendicular magnetic anisotropy. Next, we discuss the problem of electrical detection (i.e., readout) of antiferromagnetic order and highlight recent experimental advances in realizing anomalous Hall and tunneling magnetoresistance effects in thin films and tunnel junctions, respectively, which are based on noncollinear antiferromagnets. Understanding the domain structure and dynamics of antiferromagnetic materials is essential for engineering their properties for applications. For this reason, we then provide an overview of imaging techniques as well as micromagnetic simulation approaches for antiferromagnets. Finally, we present a perspective on potential applications of antiferromagnets for magnetic memory devices, terahertz sources, and detectors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080222-030535
2024-08-05
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/matsci/54/1/annurev-matsci-080222-030535.html?itemId=/content/journals/10.1146/annurev-matsci-080222-030535&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, et al. 2001.. Spintronics: a spin-based electronics vision for the future. . Science 294::148895
    [Crossref] [Google Scholar]
  2. 2.
    Baibich MN, Broto JM, Fert A, Van Dau FN, Petroff F, et al. 1988.. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. . Phys. Rev. Lett. 61::247275
    [Crossref] [Google Scholar]
  3. 3.
    Binasch G, Grünberg P, Saurenbach F, Zinn W. 1989.. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. . Phys. Rev. B 39::482830
    [Crossref] [Google Scholar]
  4. 4.
    Butler WH, Zhang XG, Schulthess TC, MacLaren JM. 2001.. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. . Phys. Rev. B 63::054416
    [Crossref] [Google Scholar]
  5. 5.
    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K. 2004.. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. . Nat. Mater. 3::86871
    [Crossref] [Google Scholar]
  6. 6.
    Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, et al. 2004.. Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnel barriers. . Nat. Mater. 3::86267
    [Crossref] [Google Scholar]
  7. 7.
    Slonczewski JC. 1996.. Current-driven excitation of magnetic multilayers. . J. Magn. Magn. Mater. 159::L17
    [Crossref] [Google Scholar]
  8. 8.
    Katine JA, Albert FJ, Buhrman RA, Myers EB, Ralph DC. 2000.. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. . Phys. Rev. Lett. 84::314952
    [Crossref] [Google Scholar]
  9. 9.
    Miron IM, Garello K, Gaudin G, Zermatten P-J, Costache MV, et al. 2011.. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. . Nature 476::18993
    [Crossref] [Google Scholar]
  10. 10.
    Liu L, Pai C-F, Li Y, Tseng HW, Ralph DC, Buhrman RA. 2012.. Spin-torque switching with the giant spin hall effect of tantalum. . Science 336::55558
    [Crossref] [Google Scholar]
  11. 11.
    Chiba D, Fukami S, Shimamura K, Ishiwata N, Kobayashi K, Ono T. 2011.. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. . Nat. Mater. 10::85356
    [Crossref] [Google Scholar]
  12. 12.
    Shiota Y, Nozaki T, Bonell F, Murakami S, Shinjo T, Suzuki Y. 2012.. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. . Nat. Mater. 11::3943
    [Crossref] [Google Scholar]
  13. 13.
    Wang W-G, Li M, Hageman S, Chien CL. 2012.. Electric-field-assisted switching in magnetic tunnel junctions. . Nat. Mater. 11::6468
    [Crossref] [Google Scholar]
  14. 14.
    Zhu J, Katine JA, Rowlands GE, Chen Y-J, Duan Z, et al. 2012.. Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. . Phys. Rev. Lett. 108::197203
    [Crossref] [Google Scholar]
  15. 15.
    Cherepov S, Amiri PK, Alzate JG, Wong K, Lewis M, et al. 2014.. Electric-field-induced spin wave generation using multiferroic magnetoelectric cells. . Appl. Phys. Lett. 104::082403
    [Crossref] [Google Scholar]
  16. 16.
    Wu T, Bur A, Wong K, Zhao P, Lynch CS, et al. 2011.. Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices. . Appl. Phys. Lett. 98::262504
    [Crossref] [Google Scholar]
  17. 17.
    Kent AD, Worledge DC. 2015.. A new spin on magnetic memories. . Nat. Nanotechnol. 10::18791
    [Crossref] [Google Scholar]
  18. 18.
    Wang KL, Alzate JG, Khalili Amiri P. 2013.. Low-power non-volatile spintronic memory: STT-RAM and beyond. . J. Phys. D Appl. Phys. 46::074003
    [Crossref] [Google Scholar]
  19. 19.
    Zhang L, Fang B, Cai J, Carpentieri M, Puliafito V, et al. 2018.. Ultrahigh detection sensitivity exceeding 105 V/W in spin-torque diode. . Appl. Phys. Lett. 113::102401
    [Crossref] [Google Scholar]
  20. 20.
    Fang B, Carpentieri M, Hao X, Jiang H, Katine JA, et al. 2016.. Giant spin-torque diode sensitivity in the absence of bias magnetic field. . Nat. Commun. 7::11259
    [Crossref] [Google Scholar]
  21. 21.
    Fang B, Carpentieri M, Louis S, Tiberkevich V, Slavin A, et al. 2019.. Experimental demonstration of spintronic broadband microwave detectors and their capability for powering nanodevices. . Phys. Rev. Appl. 11::014022
    [Crossref] [Google Scholar]
  22. 22.
    Zeng Z, Finocchio G, Zhang B, Amiri PK, Katine JA, et al. 2013.. Ultralow-current-density and bias-field-free spin-transfer nano-oscillator. . Sci. Rep. 3::1426
    [Crossref] [Google Scholar]
  23. 23.
    Zeng Z, Amiri PK, Krivorotov IN, Zhao H, Finocchio G, et al. 2012.. High-power coherent microwave emission from magnetic tunnel junction nano-oscillators with perpendicular anisotropy. . ACS Nano 6::611521
    [Crossref] [Google Scholar]
  24. 24.
    Néel L. Nobel lecture: magnetism and the local molecular field. . Nobel Prize Outreach AB. https://www.nobelprize.org/prizes/physics/1970/neel/lecture/
    [Google Scholar]
  25. 25.
    Arpaci S, Lopez-Dominguez V, Shi J, Sánchez-Tejerina L, Garesci F, et al. 2021.. Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements. . Nat. Commun. 12::3828
    [Crossref] [Google Scholar]
  26. 26.
    Shi J, Lopez-Dominguez V, Garesci F, Wang C, Almasi H, et al. 2020.. Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars. . Nat. Electron. 3::9298
    [Crossref] [Google Scholar]
  27. 27.
    DuttaGupta S, Kurenkov A, Tretiakov OA, Krishnaswamy G, Sala G, et al. 2020.. Spin-orbit torque switching of an antiferromagnetic metallic heterostructure. . Nat. Commun. 11::5715
    [Crossref] [Google Scholar]
  28. 28.
    Cheng Y, Yu S, Zhu M, Hwang J, Yang F. 2020.. Electrical switching of tristate antiferromagnetic Néel order in α-Fe2O3 epitaxial films. . Phys. Rev. Lett. 124::027202
    [Crossref] [Google Scholar]
  29. 29.
    Olejník K, Seifert T, Kašpar Z, Novák V, Wadley P, et al. 2018.. Terahertz electrical writing speed in an antiferromagnetic memory. . Sci. Adv. 4::eaar3566
    [Crossref] [Google Scholar]
  30. 30.
    Jungfleisch MB, Zhang W, Hoffmann A. 2018.. Perspectives of antiferromagnetic spintronics. . Phys. Lett. A 382::86571
    [Crossref] [Google Scholar]
  31. 31.
    Moriyama T, Oda K, Ohkochi T, Kimata M, Ono T. 2018.. Spin torque control of antiferromagnetic moments in NiO. . Sci. Rep. 8::14167
    [Crossref] [Google Scholar]
  32. 32.
    Godinho J, Reichlová H, Kriegner D, Novák V, Olejník K, et al. 2018.. Electrically induced and detected Néel vector reversal in a collinear antiferromagnet. . Nat. Commun. 9::4686
    [Crossref] [Google Scholar]
  33. 33.
    Bodnar SY, Šmejkal L, Turek I, Jungwirth T, Gomonay O, et al. 2018.. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. . Nat. Commun. 9::348
    [Crossref] [Google Scholar]
  34. 34.
    Liu ZQ, Chen H, Wang JM, Liu JH, Wang K, et al. 2018.. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. . Nat. Electron. 1::17277
    [Crossref] [Google Scholar]
  35. 35.
    Olejník K, Schuler V, Marti X, Novák V, Kašpar Z, et al. 2017.. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. . Nat. Commun. 8::15434
    [Crossref] [Google Scholar]
  36. 36.
    Grzybowski MJ, Wadley P, Edmonds KW, Beardsley R, Hills V, et al. 2017.. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. . Phys. Rev. Lett. 118::057701
    [Crossref] [Google Scholar]
  37. 37.
    Wadley P, Howells B, Železný J, Andrews C, Hills V, et al. 2016.. Electrical switching of an antiferromagnet. . Science 351::58790
    [Crossref] [Google Scholar]
  38. 38.
    Jungwirth T, Marti X, Wadley P, Wunderlich J. 2016.. Antiferromagnetic spintronics. . Nat. Nanotechnol. 11::23141
    [Crossref] [Google Scholar]
  39. 39.
    Chen X, Higo T, Tanaka K, Nomoto T, Tsai H, et al. 2023.. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. . Nature 613::49095
    [Crossref] [Google Scholar]
  40. 40.
    Qin P, Yan H, Wang X, Chen H, Meng Z, et al. 2023.. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. . Nature 613::48589
    [Crossref] [Google Scholar]
  41. 41.
    Ghosh S, Manchon A, Železný J. 2022.. Unconventional robust spin-transfer torque in noncollinear antiferromagnetic junctions. . Phys. Rev. Lett. 128::097702
    [Crossref] [Google Scholar]
  42. 42.
    Bose A, Schreiber NJ, Jain R, Shao D-F, Nair HP, et al. 2022.. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. . Nat. Electron. 5::26774
    [Crossref] [Google Scholar]
  43. 43.
    Dong J, Li X, Gurung G, Zhu M, Zhang P, et al. 2022.. Tunneling magnetoresistance in noncollinear antiferromagnetic tunnel junctions. . Phys. Rev. Lett. 128::197201
    [Crossref] [Google Scholar]
  44. 44.
    Siddiqui SA, Sklenar J, Kang K, Gilbert MJ, Schleife A, et al. 2020.. Metallic antiferromagnets. . J. Appl. Phys. 128::040904
    [Crossref] [Google Scholar]
  45. 45.
    Ghimire NJ, Botana AS, Jiang JS, Zhang J, Chen YS, Mitchell JF. 2018.. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. . Nat. Commun. 9::3280
    [Crossref] [Google Scholar]
  46. 46.
    Higo T, Man H, Gopman DB, Wu L, Koretsune T, et al. 2018.. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. . Nat. Photon. 12::7378
    [Crossref] [Google Scholar]
  47. 47.
    Šmejkal L, Mokrousov Y, Yan B, MacDonald AH. 2018.. Topological antiferromagnetic spintronics. . Nat. Phys. 14::24251
    [Crossref] [Google Scholar]
  48. 48.
    Ikhlas M, Tomita T, Koretsune T, Suzuki M-T, Nishio-Hamane D, et al. 2017.. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. . Nat. Phys. 13::108590
    [Crossref] [Google Scholar]
  49. 49.
    Železný J, Zhang Y, Felser C, Yan B. 2017.. Spin-polarized current in noncollinear antiferromagnets. . Phys. Rev. Lett. 119::187204
    [Crossref] [Google Scholar]
  50. 50.
    Nakatsuji S, Kiyohara N, Higo T. 2015.. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. . Nature 527::21215
    [Crossref] [Google Scholar]
  51. 51.
    Chen H, Niu Q, MacDonald AH. 2014.. Anomalous Hall effect arising from noncollinear antiferromagnetism. . Phys. Rev. Lett. 112::017205
    [Crossref] [Google Scholar]
  52. 52.
    Kübler J, Felser C. 2014.. Non-collinear antiferromagnets and the anomalous Hall effect. . EPL 108::67001
    [Crossref] [Google Scholar]
  53. 53.
    Šmejkal L, Sinova J, Jungwirth T. 2022.. Emerging research landscape of altermagnetism. . Phys. Rev. X 12::040501
    [Google Scholar]
  54. 54.
    Šmejkal L, González-Hernández R, Jungwirth T, Sinova J. 2020.. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. . Sci. Adv. 6::eaaz8809
    [Crossref] [Google Scholar]
  55. 55.
    Go D, Sallermann M, Lux FR, Blügel S, Gomonay O, Mokrousov Y. 2022.. Noncollinear spin current for switching of chiral magnetic textures. . Phys. Rev. Lett. 129::097204
    [Crossref] [Google Scholar]
  56. 56.
    Yamane Y, Gomonay O, Sinova J. 2019.. Dynamics of noncollinear antiferromagnetic textures driven by spin current injection. . Phys. Rev. B 100::054415
    [Crossref] [Google Scholar]
  57. 57.
    Gomonaj EV, L'vov VA. 1992.. Phenomenologic study of phase transitions in noncollinear antiferromagnets of metallic perovskite type. . Phase Transit. 38::1531
    [Crossref] [Google Scholar]
  58. 58.
    Tsai H, Higo T, Kondou K, Nomoto T, Sakai A, et al. 2020.. Electrical manipulation of a topological antiferromagnetic state. . Nature 580::60813
    [Crossref] [Google Scholar]
  59. 59.
    Železný J, Wadley P, Olejník K, Hoffmann A, Ohno H. 2018.. Spin transport and spin torque in antiferromagnetic devices. . Nat. Phys. 14::22028
    [Crossref] [Google Scholar]
  60. 60.
    Du A, Zhu D, Cao K, Zhang Z, Guo Z, et al. 2023.. Electrical manipulation and detection of antiferromagnetism in magnetic tunnel junctions. . Nat. Electron. 6::42533
    [Crossref] [Google Scholar]
  61. 61.
    Lopez-Dominguez V, Shao Y, Khalili Amiri P. 2023.. Perspectives on field-free spin–orbit torque devices for memory and computing applications. . J. Appl. Phys. 133::040902
    [Crossref] [Google Scholar]
  62. 62.
    Chiang CC, Huang SY, Qu D, Wu PH, Chien CL. 2019.. Absence of evidence of electrical switching of the antiferromagnetic Néel vector. . Phys. Rev. Lett. 123::227203
    [Crossref] [Google Scholar]
  63. 63.
    Shi J. 2023.. Antiferromagnetic spin-orbit torque devices for random-access memory applications. PhD Diss. , Northwestern University, Evanston, IL:
    [Google Scholar]
  64. 64.
    Zheng Z, Zhang Y, Lopez-Dominguez V, Sánchez-Tejerina L, Shi J, et al. 2021.. Field-free spin-orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient. . Nat. Commun. 12::4555
    [Crossref] [Google Scholar]
  65. 65.
    Yu G, Upadhyaya P, Fan Y, Alzate JG, Jiang W, et al. 2014.. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. . Nat. Nanotechnol. 9::54854
    [Crossref] [Google Scholar]
  66. 66.
    Nozaki T, Yamamoto T, Miwa S, Tsujikawa M, Shirai M, et al. 2019.. Recent progress in the voltage-controlled magnetic anisotropy effect and the challenges faced in developing voltage-torque MRAM. . Micromachines 10::327
    [Crossref] [Google Scholar]
  67. 67.
    Shao Y, Khalili Amiri P. 2023.. Progress and application perspectives of voltage-controlled magnetic tunnel junctions. . Adv. Mater. Technol. 8::2300676
    [Crossref] [Google Scholar]
  68. 68.
    Grezes C, Ebrahimi F, Alzate JG, Cai X, Katine JA, et al. 2016.. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product. . Appl. Phys. Lett. 108::012403
    [Crossref] [Google Scholar]
  69. 69.
    Amiri PK, Alzate JG, Cai XQ, Ebrahimi F, Hu Q, et al. 2015.. Electric-field-controlled magnetoelectric RAM: progress, challenges, and scaling. . IEEE Trans. Magn. 51::3401507
    [Google Scholar]
  70. 70.
    Shao Y, Lopez-Dominguez V, Davila N, Sun Q, Kioussis N, et al. 2022.. Sub-volt switching of nanoscale voltage-controlled perpendicular magnetic tunnel junctions. . Commun. Mater. 3::87
    [Crossref] [Google Scholar]
  71. 71.
    Khalili Amiri P, Wang KL. 2012.. Voltage-controlled magnetic anisotropy in spintronic devices. . SPIN 02::1240002
    [Crossref] [Google Scholar]
  72. 72.
    Worledge DC, Hu G, Abraham DW, Sun JZ, Trouilloud PL, et al. 2011.. Spin torque switching of perpendicular Ta∣CoFeB∣MgO-based magnetic tunnel junctions. . Appl. Phys. Lett. 98::022501
    [Crossref] [Google Scholar]
  73. 73.
    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan HD, et al. 2010.. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. . Nat. Mater. 9::72124
    [Crossref] [Google Scholar]
  74. 74.
    Khalili Amiri P, Zeng ZM, Langer J, Zhao H, Rowlands G, et al. 2011.. Switching current reduction using perpendicular anisotropy in CoFeB–MgO magnetic tunnel junctions. . Appl. Phys. Lett. 98::112507
    [Crossref] [Google Scholar]
  75. 75.
    Shao Y, Duffee C, Raimondo E, Davila N, Lopez-Dominguez V, et al. 2023.. Probabilistic computing with voltage-controlled dynamics in magnetic tunnel junctions. . Nanotechnology 34::495203
    [Crossref] [Google Scholar]
  76. 76.
    Shao Y, Davila N, Ebrahimi F, Katine JA, Finocchio G, Khalili Amiri P. 2023.. Reconfigurable physically unclonable functions based on nanoscale voltage-controlled magnetic tunnel junctions. . Adv. Electron. Mater. 9::2300195
    [Crossref] [Google Scholar]
  77. 77.
    Lee H, Ebrahimi F, Amiri PK, Wang KL. 2017.. Design of high-throughput and low-power true random number generator utilizing perpendicularly magnetized voltage-controlled magnetic tunnel junction. . AIP Adv. 7::055934
    [Crossref] [Google Scholar]
  78. 78.
    Bhattacharya D, Razavi SA, Wu H, Dai B, Wang KL, Atulasimha J. 2020.. Creation and annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy. . Nat. Electron. 3::53945
    [Crossref] [Google Scholar]
  79. 79.
    Upadhyaya P, Yu G, Amiri PK, Wang KL. 2015.. Electric-field guiding of magnetic skyrmions. . Phys. Rev. B 92::134411
    [Crossref] [Google Scholar]
  80. 80.
    Schroeter S, Garst M. 2015.. Scattering of high-energy magnons off a magnetic skyrmion. . Low Temp. Phys. 41::81725
    [Crossref] [Google Scholar]
  81. 81.
    Schütte C, Garst M. 2014.. Magnon-skyrmion scattering in chiral magnets. . Phys. Rev. B 90::094423
    [Crossref] [Google Scholar]
  82. 82.
    Hu Z, Shao Y, Lopez-Dominguez V, Amiri PK. 2022.. Micromagnetic investigation of a voltage-controlled skyrmionic magnon switch. . Phys. Rev. Appl. 17::044055
    [Crossref] [Google Scholar]
  83. 83.
    Zheng G, Ke S-H, Miao M, Kim J, Ramesh R, Kioussis N. 2017.. Electric field control of magnetization direction across the antiferromagnetic to ferromagnetic transition. . Sci. Rep. 7::5366
    [Crossref] [Google Scholar]
  84. 84.
    Chang PH, Fang W, Ozaki T, Belashchenko KD. 2021.. Voltage-controlled magnetic anisotropy in antiferromagnetic MgO-capped MnPt films. . Phys. Rev. Mater. 5::054406
    [Crossref] [Google Scholar]
  85. 85.
    Lopez-Dominguez V, Almasi H, Khalili Amiri P. 2019.. Picosecond electric-field-induced switching of antiferromagnets. . Phys. Rev. Appl. 11::024019
    [Crossref] [Google Scholar]
  86. 86.
    Khalili Amiri P, Garesci F, Finocchio G. 2023.. Current-controlled antiferromagnetic memory. . Nat. Electron. 6::4078
    [Crossref] [Google Scholar]
  87. 87.
    Tomasello R, Verba R, Lopez-Dominguez V, Garesci F, Carpentieri M, et al. 2022.. Antiferromagnetic parametric resonance driven by voltage-controlled magnetic anisotropy. . Phys. Rev. Appl. 17::034004
    [Crossref] [Google Scholar]
  88. 88.
    Tomasello R, Sanchez-Tejerina L, Lopez-Dominguez V, Garesci F, Giordano A, et al. 2020.. Domain periodicity in an easy-plane antiferromagnet with Dzyaloshinskii-Moriya interaction. . Phys. Rev. B 102::224432
    [Crossref] [Google Scholar]
  89. 89.
    Puliafito V, Khymyn R, Carpentieri M, Azzerboni B, Tiberkevich V, et al. 2019.. Micromagnetic modeling of terahertz oscillations in an antiferromagnetic material driven by the spin Hall effect. . Phys. Rev. B 99::024405
    [Crossref] [Google Scholar]
  90. 90.
    Khymyn R, Lisenkov I, Tiberkevich V, Ivanov BA, Slavin A. 2017.. Antiferromagnetic THz-frequency Josephson-like oscillator driven by spin current. . Sci. Rep. 7::43705
    [Crossref] [Google Scholar]
  91. 91.
    Finocchio G, Di Ventra M, Camsari KY, Everschor-Sitte K, Khalili Amiri P, Zeng Z. 2021.. The promise of spintronics for unconventional computing. . J. Magn. Magn. Mater. 521::167506
    [Crossref] [Google Scholar]
  92. 92.
    Mazin I, PRX Eds. 2022.. Editorial: altermagnetism—a new punch line of fundamental magnetism. . Phys. Rev. X 12::040002
    [Google Scholar]
  93. 93.
    Shao D-F, Zhang S-H, Li M, Eom C-B, Tsymbal EY. 2021.. Spin-neutral currents for spintronics. . Nat. Commun. 12::7061
    [Crossref] [Google Scholar]
  94. 94.
    Nan T, Quintela CX, Irwin J, Gurung G, Shao DF, et al. 2020.. Controlling spin current polarization through non-collinear antiferromagnetism. . Nat. Commun. 11::4671
    [Crossref] [Google Scholar]
  95. 94a.
    Shi J, Arpaci S, Lopez-Dominguez V, Sangwan VK, Mahfouzi F, . 2024.. Electrically controlled all-antiferromagnetic tunnel junctions on silicon with large room-temperature magnetoresistance. . Adv. Mater. 36::2312008
    [Crossref] [Google Scholar]
  96. 95.
    Brunel M, de Bergevin F. 1981.. Diffraction of X-rays by magnetic materials. II. Measurements on antiferromagnetic Fe2O3. . Acta Crystallogr. A 37::32431
    [Crossref] [Google Scholar]
  97. 96.
    Evans PG, Isaacs ED, Aeppli G, Cai Z, Lai B. 2002.. X-ray microdiffraction images of antiferromagnetic domain evolution in chromium. . Science 295::104245
    [Crossref] [Google Scholar]
  98. 97.
    Johnson RD, Barone P, Bombardi A, Bean RJ, Picozzi S, et al. 2013.. X-ray imaging and multiferroic coupling of cycloidal magnetic domains in ferroelectric monodomain BiFeO3. . Phys. Rev. Lett. 110::217206
    [Crossref] [Google Scholar]
  99. 98.
    Stöhr J, Scholl A, Regan TJ, Anders S, Lüning J, et al. 1999.. Images of the antiferromagnetic structure of a NiO(100) surface by means of X-ray magnetic linear dichroism spectromicroscopy. . Phys. Rev. Lett. 83::186265
    [Crossref] [Google Scholar]
  100. 99.
    Stöhr J, Padmore HA, Anders S, Stammler T, Scheinfein MR. 1998.. Principles of X-ray magnetic dichroism spectromicroscopy. . Surf. Rev. Lett. 05::1297308
    [Crossref] [Google Scholar]
  101. 100.
    Nolting F, Scholl A, Stöhr J, Seo JW, Fompeyrine J, et al. 2000.. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. . Nature 405::76769
    [Crossref] [Google Scholar]
  102. 101.
    Ohldag H, Scholl A, Nolting F, Anders S, Hillebrecht FU, Stöhr J. 2001.. Spin reorientation at the antiferromagnetic NiO(001) surface in response to an adjacent ferromagnet. . Phys. Rev. Lett. 86::287881
    [Crossref] [Google Scholar]
  103. 102.
    Chmiel FP, Waterfield Price N, Johnson RD, Lamirand AD, Schad J, et al. 2018.. Observation of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure. . Nat. Mater. 17::58185
    [Crossref] [Google Scholar]
  104. 103.
    Sapozhnik AA, Filianina M, Bodnar SY, Lamirand A, Mawass MA, et al. 2018.. Direct imaging of antiferromagnetic domains in Mn2Au manipulated by high magnetic fields. . Phys. Rev. B 97::134429
    [Crossref] [Google Scholar]
  105. 104.
    McCray ARC, Lebedev D, Arpaci S, te Velthuis SGE, Lopez-Dominguez V, et al. 2023.. Control of magnetic skyrmions in an exchange biased van der Waals ferromagnet. . Microsc. Microanal. 29::171011
    [Crossref] [Google Scholar]
  106. 105.
    Kohno Y, Seki T, Findlay SD, Ikuhara Y, Shibata N. 2022.. Real-space visualization of intrinsic magnetic fields of an antiferromagnet. . Nature 602::23439
    [Crossref] [Google Scholar]
  107. 106.
    Bluschke M, Basak R, Barbour A, Warner AN, Fürsich K, et al. 2022.. Imaging mesoscopic antiferromagnetic spin textures in the dilute limit from single-geometry resonant coherent X-ray diffraction. . Sci. Adv. 8::eabn6882
    [Crossref] [Google Scholar]
  108. 107.
    Kim MG, Miao H, Gao B, Cheong SW, Mazzoli C, et al. 2018.. Imaging antiferromagnetic antiphase domain boundaries using magnetic Bragg diffraction phase contrast. . Nat. Commun. 9::5013
    [Crossref] [Google Scholar]
  109. 108.
    Petford-Long AK, De Graef M. 2012.. Lorentz microscopy. . In Characterization of Materials, ed. EN Kaufmann . Hoboken, NJ:: John Wiley & Sons. https://doi.org/10.1002/0471266965.com137
    [Google Scholar]
  110. 109.
    Phatak C, De Graef M. 2014.. Imaging of domains and vortices in multifunctional materials. . In Mesoscopic Phenomenon in Multifunctional Materials, ed. A Saxena, A Planes , pp. 13758. Berlin:: Springer
    [Google Scholar]
  111. 110.
    Chapman JN, Ploessl R, Donnet DM. 1992.. Differential phase contrast microscopy of magnetic materials. . Ultramicroscopy 47::33138
    [Crossref] [Google Scholar]
  112. 111.
    Lubk A, Zweck J. 2015.. Differential phase contrast: an integral perspective. . Phys. Rev. A 91::023805
    [Crossref] [Google Scholar]
  113. 112.
    Ophus C. 2019.. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. . Microsc. Microanal. 25::56382
    [Crossref] [Google Scholar]
  114. 113.
    Tanase M, Petford-Long AK, Heinonen O, Buchanan KS, Sort J, Nogués J. 2009.. Magnetization reversal in circularly exchange-biased ferromagnetic disks. . Phys. Rev. B 79::014436
    [Crossref] [Google Scholar]
  115. 114.
    Masseboeuf A, Gatel C, Bayle-Guillemaud P, Lamy Y, Viala B. 2009.. The use of Lorentz microscopy for the determination of magnetic reversal mechanism of exchange-biased Co30Fe70/NiMn bilayer. . J. Magn. Magn. Mater. 321::308083
    [Crossref] [Google Scholar]
  116. 115.
    Phatak C, Petford-Long AK, De Graef M. 2016.. Recent advances in Lorentz microscopy. . Curr. Opin. Solid State Mater. Sci. 20::10714
    [Crossref] [Google Scholar]
  117. 116.
    Nguyen KX, Huang J, Karigerasi MH, Kang K, Cahill DG, et al. 2023.. Angstrom-scale imaging of magnetization in antiferromagnetic Fe2As via 4D-STEM. . Ultramicroscopy 247::113696
    [Crossref] [Google Scholar]
  118. 117.
    van Aken PA, Lauterbach S. 2003.. Strong magnetic linear dichroism in Fe L23 and O K electron energy-loss near-edge spectra of antiferromagnetic hematite α-Fe2O3. . Phys. Chem. Miner. 30::46977
    [Crossref] [Google Scholar]
  119. 118.
    Qiu ZQ, Bader SD. 2000.. Surface magneto-optic Kerr effect. . Rev. Sci. Instrum. 71::124355
    [Crossref] [Google Scholar]
  120. 119.
    Hubert A, Schäfer R. 2014.. Magnetic Domains: The Analysis of Magnetic Microstructures. Berlin:: Springer
    [Google Scholar]
  121. 120.
    Uchimura T, Yoon J-Y, Sato Y, Takeuchi Y, Kanai S, et al. 2022.. Observation of domain structure in non-collinear antiferromagnetic Mn3Sn thin films by magneto-optical Kerr effect. . Appl. Phys. Lett. 120::172405
    [Crossref] [Google Scholar]
  122. 121.
    Kang K, Yang K, Puthalath K, Cahill DG, Schleife A. 2022.. Polar magneto-optical Kerr effect in antiferromagnetic M2As (M = Cr,Mn,Fe) under an external magnetic field. . Phys. Rev. B 105::184404
    [Crossref] [Google Scholar]
  123. 122.
    Jourdan M, Bräuning H, Sapozhnik A, Elmers HJ, Zabel H, Kläui M. 2015.. Epitaxial Mn2Au thin films for antiferromagnetic spintronics. . J. Phys. D Appl. Phys. 48::385001
    [Crossref] [Google Scholar]
  124. 123.
    Saidl V, Němec P, Wadley P, Hills V, Campion RP, et al. 2017.. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. . Nat. Photon. 11::9196
    [Crossref] [Google Scholar]
  125. 124.
    Zhou C, Xu J, Wu T, Wu Y. 2023.. Perspective on imaging antiferromagnetic domains in thin films with the magneto-optical birefringence effect. . APL Mater. 11::080902
    [Crossref] [Google Scholar]
  126. 125.
    Fiebig M, Pavlov VV, Pisarev RV. 2005.. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. . J. Opt. Soc. Am. B 22::96118
    [Crossref] [Google Scholar]
  127. 126.
    Franken PA, Hill AE, Peters CW, Weinreich G. 1961.. Generation of optical harmonics. . Phys. Rev. Lett. 7::11819
    [Crossref] [Google Scholar]
  128. 127.
    Fiebig M, Fröhlich D, Krichevtsov BB, Pisarev RV. 1994.. Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3. . Phys. Rev. Lett. 73::212730
    [Crossref] [Google Scholar]
  129. 128.
    Pisarev RV, Sänger I, Petrakovskii GA, Fiebig M. 2004.. Magnetic-field induced second harmonic generation in CuB2O4. . Phys. Rev. Lett. 93::037204
    [Crossref] [Google Scholar]
  130. 129.
    Bode M, Vedmedenko E, von Bergmann K, Kubetza A, Ferriana P, et al. 2006.. Atomic spin structure of antiferromagnetic domain walls. . Nat. Mater. 5::47781
    [Crossref] [Google Scholar]
  131. 130.
    Gao CL, Wulfhekel W, Kirschner J. 2008.. Revealing the antiferromagnetic neel structure in real space: one monolayer Mn on Ag(111). . Phys. Rev. Lett. 101::267205
    [Crossref] [Google Scholar]
  132. 131.
    Altfeder I, Yi W, Narayanamurti V. 2013.. Spin-polarized scanning tunneling microscopy of the room-temperature antiferromagnet c-FeSi. . Phys. Rev. B 87::020403
    [Crossref] [Google Scholar]
  133. 132.
    Sharma S, Li H, Ren Z, Castro WA, Zeljkovic I. 2023.. Nanoscale visualization of the thermally driven evolution of antiferromagnetic domains in FeTe thin films. . Phys. Rev. Mater. 7::074401
    [Crossref] [Google Scholar]
  134. 133.
    Ajayi TM, Shirato N, Rojas T, Wieghold S, Cheng X, et al. 2023.. Characterization of just one atom using synchrotron X-rays. . Nature 618::6973
    [Crossref] [Google Scholar]
  135. 134.
    Sass PM, Ge W, Yan J, Obeysekera D, Yang JJ, Wu W. 2020.. Magnetic imaging of domain walls in the antiferromagnetic topological insulator MnBi2Te4. . Nano Lett. 20::260914
    [Crossref] [Google Scholar]
  136. 135.
    Kosub T, Kopte M, Hühne R, Appel P, Shields B, et al. 2017.. Purely antiferromagnetic magnetoelectric random access memory. . Nat. Commun. 8::13985
    [Crossref] [Google Scholar]
  137. 136.
    Finco A, Haykal A, Fusil S, Kumar P, Dufour P, et al. 2022.. Imaging topological defects in a noncollinear antiferromagnet. . Phys. Rev. Lett. 128::187201
    [Crossref] [Google Scholar]
  138. 137.
    Healey AJ, Rahman S, Scholten SC, Robertson IO, Abrahams GJ, et al. 2022.. Varied magnetic phases in a van der Waals easy-plane antiferromagnet revealed by nitrogen-vacancy center microscopy. . ACS Nano 16::1258089
    [Crossref] [Google Scholar]
  139. 138.
    Reichlova H, Janda T, Godinho J, Markou A, Kriegner D, et al. 2019.. Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn. . Nat. Commun. 10::5459
    [Crossref] [Google Scholar]
  140. 139.
    Kaiser U, Schwarz A, Wiesendanger R. 2007.. Magnetic exchange force microscopy with atomic resolution. . Nature 446::52225
    [Crossref] [Google Scholar]
  141. 140.
    Amin OJ, Poole SF, Reimers S, Barton LX, Dal Din A, et al. 2023.. Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature. . Nat. Nanotechnol. 18::84953
    [Crossref] [Google Scholar]
  142. 141.
    Liu X, Feng Q, Zhang D, Deng Y, Dong S, et al. 2023.. Topological spin textures in a non-collinear antiferromagnet system. . Adv. Mater. 35::2211634
    [Crossref] [Google Scholar]
  143. 142.
    Meer H, Gomonay O, Schmitt C, Ramos R, Schnitzspan L, et al. 2022.. Strain-induced shape anisotropy in antiferromagnetic structures. . Phys. Rev. B 106::094430
    [Crossref] [Google Scholar]
  144. 143.
    Gomonay O, Bossini D. 2021.. Linear and nonlinear spin dynamics in multi-domain magnetoelastic antiferromagnets. . J. Phys. D Appl. Phys. 54::374004
    [Crossref] [Google Scholar]
  145. 144.
    Sánchez-Tejerina L, Puliafito V, Khalili Amiri P, Carpentieri M, Finocchio G. 2020.. Dynamics of domain-wall motion driven by spin-orbit torque in antiferromagnets. . Phys. Rev. B 101::014433
    [Crossref] [Google Scholar]
  146. 145.
    Khalili Amiri P. 2018.. Spin torques join forces in a memory device. . Nat. Electron. 1::57677
    [Crossref] [Google Scholar]
  147. 146.
    Wang KL, Amiri PK. 2012.. Nonvolatile spintronics: perspectives on instant-on nonvolatile nanoelectronic systems. . SPIN 2::1250009
    [Crossref] [Google Scholar]
  148. 147.
    Gomonay EV, Loktev VM. 2014.. Spintronics of antiferromagnetic systems (review article). . Low Temp. Phys. 40::1735
    [Crossref] [Google Scholar]
  149. 148.
    Wolba B, Gomonay O, Kravchuk VP. 2021.. Chaotic antiferromagnetic nano-oscillator driven by spin torque. . Phys. Rev. B 104::024407
    [Crossref] [Google Scholar]
  150. 149.
    Puliafito V, Sanchez-Tejerina L, Carpentieri M, Azzerboni B, Finocchio G. 2021.. Modulation, injection locking, and pulling in an antiferromagnetic spin-orbit torque oscillator. . IEEE Trans. Magn. 57::4100106
    [Crossref] [Google Scholar]
  151. 150.
    Sizov F, Rogalski A. 2010.. THz detectors. . Prog. Quant. Electron. 34::278347
    [Crossref] [Google Scholar]
  152. 151.
    Safin A, Puliafito V, Carpentieri M, Finocchio G, Nikitov S, et al. 2020.. Electrically tunable detector of THz-frequency signals based on an antiferromagnet. . Appl. Phys. Lett. 117::222411
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-matsci-080222-030535
Loading
/content/journals/10.1146/annurev-matsci-080222-030535
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error