1932

Abstract

In chemistry and biochemistry, chirality represents the structural asymmetry characterized by nonsuperimposable mirror images for a material such as DNA. In physics, however, chirality commonly refers to the spin–momentum locking of a particle or quasiparticle in the momentum space. While seemingly disconnected, structural chirality in molecules and crystals can drive electronic chirality through orbital–momentum locking; that is, chirality can be transferred from the atomic geometry to electronic orbitals. Electronic chirality provides an insightful understanding of chirality-induced spin selectivity, in which electrons exhibit salient spin polarization after going through a chiral material, and electrical magnetochiral anisotropy, which is characterized by diode-like transport. It further gives rise to new phenomena, such as anomalous circularly polarized light emission, in which the light handedness relies on the emission direction. These chirality-driven effects will generate broad impacts for fundamental science and technology applications in spintronics, optoelectronics, and biochemistry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080222-033548
2024-08-05
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/matsci/54/1/annurev-matsci-080222-033548.html?itemId=/content/journals/10.1146/annurev-matsci-080222-033548&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kelvin WTB. 1894.. The Molecular Tactics of a Crystal. Oxford, UK:: Clarendon
    [Google Scholar]
  2. 2.
    Siegel JS. 1998.. Homochiral imperative of molecular evolution. . Chirality 10:(1–2):2427
    [Crossref] [Google Scholar]
  3. 3.
    Yan B, Felser C. 2017.. Topological materials: Weyl semimetals. . Annu. Rev. Condens. Matter Phys. 8::33754
    [Crossref] [Google Scholar]
  4. 4.
    Armitage NP, Mele EJ, Vishwanath A. 2018.. Weyl and Dirac semimetals in three-dimensional solids. . Rev. Mod. Phys. 90:(1):015001
    [Crossref] [Google Scholar]
  5. 5.
    Gohler B, Hamelbeck V, Markus TZ, Kettner M, Hanne GF, et al. 2011.. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. . Science 331:(6019):89497
    [Crossref] [Google Scholar]
  6. 6.
    Xie Z, Markus TZ, Cohen SR, Vager Z, Gutierrez R, Naaman R. 2011.. Spin specific electron conduction through DNA oligomers. . Nano Lett. 11:(11):465255. Correction. Nano Lett. 12:(1):523
    [Google Scholar]
  7. 7.
    Naaman R, Waldeck DH. 2012.. Chiral-induced spin selectivity effect. . J. Phys. Chem. Lett. 3:(16):217887
    [Crossref] [Google Scholar]
  8. 8.
    Naaman R, Paltiel Y, Waldeck DH. 2019.. Chiral molecules and the electron spin. . Nat. Rev. Chem. 3:(4):25060
    [Crossref] [Google Scholar]
  9. 9.
    Dor OB, Yochelis S, Mathew SP, Naaman R, Paltiel Y. 2013.. A chiral-based magnetic memory device without a permanent magnet. . Nat. Commun. 4:(1):2256
    [Crossref] [Google Scholar]
  10. 10.
    Naaman R, Waldeck DH. 2015.. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. . Annu. Rev. Phys. Chem. 66::26381
    [Crossref] [Google Scholar]
  11. 11.
    Ben Dor O, Yochelis S, Radko A, Vankayala K, Capua E, et al. 2017.. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. . Nat. Commun. 8:(1):14567
    [Crossref] [Google Scholar]
  12. 12.
    Yang SH, Naaman R, Paltiel Y, Parkin SSP. 2021.. Chiral spintronics. . Nat. Rev. Phys. 3:(5):32843
    [Crossref] [Google Scholar]
  13. 13.
    Mtangi W, Kiran V, Fontanesi C, Naaman R. 2015.. Role of the electron spin polarization in water splitting. . J. Phys. Chem. Lett. 6:(24):491622
    [Crossref] [Google Scholar]
  14. 14.
    Liang Y, Banjac K, Martin K, Zigon N, Lee S, et al. 2022.. Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes. . Nat. Commun. 13:(1):3356
    [Crossref] [Google Scholar]
  15. 15.
    Vadakkayil A, Clever C, Kunzler KN, Tan S, Bloom BP, Waldeck DH. 2023.. Chiral electrocatalysts eclipse water splitting metrics through spin control. . Nat. Commun. 14:(1):1067
    [Crossref] [Google Scholar]
  16. 16.
    Banerjee-Ghosh K, Dor OB, Tassinari F, Capua E, Yochelis S, et al. 2018.. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. . Science 360:(6395):133134
    [Crossref] [Google Scholar]
  17. 17.
    Evers F, Korytár R, Tewari S, van Ruitenbeek JM. 2020.. Advances and challenges in single-molecule electron transport. . Rev. Mod. Phys. 92:(3):035001
    [Crossref] [Google Scholar]
  18. 18.
    Evers F, Aharony A, Bar-Gill N, Entin-Wohlman O, Hedegård P, et al. 2022.. Theory of chirality induced spin selectivity: progress and challenges. . Adv. Mater. 34:(13):2106629
    [Crossref] [Google Scholar]
  19. 19.
    Liu Y, Xiao J, Koo J, Yan B. 2021.. Chirality-driven topological electronic structure of DNA-like materials. . Nat. Mater. 6::63844
    [Crossref] [Google Scholar]
  20. 20.
    Gersten J, Kaasbjerg K, Nitzan A. 2013.. Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling. . J. Chem. Phys. 139:(11):114111
    [Crossref] [Google Scholar]
  21. 21.
    Adhikari Y, Liu T, Wang H, Hua Z, Liu H, et al. 2023.. Interplay of structural chirality, electron spin and topological orbital in chiral molecular spin valves. . Nat. Commun. 14:(1):5163
    [Crossref] [Google Scholar]
  22. 22.
    Rikken GLJA, Fälling J, Wyder P. 2001.. Electrical magnetochiral anisotropy. . Phys. Rev. Lett. 87:(23):236602
    [Crossref] [Google Scholar]
  23. 23.
    Wan L, Liu Y, Fuchter MJ, Yan B. 2023.. Anomalous circularly polarized light emission in organic light-emitting diodes caused by orbital–momentum locking. . Nat. Photon. 17:(2):19399
    [Crossref] [Google Scholar]
  24. 24.
    Yang Q, Xiao J, Robredo I, Vergniory MG, Yan B, Felser C. 2023.. Monopole-like orbital-momentum locking and the induced orbital transport in topological chiral semimetals. . PNAS 120:(48):e2305541120
    [Crossref] [Google Scholar]
  25. 25.
    Tassinari F, Jayarathna DR, Kantor-Uriel N, Davis KL, Varade V, et al. 2018.. Chirality dependent charge transfer rate in oligopeptides. . Adv. Mater. 30:(21):1706423
    [Crossref] [Google Scholar]
  26. 26.
    Xi X, Wang Z, Zhao W, Park JH, Law KT, et al. 2016.. Ising pairing in superconducting NbSe2 atomic layers. . Nat. Phys. 12:(2):13943
    [Crossref] [Google Scholar]
  27. 27.
    Ray K, Ananthavel SP, Waldeck DH, Naaman R. 1999.. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. . Science 283:(5403):81416
    [Crossref] [Google Scholar]
  28. 28.
    Kettner M, Maslyuk VV, Nürenberg D, Seibel J, Gutierrez R, et al. 2018.. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. . J. Phys. Chem. Lett. 9:(8):202530
    [Crossref] [Google Scholar]
  29. 29.
    Mishra D, Markus TZ, Naaman R, Kettner M, Gohler B, et al. 2013.. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. . PNAS 110:(37):1487276
    [Crossref] [Google Scholar]
  30. 30.
    Niño , Kowalik IA, Luque FJ, Arvanitis D, Miranda R, de Miguel JJ. 2014.. Enantiospecific spin polarization of electrons photoemitted through layers of homochiral organic molecules. . Adv. Mater. 26:(44):747479
    [Crossref] [Google Scholar]
  31. 31.
    Kettner M, Goehler B, Zacharias H, Mishra D, Kiran V, et al. 2015.. Spin filtering in electron transport through chiral oligopeptides. . J. Phys. Chem. C 119:(26):1454247
    [Crossref] [Google Scholar]
  32. 32.
    Mondal PC, Fontanesi C, Waldeck DH, Naaman R. 2015.. Field and chirality effects on electrochemical charge transfer rates: spin dependent electrochemistry. . ACS Nano 9:(3):337784
    [Crossref] [Google Scholar]
  33. 33.
    Varade V, Markus T, Vankayala K, Friedman N, Sheves M, et al. 2018.. Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics. . Phys. Chem. Chem. Phys. 20:(2):109197
    [Crossref] [Google Scholar]
  34. 34.
    Abendroth JM, Cheung KM, Stemer DM, Hadri MSE, Zhao C, et al. 2019.. Spin-dependent ionization of chiral molecular films. . J. Am. Chem. Soc. 141:(9):386374
    [Crossref] [Google Scholar]
  35. 35.
    Liu T, Wang X, Wang H, Shi G, Gao F, et al. 2020.. Linear and nonlinear two-terminal spin-valve effect from chirality-induced spin selectivity. . ACS Nano 14:(11):1598391
    [Crossref] [Google Scholar]
  36. 36.
    Huizi-Rayo U, Gutierrez J, Seco JM, Mujica V, Diez-Perez I, et al. 2020.. An ideal spin filter: long-range, high-spin selectivity in chiral helicoidal 3-dimensional metal organic frameworks. . Nano Lett. 20:(12):847682
    [Crossref] [Google Scholar]
  37. 37.
    Mondal AK, Preuss MD, Sleczkwski ML, Das TK, Vantomme G, et al. 2021.. Spin filtering in supramolecular polymers assembled from achiral monomers mediated by chiral solvents. . J. Am. Chem. Soc. 143:(18):718995
    [Crossref] [Google Scholar]
  38. 38.
    Mishra S, Mondal AK, Smolinsky EZB, Naaman R, Maeda K, et al. 2020.. Spin filtering along chiral polymers. . Angew. Chem. Int. Ed. 132:(34):1477984
    [Crossref] [Google Scholar]
  39. 39.
    Naaman R, Paltiel Y, Waldeck DH. 2020.. Chiral induced spin selectivity gives a new twist on spin-control in chemistry. . Acc. Chem. Res. 53:(11):265967
    [Crossref] [Google Scholar]
  40. 40.
    Ghosh S, Banerjee-Ghosh K, Levy D, Scheerer D, Riven I, et al. 2022.. Control of protein activity by photoinduced spin polarized charge reorganization. . PNAS 119:(35):e2204735119
    [Crossref] [Google Scholar]
  41. 41.
    Safari MR, Matthes F, Caciuc V, Atodiresei N, Schneider CM, et al. 2024.. Enantioselective adsorption on magnetic surfaces. . Adv. Mater. 36::2308666
    [Crossref] [Google Scholar]
  42. 42.
    Alpern H, Katzir E, Yochelis S, Katz N, Paltiel Y, Millo O. 2016.. Unconventional superconductivity induced in Nb films by adsorbed chiral molecules. . New J. Phys. 18:(11):113048
    [Crossref] [Google Scholar]
  43. 43.
    Shapira T, Alpern H, Yochelis S, Lee TK, Kaun CC, et al. 2018.. Unconventional order parameter induced by helical chiral molecules adsorbed on a metal proximity coupled to a superconductor. . Phys. Rev. B 98:(21):214513
    [Crossref] [Google Scholar]
  44. 44.
    Wan Z, Qiu G, Ren H, Qian Q, Xu D, et al. 2023.. Signatures of chiral superconductivity in chiral molecule intercalated tantalum disulfide. . arXiv:2302.05078 [cond-mat.supr-con]
  45. 45.
    Kiran V, Mathew SP, Cohen SR, Delgado IH, Lacour J, Naaman R. 2016.. Helicenes—a new class of organic spin filter. . Adv. Mater. 28:(10):195762
    [Crossref] [Google Scholar]
  46. 46.
    Kim YH, Zhai Y, Lu H, Pan X, Xiao C, et al. 2021.. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. . Science 371:(6534):112933
    [Crossref] [Google Scholar]
  47. 47.
    Qian Q, Ren H, Zhou J, Wan Z, Zhou J, et al. 2022.. Chiral molecular intercalation superlattices. . Nature 606:(7916):9028
    [Crossref] [Google Scholar]
  48. 48.
    Kulkarni C, Mondal AK, Das TK, Grinbom G, Tassinari F, et al. 2020.. Highly efficient and tunable filtering of electrons' spin by supramolecular chirality of nanofiber-based materials. . Adv. Mater. 32:(7):1904965
    [Crossref] [Google Scholar]
  49. 49.
    Mishra S, Mondal AK, Pal S, Das TK, Smolinsky EZB, et al. 2020.. Length-dependent electron spin polarization in oligopeptides and DNA. . J. Phys. Chem. C 124:(19):1077682
    [Crossref] [Google Scholar]
  50. 50.
    Al-Bustami H, Khaldi S, Shoseyov O, Yochelis S, Killi K, et al. 2022.. Atomic and molecular layer deposition of chiral thin films showing up to 99% spin selective transport. . Nano Lett. 22:(12):502228
    [Crossref] [Google Scholar]
  51. 51.
    Yeganeh S, Ratner MA, Medina E, Mujica V. 2009.. Chiral electron transport: scattering through helical potentials. . J. Chem. Phys. 131:(1):014707
    [Crossref] [Google Scholar]
  52. 52.
    Guo AM, Sun QF. 2012.. Spin-selective transport of electrons in DNA double helix. . Phys. Rev. Lett. 108:(21):218102
    [Crossref] [Google Scholar]
  53. 53.
    Gutierrez R, Díaz E, Naaman R, Cuniberti G. 2012.. Spin-selective transport through helical molecular systems. . Phys. Rev. B 85:(8):081404
    [Crossref] [Google Scholar]
  54. 54.
    Medina E, López F, Ratner MA, Mujica V. 2012.. Chiral molecular films as electron polarizers and polarization modulators. . Europhys. Lett. 99:(1):17006
    [Crossref] [Google Scholar]
  55. 55.
    Guo AM, Sun QF. 2014.. Spin-dependent electron transport in protein-like single-helical molecules. . PNAS 111:(32):1165862
    [Crossref] [Google Scholar]
  56. 56.
    Medina E, González-Arraga LA, Finkelstein-Shapiro D, Berche B, Mujica V. 2015.. Continuum model for chiral induced spin selectivity in helical molecules. . J. Chem. Phys. 142:(19):194308
    [Crossref] [Google Scholar]
  57. 57.
    Matityahu S, Utsumi Y, Aharony A, Entin-Wohlman O, Balseiro CA. 2016.. Spin-dependent transport through a chiral molecule in the presence of spin-orbit interaction and nonunitary effects. . Phys. Rev. B 93:(7):075407
    [Crossref] [Google Scholar]
  58. 58.
    Dalum S, Hedegard P. 2019.. Theory of chiral induced spin selectivity. . Nano Lett. 19:(8):525359
    [Crossref] [Google Scholar]
  59. 59.
    Michaeli K, Naaman R. 2019.. Origin of spin-dependent tunneling through chiral molecules. . J. Phys. Chem. C 123:(27):1704348
    [Crossref] [Google Scholar]
  60. 60.
    Alwan S, Dubi Y. 2021.. Spinterface origin for the chirality-induced spin-selectivity effect. . J. Am. Chem. Soc. 143:(35):1423541
    [Crossref] [Google Scholar]
  61. 61.
    Díaz E, Domínguez-Adame F, Gutierrez R, Cuniberti G, Mujica V. 2018.. Thermal decoherence and disorder effects on chiral-induced spin selectivity. . J. Phys. Chem. Lett. 9:(19):575358
    [Crossref] [Google Scholar]
  62. 62.
    Volosniev AG, Alpern H, Paltiel Y, Millo O, Lemeshko M, Ghazaryan A. 2021.. Interplay between friction and spin-orbit coupling as a source of spin polarization. . Phys. Rev. B 104:(2):024430
    [Crossref] [Google Scholar]
  63. 63.
    Fransson J. 2019.. Chirality-induced spin selectivity: the role of electron correlations. . J. Phys. Chem. Lett. 10:(22):712632
    [Crossref] [Google Scholar]
  64. 64.
    Fransson J. 2021.. Charge redistribution and spin polarization driven by correlation induced electron exchange in chiral molecules. . Nano Lett. 21:(7):302632
    [Crossref] [Google Scholar]
  65. 65.
    Du GF, Fu HH, Wu R. 2020.. Vibration-enhanced spin-selective transport of electrons in the DNA double helix. . Phys. Rev. B 102:(3):035431
    [Crossref] [Google Scholar]
  66. 66.
    Zhang L, Hao Y, Qin W, Xie S, Qu F. 2020.. Chiral-induced spin selectivity: a polaron transport model. . Phys. Rev. B 102:(21):214303
    [Crossref] [Google Scholar]
  67. 67.
    Wu Y, Subotnik JE. 2021.. Electronic spin separation induced by nuclear motion near conical intersections. . Nat. Commun. 12:(1):700
    [Crossref] [Google Scholar]
  68. 68.
    Das TK, Tassinari F, Naaman R, Fransson J. 2022.. Temperature-dependent chiral-induced spin selectivity effect: experiments and theory. . J. Phys. Chem. C 126:(6):325764
    [Crossref] [Google Scholar]
  69. 69.
    Klein D, Michaeli K. 2023.. Giant chirality-induced spin selectivity of polarons. . Phys. Rev. B 107:(4):045404
    [Crossref] [Google Scholar]
  70. 70.
    Bliokh KY, Bliokh YP, Savelaev S, Nori F. 2007.. Semiclassical dynamics of electron wave packet states with phase vortices. . Phys. Rev. Lett. 99:(19):190404
    [Crossref] [Google Scholar]
  71. 71.
    Uchida M, Tonomura A. 2010.. Generation of electron beams carrying orbital angular momentum. . Nature 464:(7289):73739
    [Crossref] [Google Scholar]
  72. 72.
    Lloyd SM, Babiker M, Thirunavukkarasu G, Yuan J. 2017.. Electron vortices: beams with orbital angular momentum. . Rev. Mod. Phys. 89:(3):035004
    [Crossref] [Google Scholar]
  73. 73.
    Hedegård P. 2023.. Spin dynamics and chirality induced spin selectivity. . J. Chem. Phys. 159:(10):104104
    [Crossref] [Google Scholar]
  74. 74.
    Yang X, van der Wal CH, van Wees BJ. 2019.. Spin-dependent electron transmission model for chiral molecules in mesoscopic devices. . Phys. Rev. B 99:(2):024418
    [Crossref] [Google Scholar]
  75. 75.
    Yang X, van der Wal CH, van Wees BJ. 2020.. Detecting chirality in two-terminal electronic nanodevices. . Nano Lett. 20:(8):614854
    [Crossref] [Google Scholar]
  76. 76.
    Wolf Y, Liu Y, Xiao J, Park N, Yan B. 2022.. Unusual spin polarization in the chirality-induced spin selectivity. . ACS Nano 16:(11):186017
    [Crossref] [Google Scholar]
  77. 77.
    Xiao J, Zhao Y, Yan B. 2022.. Nonreciprocal nature and induced tunneling barrier modulation in chiral molecular devices. . arXiv:2201.03623 [cond-mat.mes-hall]
  78. 78.
    Naaman R, Waldeck DH. 2020.. Comment on ``Spin-dependent electron transmission model for chiral molecules in mesoscopic devices. .'' Phys. Rev. B 101:(2):026403
    [Crossref] [Google Scholar]
  79. 79.
    Yang X, van der Wal CH, van Wees BJ. 2020.. Reply to “Comment on ‘Spin-dependent electron transmission model for chiral molecules in mesoscopic devices. .’” Phys. Rev. B 101:(2):026404
    [Crossref] [Google Scholar]
  80. 80.
    Safari MR, Matthes F, Schneider CM, Ernst KH, Bürgler DE. 2023.. Spin-selective electron transport through single chiral molecules. . Small. https://doi.org/10.1002/smll.202308233
    [Google Scholar]
  81. 81.
    Bernevig BA, Hughes TL, Zhang SC. 2005.. Orbitronics: the intrinsic orbital current in p-doped silicon. . Phys. Rev. Lett. 95:(6):066601
    [Crossref] [Google Scholar]
  82. 82.
    Tanaka T, Kontani H, Naito M, Naito T, Hirashima DS, et al. 2008.. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. . Phys. Rev. B 77:(16):165117
    [Crossref] [Google Scholar]
  83. 83.
    Xiao J, Liu Y, Yan B. 2022.. Detection of the orbital Hall effect by the orbital–spin conversion. . In Memorial Volume for Shoucheng Zhang, ed. B Lian, CX Liu, E Demler, S Kivelson, X Qi , pp. 35364. Singapore:: World Sci.
    [Google Scholar]
  84. 84.
    Rothschild A, Am-Shalom N, Bernstein N, Meron M, David T, et al. 2022.. Generation of spin currents by the orbital Hall effect in Cu and Al and their measurement by a Ferris-wheel ferromagnetic resonance technique at the wafer level. . Phys. Rev. B 106:(14):144415
    [Crossref] [Google Scholar]
  85. 85.
    Zhang L, Niu Q. 2015.. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. . Phys. Rev. Lett. 115:(11):115502
    [Crossref] [Google Scholar]
  86. 86.
    Chen X, Lu X, Dubey S, Yao Q, Liu S, et al. 2019.. Entanglement of single-photons and chiral phonons in atomically thin WSe2. . Nat. Phys. 15:(3):22127
    [Crossref] [Google Scholar]
  87. 87.
    Grissonnanche G, Thériault S, Gourgout A, Boulanger ME, Lefrançois E, et al. 2020.. Chiral phonons in the pseudogap phase of cuprates. . Nat. Phys. 16:(11):110811
    [Crossref] [Google Scholar]
  88. 88.
    Chen H, Wu W, Zhu J, Yang SA, Zhang L. 2021.. Propagating chiral phonons in three-dimensional materials. . Nano Lett. 21:(7):306065
    [Crossref] [Google Scholar]
  89. 89.
    Kim K, Vetter E, Yan L, Yang C, Wang Z, et al. 2023.. Chiral-phonon-activated spin Seebeck effect. . Nat. Mater. 22:(3):32228
    [Crossref] [Google Scholar]
  90. 90.
    Krstić V, Roth S, Burghard M, Kern K, Rikken G. 2002.. Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes. . J. Chem. Phys. 117:(24):1131519
    [Crossref] [Google Scholar]
  91. 91.
    Pop F, Auban-Senzier P, Canadell E, Rikken GL, Avarvari N. 2014.. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. . Nat. Commun. 5:(1):3757
    [Crossref] [Google Scholar]
  92. 92.
    Rikken GLJA, Avarvari N. 2019.. Strong electrical magnetochiral anisotropy in tellurium. . Phys. Rev. B 99:(24):245153
    [Crossref] [Google Scholar]
  93. 93.
    Inui A, Aoki R, Nishiue Y, Shiota K, Kousaka Y, et al. 2020.. Chirality-induced spin-polarized state of a chiral crystal CrNb3S6. . Phys. Rev. Lett. 124:(16):166602
    [Crossref] [Google Scholar]
  94. 94.
    Shiota K, Inui A, Hosaka Y, Amano R, Ōnuki Y, et al. 2021.. Chirality-induced spin polarization over macroscopic distances in chiral disilicide crystals. . Phys. Rev. Lett. 127:(12):126602
    [Crossref] [Google Scholar]
  95. 95.
    Niu C, Qiu G, Wang Y, Jian J, Wang H, et al. 2022.. Tunable chirality-dependent nonlinear electrical responses in 2D Tellurium. . arXiv:2201.08829 [cond-mat.mtrl-sci]
  96. 96.
    Aoki R, Kousaka Y, Togawa Y. 2019.. Anomalous nonreciprocal electrical transport on chiral magnetic order. . Phys. Rev. Lett. 122:(5):057206
    [Crossref] [Google Scholar]
  97. 97.
    Yokouchi T, Kanazawa N, Kikkawa A, Morikawa D, Shibata K, et al. 2017.. Electrical magnetochiral effect induced by chiral spin fluctuations. . Nat. Commun. 8:(1):866
    [Crossref] [Google Scholar]
  98. 98.
    Tokura Y, Nagaosa N. 2018.. Nonreciprocal responses from non-centrosymmetric quantum materials. . Nat. Commun. 9:(1):3740
    [Crossref] [Google Scholar]
  99. 99.
    Ideue T, Hamamoto K, Koshikawa S, Ezawa M, Shimizu S, et al. 2017.. Bulk rectification effect in a polar semiconductor. . Nat. Phys. 13:(6):57883
    [Crossref] [Google Scholar]
  100. 100.
    Kaplan D, Holder T, Yan B. 2022.. Unification of nonlinear anomalous Hall effect and nonreciprocal magnetoresistance in metals by the quantum geometry. . Phys. Rev. Lett. 132::026301
    [Crossref] [Google Scholar]
  101. 101.
    Rikken GLJA, Wyder P. 2005.. Magnetoelectric anisotropy in diffusive transport. . Phys. Rev. Lett. 94:(1):016601
    [Crossref] [Google Scholar]
  102. 102.
    Choe D, Jin MJ, Kim SI, Choi HJ, Jo J, et al. 2019.. Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces. . Nat. Commun. 10:(1):4510
    [Crossref] [Google Scholar]
  103. 103.
    Onsager L. 1931.. Reciprocal relations in irreversible processes. I. . Phys. Rev. 37:(4):40526
    [Crossref] [Google Scholar]
  104. 104.
    Landau L, Lifshitz E. 1980.. Fluctuations. . In Statistical Physics, ed. L Landau, E Lifshitz , pp. 333400. Oxford, UK:: Butterworth-Heinemann. , 3rd ed..
    [Google Scholar]
  105. 105.
    Rikken GLJA, Avarvari N. 2023.. Comparing electrical magnetochiral anisotropy and chirality-induced spin selectivity. . J. Phys. Chem. Lett. 14:(43):972731
    [Crossref] [Google Scholar]
  106. 106.
    Liu Y, Holder T, Yan B. 2021.. Chirality-induced giant unidirectional magnetoresistance in twisted bilayer graphene. . Innovation 2:(1):100085
    [Google Scholar]
  107. 107.
    Alwan S, Sarkar S, Sharoni A, Dubi Y. 2023.. Temperature-dependence of the chirality-induced spin selectivity effect—experiments and theory. . J. Chem. Phys. 159:(1):014106
    [Crossref] [Google Scholar]
  108. 108.
    Julliere M. 1975.. Tunneling between ferromagnetic films. . Phys. Lett. A 54:(3):22526
    [Crossref] [Google Scholar]
  109. 109.
    Butler WH, Zhang XG, Schulthess TC, MacLaren JM. 2001.. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. . Phys. Rev. B 63:(5):054416
    [Crossref] [Google Scholar]
  110. 110.
    Mathon J, Umerski A. 2001.. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. . Phys. Rev. B 63:(22):220403
    [Crossref] [Google Scholar]
  111. 111.
    Liu T, Weiss P. 2023.. Spin polarization in transport studies of chirality-induced spin selectivity. . ACS Nano 17:(20):195027
    [Crossref] [Google Scholar]
  112. 112.
    Craig D, Thirunamachandran T. 1984.. Molecular Quantum Electrodynamics: An Introduction to Radiation–Molecule Interactions. London:: Academic
    [Google Scholar]
  113. 113.
    Wan L, Wade J, Shi X, Xu S, Fuchter MJ, Campbell AJ. 2020.. Highly efficient inverted circularly polarized organic light-emitting diodes. . ACS Appl. Mater. Interfaces 12:(35):3947178
    [Crossref] [Google Scholar]
  114. 114.
    Wan L, Wade J, Salerno F, Arteaga O, Laidlaw B, et al. 2019.. Inverting the handedness of circularly polarized luminescence from light-emitting polymers using film thickness. . ACS Nano 13:(7):8099105
    [Crossref] [Google Scholar]
  115. 115.
    Wan L, Shi X, Wade J, Campbell AJ, Fuchter MJ. 2021.. Strongly circularly polarized crystalline and β-phase emission from poly(9,9-dioctylfluorene)-based deep-blue light-emitting diodes. . Adv. Opt. Mater. 9:(19):2100066
    [Crossref] [Google Scholar]
  116. 116.
    Lee DM, Song JW, Lee YJ, Yu CJ, Kim JH. 2017.. Control of circularly polarized electroluminescence in induced twist structure of conjugate polymer. . Adv. Mater. 29:(29):1700907
    [Crossref] [Google Scholar]
  117. 117.
    Di Nuzzo D, Kulkarni C, Zhao B, Smolinsky E, Tassinari F, et al. 2017.. High circular polarization of electroluminescence achieved via self-assembly of a light-emitting chiral conjugated polymer into multidomain cholesteric films. . ACS Nano 11:(12):1271322
    [Crossref] [Google Scholar]
  118. 118.
    Yan ZP, Luo XF, Liu WQ, Wu ZG, Liang X, et al. 2019.. Configurationally stable platinahelicene enantiomers for efficient circularly polarized phosphorescent organic light-emitting diodes. . Chem. Eur. J. 25:(22):567276
    [Crossref] [Google Scholar]
  119. 119.
    Zinna F, Pasini M, Galeotti F, Botta C, Di Bari L, Giovanella U. 2017.. Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence. . Adv. Funct. Mater. 27:(1):1603719
    [Crossref] [Google Scholar]
  120. 120.
    Liu Y, Yan B. 2023.. Anomalous circularly polarized light emission induced by the optical berry curvature dipole. . Phys. Rev. B 109::035142
    [Crossref] [Google Scholar]
  121. 121.
    Zhang YJ, Oka T, Suzuki R, Ye JT, Iwasa Y. 2014.. Electrically switchable chiral light-emitting transistor. . Science 344:(6185):72528
    [Crossref] [Google Scholar]
  122. 122.
    Pu J, Zhang W, Matsuoka H, Kobayashi Y, Takaguchi Y, et al. 2021.. Room-temperature chiral light-emitting diode based on strained monolayer semiconductors. . Adv. Mater. 33:(36):2100601
    [Crossref] [Google Scholar]
  123. 123.
    Sipe JE, Shkrebtii AI. 2000.. Second-order optical response in semiconductors. . Phys. Rev. B 61:(8):533752
    [Crossref] [Google Scholar]
  124. 124.
    Aiello CD, Abendroth JM, Abbas M, Afanasev A, Agarwal S, et al. 2022.. A chirality-based quantum leap. . ACS Nano 16:(4):49895035
    [Crossref] [Google Scholar]
  125. 125.
    Chiesa A, Privitera A, Macaluso E, Mannini M, Bittl R, et al. 2023.. Chirality-induced spin selectivity: an enabling technology for quantum applications. . Adv. Mater. 35:(28):2300472
    [Crossref] [Google Scholar]
  126. 126.
    Lu H, Wang J, Xiao C, Pan X, Chen X, et al. 2019.. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. . Sci. Adv. 5:(12):eaay0571
    [Crossref] [Google Scholar]
  127. 127.
    Zhang NJ, Lin JX, Chichinadze DV, Wang Y, Watanabe K, et al. 2023.. Diodic transport response and the loop current state in twisted trilayer graphene. . arXiv:2209.12964 [cond-mat.mes-hall]
  128. 128.
    Kim B, Shin D, Namgung S, Park N, Kim KW, Kim J. 2023.. Optoelectronic manifestation of orbital angular momentum driven by chiral hopping in helical Se chains. . ACS Nano 17:(19):1887382
    [Crossref] [Google Scholar]
  129. 129.
    Cheong S-W, Xu X. 2022.. Magnetic chirality. . npj Quantum Mater. 40::7
    [Google Scholar]
  130. 130.
    Banerjee-Ghosh K, Ghosh S, Mazal H, Riven I, Haran G, Naaman R. 2020.. Long-range charge reorganization as an allosteric control signal in proteins. . J. Am. Chem. Soc. 142:(48):2045662
    [Crossref] [Google Scholar]
  131. 131.
    Naaman R, Paltiel Y, Waldeck DH. 2022.. Chiral induced spin selectivity and its implications for biological functions. . Annu. Rev. Biophys. 51::99114
    [Crossref] [Google Scholar]
  132. 132.
    Ghosh S, Banerjee-Ghosh K, Levy D, Scheerer D, Riven I, et al. 2022.. Control of protein activity by photoinduced spin polarized charge reorganization. . PNAS 119:(35):e2204735119
    [Crossref] [Google Scholar]
  133. 133.
    Li G, Yang Q, Manna K, Zhang Y, Merz P, et al. 2023.. Observation of asymmetric oxidation catalysis with B20 chiral crystals. . Angew. Chem. Int. Ed. 62:(27):e202303296
    [Crossref] [Google Scholar]
  134. 134.
    Zuo L, Ji J, Pokhrel P, Pokhrel B, Ren K, et al. 2023.. Mechano-electron spin coupling modulates the reactivity of individual coronazymes. . ChemRxiv. https://doi.org/10.26434/chemrxiv-2023-tt4bh
  135. 135.
    Ozturk SF, Liu Z, Sutherland JD, Sasselov DD. 2023.. Origin of biological homochirality by crystallization of an RNA precursor on a magnetic surface. . Sci. Adv. 9:(23):eadg8274
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-matsci-080222-033548
Loading
/content/journals/10.1146/annurev-matsci-080222-033548
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error