1932

Abstract

The fundamentals of our understanding of fatigue crack propagation were formed more than 60 years ago by Paul C. Paris. Since then, the run toward new metallic materials and alloys with ever finer-grained microstructures has had a large impact on research. Along with enormous variation of the microstructural length scales (i.e., grain size), the essential parameters for the description of fatigue crack growth, such as the crack propagation rate and plastic zone size, also exhibit an immense change from the subnanometer to the micrometer regime. These enormous variations in the fatigue crack growth behavior's controlling parameters motivate this contribution. This article presents an overview of the effect of grain size, from the millimeter to the nanometer grain-size regime, on fatigue crack propagation of mainly ductile metals and alloys with an attempt to summarize the most important findings and underlying physical phenomena, including with respect to selected materials such as pure iron, nickel, and austenitic and pearlitic steel.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080222-101859
2024-08-05
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/matsci/54/1/annurev-matsci-080222-101859.html?itemId=/content/journals/10.1146/annurev-matsci-080222-101859&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Paris PC, Gomez MP, Anderson WE. 1961.. A rational analytic theory of fatigue. . Trend Eng. 13::914
    [Google Scholar]
  2. 2.
    Rice J. 1967.. Mechanics of crack tip deformation and extension by fatigue. . In Fatigue Crack Propagation, ed. J Grosskreutz , pp. 247309. Philadelphia, PA:: Am. Soc. Test. Mater.
    [Google Scholar]
  3. 3.
    Elber W. 1970.. Fatigue crack closure under cyclic tension. . Eng. Fract. Mech. 2::3745. https://doi.org/10.1016/0013-7944(70)90028-7
    [Crossref] [Google Scholar]
  4. 4.
    Elber W. 1971.. The significance of fatigue crack closure. . In Damage Tolerance in Aircraft Structures, ed. MS Rosenfeld , pp. 23042. Philadelphia, PA:: Am. Soc. Test. Mater. https://doi.org/10.1520/STP26680S
    [Google Scholar]
  5. 5.
    González JAO, de Castro JTP, Meggiolaro MA, Gonzáles GLG, de França Freire JL. 2020.. Challenging the “ΔKeff is the driving force for fatigue crack growth” hypothesis. . Int. J. Fatigue 136::105577. https://doi.org/10.1016/j.ijfatigue.2020.105577
    [Crossref] [Google Scholar]
  6. 6.
    Minakawa K, McEvily AJ. 1981.. On crack closure in the near-threshold region. . Scr. Metall. 15::63336. https://doi.org/10.1016/0036-9748(81)90041-7
    [Crossref] [Google Scholar]
  7. 7.
    Suresh S, Ritchie RO. 1982.. A geometric model for fatigue crack closure induced by fracture surface roughness. . Metall. Trans. A 13::162731. https://doi.org/10.1007/BF02644803
    [Crossref] [Google Scholar]
  8. 8.
    Morris WL, James MR, Buck O. 1983.. A simple model of stress intensity range threshold and crack closure stress. . Eng. Fract. Mech. 18::87177. https://doi.org/10.1016/0013-7944(83)90131-5
    [Crossref] [Google Scholar]
  9. 9.
    Ryder D, Lynch SP. 1977.. The effect of environment and frequency on crack nucleation. Stage I and stage II crack growth in two aluminum zinc magnesium alloys. . In The Influence of Environment on Fatigue, pp. 2126. London:: Inst. Mech. Eng.
    [Google Scholar]
  10. 10.
    Skelton RP, Haigh JR. 1978.. Fatigue crack growth rates and thresholds in steels under oxidising conditions. . Mater. Sci. Eng. 36::1725. https://doi.org/10.1016/0025-5416(78)90191-X
    [Crossref] [Google Scholar]
  11. 11.
    Suresh S, Zamiski GF, Ritchie RO. 1981.. Oxide-induced crack closure: an explanation for near-threshold corrosion fatigue crack growth behavior. . Metall. Trans. A 12::143543. https://doi.org/10.1007/BF02643688
    [Crossref] [Google Scholar]
  12. 12.
    Pearson S. 1975.. Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks. . Eng. Fract. Mech. 7::23547. https://doi.org/10.1016/0013-7944(75)90004-1
    [Crossref] [Google Scholar]
  13. 13.
    Tanaka K, Nakai Y, Yamashita M. 1981.. Fatigue growth threshold of small cracks. . Int. J. Fract. 17::51933. https://doi.org/10.1007/BF00033345
    [Crossref] [Google Scholar]
  14. 14.
    Ritchie RO, Lankford J. 1986.. Small fatigue cracks: a statement of the problem and potential solutions. . Mater. Sci. Eng. 84::1116. https://doi.org/10.1016/0025-5416(86)90217-X
    [Crossref] [Google Scholar]
  15. 15.
    Bichler C, Pippan R. 2007.. Effect of single overloads in ductile metals: a reconsideration. . Eng. Fract. Mech. 74::134459. https://doi.org/10.1016/j.engfracmech.2006.06.011
    [Crossref] [Google Scholar]
  16. 16.
    Zhou X, Gaenser H-P, Pippan R. 2016.. The effect of single overloads in tension and compression on the fatigue crack propagation behaviour of short cracks. . Int. J. Fatigue 89::7786. https://doi.org/10.1016/j.ijfatigue.2016.02.001
    [Crossref] [Google Scholar]
  17. 17.
    Zhang W, Simpson CA, Lopez-Crespo P, Mokhtarishirazabad M, Buslaps T, et al. 2020.. The effect of grain size on the fatigue overload behaviour of nickel. . Mater. Des. 189::108526. https://doi.org/10.1016/j.matdes.2020.108526
    [Crossref] [Google Scholar]
  18. 18.
    Ritchie RO. 1988.. Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding. . Mater. Sci. Eng. 103::1528. https://doi.org/10.1016/0025-5416(88)90547-2
    [Crossref] [Google Scholar]
  19. 19.
    Suresh S. 1991.. Fatigue of Materials. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  20. 20.
    Hall EO. 1951.. The deformation and ageing of mild steel: III discussion of results. . Proc. Phys. Soc. B 64::74753. https://doi.org/10.1088/0370-1301/64/9/303
    [Crossref] [Google Scholar]
  21. 21.
    Petch NJ. 1952.. The cleavage strength of polycrystals. . J. Iron Steel Inst. 174::2528
    [Google Scholar]
  22. 22.
    Gleiter H. 1989.. Nanocrystalline materials. . Prog. Mater. Sci. 33::22315. https://doi.org/10.1016/0079-6425(89)90001-7
    [Crossref] [Google Scholar]
  23. 23.
    Meyers MA, Mishra A, Benson DJ. 2006.. Mechanical properties of nanocrystalline materials. . Prog. Mater. Sci. 51::427556. https://doi.org/10.1016/j.pmatsci.2005.08.003
    [Crossref] [Google Scholar]
  24. 24.
    Valiev RZ, Islamgaliev RK, Alexandrov IV. 2000.. Bulk nanostructured materials from severe plastic deformation. . Prog. Mater. Sci. 45::10389. https://doi.org/10.1016/S0079-6425(99)00007-9
    [Crossref] [Google Scholar]
  25. 25.
    Zhu YT, Langdon TG. 2004.. The fundamentals of nanostructured materials processed by severe plastic deformation. . JOM 56::5863. https://doi.org/10.1007/s11837-004-0294-0
    [Crossref] [Google Scholar]
  26. 26.
    Hanlon T, Kwon YN, Suresh S. 2003.. Grain size effects on the fatigue response of nanocrystalline metals. . Scr. Mater. 49::67580. https://doi.org/10.1016/S1359-6462(03)00393-2
    [Crossref] [Google Scholar]
  27. 27.
    Hanlon T, Tabachnikova ED, Suresh S. 2005.. Fatigue behavior of nanocrystalline metals and alloys. . Int. J. Fatigue 27::114758. https://doi.org/10.1016/j.ijfatigue.2005.06.035
    [Crossref] [Google Scholar]
  28. 28.
    Vinogradov A. 2007.. Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation. . J. Mater. Sci. 42::1797808. https://doi.org/10.1007/s10853-006-0973-z
    [Crossref] [Google Scholar]
  29. 29.
    Collini L. 2010.. Fatigue crack growth resistance of ECAPed ultrafine-grained copper. . Eng. Fract. Mech. 77::100111. https://doi.org/10.1016/j.engfracmech.2010.02.011
    [Crossref] [Google Scholar]
  30. 30.
    Padilla HA, Boyce BL. 2010.. A review of fatigue behavior in nanocrystalline metals. . Exp. Mech. 50::523. https://doi.org/10.1007/s11340-009-9301-2
    [Crossref] [Google Scholar]
  31. 31.
    Kim H-K, Choi M-I, Chung CS, Shin DH. 2003.. Fatigue properties of ultrafine grained low carbon steel produced by equal channel angular pressing. . Mater. Sci. Eng. A 340::24350. https://doi.org/10.1016/S0921-5093(02)00178-8
    [Crossref] [Google Scholar]
  32. 32.
    Niendorf T, Rubitschek F, Maier HJ, Canadinc D, Karaman I. 2010.. On the fatigue crack growth-microstructure relationship in ultrafine-grained interstitial-free steel. . J. Mater. Sci. 45::481321. https://doi.org/10.1007/s10853-010-4511-7
    [Crossref] [Google Scholar]
  33. 33.
    Cavaliere P. 2021.. Fatigue and crack behavior of bulk nanostructured metal alloys and composites. . In Fatigue and Fracture of Nanostructured Materials, ed. P Cavaliere , pp. 22162. Cham, Switz:.: Springer. https://doi.org/10.1007/978-3-030-58088-9_5
    [Google Scholar]
  34. 34.
    Zhou G, Ma H, Zhang Z, Sun J, Wang X, et al. 2019.. Fatigue crack growth behavior in a harmonic structure designed austenitic stainless steel. . Mater. Sci. Eng. A 758::12129. https://doi.org/10.1016/j.msea.2019.05.008
    [Crossref] [Google Scholar]
  35. 35.
    Newman J, Schneider J, Daniel A, McKnight D. 2005.. Compression pre-cracking to generate near threshold fatigue-crack-growth rates in two aluminum alloys. . Int. J. Fatigue 27::143240. https://doi.org/10.1016/j.ijfatigue.2005.07.006
    [Crossref] [Google Scholar]
  36. 36.
    Herman WA, Hertzberg RW, Jaccard R. 1988.. A simplified laboratory approach for the prediction of short crack behavior in engineering structures. . Fatigue Fract. Eng. Mater. Struct. 11::30320. https://doi.org/10.1111/j.1460-2695.1988.tb01183.x
    [Crossref] [Google Scholar]
  37. 37.
    Watanabe T, Tsurekawa S. 2004.. Toughening of brittle materials by grain boundary engineering. . Mater. Sci. Eng. A 38789:44755. https://doi.org/10.1016/j.msea.2004.01.140
    [Google Scholar]
  38. 38.
    Kobayashi S, Tsurekawa S, Watanabe T, Palumbo G. 2010.. Grain boundary engineering for control of sulfur segregation-induced embrittlement in ultrafine-grained nickel. . Scr. Mater. 62::29497. https://doi.org/10.1016/j.scriptamat.2009.11.022
    [Crossref] [Google Scholar]
  39. 39.
    Wang YM, Cheng S, Wei QM, Ma E, Nieh TG, Hamza A. 2004.. Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. . Scr. Mater 51::102328. https://doi.org/10.1016/j.scriptamat.2004.08.015
    [Crossref] [Google Scholar]
  40. 40.
    Rathmann D, Marx M, Motz C. 2017.. Crack propagation and mechanical properties of electrodeposited nickel with bimodal microstructures in the nanocrystalline and ultrafine grained regime. . J. Mater. Res. 32::457382. https://doi.org/10.1557/jmr.2017.353
    [Crossref] [Google Scholar]
  41. 41.
    Paris P, Erdogan F. 1963.. A critical analysis of crack propagation laws. . J. Basic Eng. 85::52833. https://doi.org/10.1115/1.3656900
    [Crossref] [Google Scholar]
  42. 42.
    Ritchie RO, Dauskardt RH. 1991.. Cyclic fatigue of ceramics. A fracture mechanics approach to subcritical crack growth and life prediction. . J. Ceram. Soc. Jpn. 99::104762. https://doi.org/10.2109/jcersj.99.1047
    [Crossref] [Google Scholar]
  43. 43.
    Zhu SJ, Peng LM, Moriya T, Mutoh Y. 2000.. Effect of stress ratio on fatigue crack growth in TiAl intermetallics at room and elevated temperatures. . Mater. Sci. Eng. A 290::198206. https://doi.org/10.1016/S0921-5093(00)00958-8
    [Crossref] [Google Scholar]
  44. 44.
    Zeiler S, Lintner A, Schloffer M, Pippan R, Hohenwarter A. 2023.. Microstructural influences on fatigue threshold behavior and fracture toughness of an additively manufactured γ-titanium aluminide. . Intermetallics 156::107852. https://doi.org/10.1016/j.intermet.2023.107852
    [Crossref] [Google Scholar]
  45. 45.
    Barsom JM. 1971.. Fatigue-crack propagation in steels of various yield strengths. . J. Eng. Ind. 93::119096. https://doi.org/10.1115/1.3428061
    [Crossref] [Google Scholar]
  46. 46.
    Ritchie R. 1979.. Near-threshold fatigue-crack propagation in steels. . Int. Metals Rev. 24::20530. https://doi.org/10.1179/imtr.1979.24.1.205
    [Google Scholar]
  47. 47.
    Xiulin Z, Hirt MA. 1983.. Fatigue crack propagation in steels. . Eng. Fract. Mech. 18::96573. https://doi.org/10.1016/0013-7944(83)90070-X
    [Crossref] [Google Scholar]
  48. 48.
    Liaw PK, Lea TR, Logsdon WA. 1983.. Near-threshold fatigue crack growth behavior in metals. . Acta Metall. 31::158187. https://doi.org/10.1016/0001-6160(83)90155-4
    [Crossref] [Google Scholar]
  49. 49.
    Laird C. 1967.. The influence of metallurgical structure on the mechanisms of fatigue crack propagation. . Fatigue Crack Propagation, ed. J Grosskreutz , pp. 13180. Philadelphia, PA:: Am. Soc. Test. Mater.
    [Google Scholar]
  50. 50.
    Pelloux RMN. 1969.. Mechanisms of formation of ductile fatigue striations. . ASM Trans. Quart. 62::28185
    [Google Scholar]
  51. 51.
    Neumann P. 1974.. New experiments concerning the slip processes at propagating fatigue cracks—I. . Acta Metall. 22::115565. https://doi.org/10.1016/0001-6160(74)90071-6
    [Crossref] [Google Scholar]
  52. 52.
    Shih CF. 1981.. Relationships between the J-integral and the crack opening displacement for stationary and extending cracks. . J. Mech. Phys. Solids 29::30526. https://doi.org/10.1016/0022-5096(81)90003-X
    [Crossref] [Google Scholar]
  53. 53.
    Rice J. 1967.. The mechanics of crack tip deformation and extension by fatigue. . In Fatigue Crack Propagation, ed. J Grosskreutz , pp. 247311. Philadelphia, PA:: Am. Soc. Test. Mater.
    [Google Scholar]
  54. 54.
    Pippan R. 1991.. Threshold and effective threshold of fatigue crack propagation in ARMCO iron II: the influence of environment. . Mater. Sci. Eng. A 138::1522. https://doi.org/10.1016/0921-5093(91)90672-A
    [Crossref] [Google Scholar]
  55. 55.
    Pippan R, Berger M, Stüwe HP. 1987.. The influence of crack length on fatigue crack growth in deep sharp notches. . Metall. Trans. A 18::42935. https://doi.org/10.1007/BF02648804
    [Crossref] [Google Scholar]
  56. 56.
    Pippan R. 1991.. Threshold and effective threshold of fatigue crack propagation in ARMCO iron I: the influence of grain size and cold working. . Mater. Sci. Eng. A 138::113. https://doi.org/10.1016/0921-5093(91)90671-9
    [Crossref] [Google Scholar]
  57. 57.
    Leitner T, Hohenwarter A, Ochensberger W, Pippan R. 2017.. Fatigue crack growth anisotropy in ultrafine-grained iron. . Acta Mater. 126::15465. https://doi.org/10.1016/j.actamat.2016.12.059
    [Crossref] [Google Scholar]
  58. 58.
    Renk O, Ghosh P, Pippan R. 2017.. Generation of extreme grain aspect ratios in severely deformed tantalum at elevated temperatures. . Scr. Mater. 137::6063. https://doi.org/10.1016/j.scriptamat.2017.04.024
    [Crossref] [Google Scholar]
  59. 59.
    ASTM E399-12. 2012.. Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials. Stand. E399-17 , Am. Soc. Test. Mater., Philadelphia, PA:. https://doi.org/10.1520/E0399-17
    [Google Scholar]
  60. 60.
    Leitner T, Hohenwarter A, Pippan R. 2015.. Revisiting fatigue crack growth in various grain size regimes of Ni. . Mater. Sci. Eng. A 646::294305. https://doi.org/10.1016/j.msea.2015.08.071
    [Crossref] [Google Scholar]
  61. 61.
    Leitner T. 2017.. Fatigue crack growth of nanocrystalline and ultrafine-grained metals processed by severe plastic deformation. PhD Diss., Univ. Leoben, Leoben, Austria:
    [Google Scholar]
  62. 62.
    Hafok M, Pippan R. 2008.. High-pressure torsion applied to nickel single crystals. . Philos. Mag. 88::185777. https://doi.org/10.1080/14786430802337071
    [Crossref] [Google Scholar]
  63. 63.
    Yang B, Vehoff H, Hohenwarter A, Hafok M, Pippan R. 2008.. Strain effects on the coarsening and softening of electrodeposited nanocrystalline Ni subjected to high pressure torsion. . Scr. Mater. 58::79093. https://doi.org/10.1016/j.scriptamat.2007.12.039
    [Crossref] [Google Scholar]
  64. 64.
    Pippan R, Hohenwarter A. 2016.. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials. . Mater. Res. Lett. 4::12736. https://doi.org/10.1080/21663831.2016.1166403
    [Crossref] [Google Scholar]
  65. 65.
    Lejček P, Hofmann S. 1995.. Thermodynamics and structural aspects of grain boundary segregation. . Crit. Rev. Solid State Mater. Sci. 20::185. https://doi.org/10.1080/10408439508243544
    [Crossref] [Google Scholar]
  66. 66.
    Latapie A, Farkas D. 2004.. Molecular dynamics investigation of the fracture behavior of nanocrystalline α-Fe. . Phys. Rev. B 69::134110. https://doi.org/10.1103/PhysRevB.69.134110
    [Crossref] [Google Scholar]
  67. 67.
    Armstrong R. 2014.. Symmetry aspects of dislocation-effected crystal properties: material strength levels and X-ray topographic imaging. . Symmetry 6::14863. https://doi.org/10.3390/sym6010148
    [Crossref] [Google Scholar]
  68. 68.
    Armstrong RW. 2014.. Engineering science aspects of the Hall–Petch relation. . Acta Mech. 225::101328. https://doi.org/10.1007/s00707-013-1048-2
    [Crossref] [Google Scholar]
  69. 69.
    Leitner T, Pillmeier S, Kormout KS, Pippan R, Hohenwarter A. 2017.. Simultaneous enhancement of strength and fatigue crack growth behavior of nanocrystalline steels by annealing. . Scr. Mater. 139::3943. https://doi.org/10.1016/j.scriptamat.2017.05.051
    [Crossref] [Google Scholar]
  70. 70.
    Renk O, Pippan R. 2023.. Anneal hardening in single phase nanostructured metals. . Mater. Trans. 64::146473. https://doi.org/10.2320/matertrans.MT-MF2022029
    [Crossref] [Google Scholar]
  71. 71.
    Huang X, Hansen N, Tsuji N. 2006.. Hardening by annealing and softening by deformation in nanostructured metals. . Science 312::24951. https://doi.org/10.1126/science.1124268
    [Crossref] [Google Scholar]
  72. 72.
    Renk O, Hohenwarter A, Eder K, Kormout KS, Cairney JM, Pippan R. 2015.. Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary?. Scr. Mater. 95::2730. https://doi.org/10.1016/j.scriptamat.2014.09.023
    [Crossref] [Google Scholar]
  73. 73.
    Renk O, Hohenwarter A, Gammer C, Eckert J, Pippan R. 2022.. Achieving 1 GPa fatigue strength in nanocrystalline 316L steel through recovery annealing. . Scr. Mater. 217::114773. https://doi.org/10.1016/j.scriptamat.2022.114773
    [Crossref] [Google Scholar]
  74. 74.
    Leitner T, Trummer G, Pippan R, Hohenwarter A. 2018.. Influence of severe plastic deformation and specimen orientation on the fatigue crack propagation behavior of a pearlitic steel. . Mater. Sci. Eng. A 710::26070. https://doi.org/10.1016/j.msea.2017.10.040
    [Crossref] [Google Scholar]
  75. 75.
    Leitner T, Hohenwarter A, Pippan R. 2019.. Anisotropy in fracture and fatigue resistance of pearlitic steels and its effect on the crack path. . Int. J. Fatigue 124::52836. https://doi.org/10.1016/j.ijfatigue.2019.02.048
    [Crossref] [Google Scholar]
  76. 76.
    Wetscher F, Stock R, Pippan R. 2007.. Changes in the mechanical properties of a pearlitic steel due to large shear deformation. . Mater. Sci. Eng. A 445–46::23743. https://doi.org/10.1016/j.msea.2006.09.026
    [Crossref] [Google Scholar]
  77. 77.
    Langford G. 1970.. A study of the deformation of patented steel wire. . Metall. Mater. Trans. B 1::46577. https://doi.org/10.1007/BF02811557
    [Crossref] [Google Scholar]
  78. 78.
    Langford G. 1977.. Deformation of pearlite. . Metall. Trans. A 8::86175. https://doi.org/10.1007/BF02661567
    [Crossref] [Google Scholar]
  79. 79.
    Li YJ, Choi P, Goto S, Borchers C, Raabe D, Kirchheim R. 2012.. Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire. . Acta Mater. 60::400516. https://doi.org/10.1016/j.actamat.2012.03.006
    [Crossref] [Google Scholar]
  80. 80.
    Borchers C, Kirchheim R. 2016.. Cold-drawn pearlitic steel wires. . Prog. Mater. Sci. 82::40544. https://doi.org/10.1016/j.pmatsci.2016.06.001
    [Crossref] [Google Scholar]
  81. 81.
    Hohenwarter A, Taylor A, Stock R, Pippan R. 2011.. Effect of large shear deformations on the fracture behavior of a fully pearlitic steel. . Metall. Mater. Trans. A 42::160918. https://doi.org/10.1007/s11661-010-0541-7
    [Crossref] [Google Scholar]
  82. 82.
    Baumann G, Fecht HJ, Liebelt S. 1996.. Formation of white-etching layers on rail treads. . Wear 191::13340. https://doi.org/10.1016/0043-1648(95)06733-7
    [Crossref] [Google Scholar]
  83. 83.
    Grossoni I, Hughes P, Bezin Y, Bevan A, Jaiswal J. 2021.. Observed failures at railway turnouts: failure analysis, possible causes and links to current and future research. . Eng. Fail. Anal. 119::104987. https://doi.org/10.1016/j.engfailanal.2020.104987
    [Crossref] [Google Scholar]
  84. 84.
    Cotterell B, Rice JR. 1980.. Slightly curved or kinked cracks. . Int. J. Fract. 16::15569. https://doi.org/10.1007/BF00012619
    [Crossref] [Google Scholar]
  85. 85.
    Arnoult XC, Růžičková M, Kunzová K, Materna A. 2016.. Short review: potential impact of delamination cracks on fracture toughness of structural materials. . Frat. Ed Integrita Strutt. 10::50922
    [Crossref] [Google Scholar]
  86. 86.
    Meurling F, Melander A, Tidesten M, Westin L. 2001.. Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels. . Int. J. Fatigue 23::21524. https://doi.org/10.1016/S0142-1123(00)00087-6
    [Crossref] [Google Scholar]
  87. 87.
    Jesner G, Pippan R. 2009.. Failure mechanisms in a fatigue-loaded high-performance powder metallurgical tool steel. . Metall. Mater. Trans. A 40::81017. https://doi.org/10.1007/s11661-008-9770-4
    [Crossref] [Google Scholar]
  88. 88.
    Bichler CH, Pippan R. 1999.. Direct observation of the formation of striations. . In Engineering Against Fatigue, ed. JH Beynon, MW Brown, TC Lindley, RA Smith, B Tomkins , pp. 21118. Rotterdam, Neth:.: AA Balkema
    [Google Scholar]
  89. 89.
    Riemelmoser FO, Pippan R, Stüwe HP. 1998.. An argument for a cycle-by-cycle propagation of fatigue cracks at small stress intensity ranges. . Acta Mater. 46::179399. https://doi.org/10.1016/S1359-6454(97)00366-2
    [Crossref] [Google Scholar]
  90. 90.
    Hübner P, Kiessling R, Biermann H, Vinogradov A. 2006.. Fracture behaviour of ultrafine-grained materials under static and cyclic loading. . Int. J. Mater. Res. 97::156670. https://doi.org/10.1515/ijmr-2006-0244
    [Crossref] [Google Scholar]
  91. 91.
    Cavaliere P. 2009.. Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. . Int. J. Fatigue 31::147689
    [Crossref] [Google Scholar]
  92. 92.
    Pokluda J, Pippan R. 2007.. Analysis of roughness-induced crack closure based on asymmetric crack-wake plasticity and size ratio effect. . Mater. Sci. Eng. A 462::35558. https://doi.org/10.1016/j.msea.2006.03.154
    [Crossref] [Google Scholar]
  93. 93.
    Pippan R. 1996.. Threshold value for engineering application. . In Fatigue ‘96: Proceedings of the Sixth International Fatigue Congress, Vol. 2, ed. G Lütjering, H Nowack , pp. 41930. Oxford, UK:: Pergamon
    [Google Scholar]
  94. 94.
    Pippan R, Hohenwarter A. 2017.. Fatigue crack closure: a review of the physical phenomena. . Fatigue Fract. Eng. Mater. Struct. 40::47195. https://doi.org/10.1111/ffe.12578
    [Crossref] [Google Scholar]
  95. 95.
    Pillmeier S, Pippan R, Eckert J, Hohenwarter A. 2023.. Fatigue crack growth behavior of a nanocrystalline low Young's modulus β-type Ti–Nb alloy. . Mater. Sci. Eng. A 871::144868. https://doi.org/10.1016/j.msea.2023.144868
    [Crossref] [Google Scholar]
  96. 96.
    Khatibi G, Horky J, Weiss B, Zehetbauer MJ. 2010.. High cycle fatigue behaviour of copper deformed by high pressure torsion. . Int. J. Fatigue 32::26978. https://doi.org/10.1016/j.ijfatigue.2009.06.017
    [Crossref] [Google Scholar]
  97. 97.
    Hertzberg RW. 1996.. Deformation and Fracture Mechanics of Engineering Materials. New York:: Wiley. , 4th ed..
    [Google Scholar]
  98. 98.
    Joo MS, Suh D-W, Bae JH, Bhadeshia HKDH. 2012.. Role of delamination and crystallography on anisotropy of Charpy toughness in API-X80 steel. . Mater. Sci. Eng. A 546::31422. https://doi.org/10.1016/j.msea.2012.03.079
    [Crossref] [Google Scholar]
  99. 99.
    Deshpande NU, Gokhale AM, Denzer DK, Liu J. 1998.. Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy: part I. Quantitative characterization. . Metall. Mater. Trans. A 29::1191201. https://doi.org/10.1007/s11661-998-0246-3
    [Crossref] [Google Scholar]
  100. 100.
    Toribio J, González B, Matos JC. 2010.. Fatigue and fracture paths in cold drawn pearlitic steel. . Eng. Fract. Mech. 77::202432. https://doi.org/10.1016/j.engfracmech.2010.02.003
    [Crossref] [Google Scholar]
  101. 101.
    Ward-Close CM, Beevers CJ. 1980.. The influence of grain orientation on the mode and rate of fatigue crack growth in α-titanium. . Metall. Trans. A 11::100717. https://doi.org/10.1007/BF02654715
    [Crossref] [Google Scholar]
  102. 102.
    Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. 2015.. Bioinspired structural materials. . Nat. Mater. 14::2336. https://doi.org/10.1038/nmat4089
    [Crossref] [Google Scholar]
  103. 103.
    Kolednik O, Predan J, Fischer FD, Fratzl P. 2011.. Bioinspired design criteria for damage-resistant materials with periodically varying microstructure. . Adv. Funct. Mater. 21::363441. https://doi.org/10.1002/adfm.201100443
    [Crossref] [Google Scholar]
  104. 104.
    Hohenwarter A, Pippan R. 2023.. Influence of processing route on the fracture resistance of equal channel angular pressing deformed iron. . Adv. Eng. Mater. 25::2201011. https://doi.org/10.1002/adem.202201011
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-matsci-080222-101859
Loading
/content/journals/10.1146/annurev-matsci-080222-101859
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error