1932

Abstract

Polymers undergoing controlled degradation are of significant current interest. Among the classes of degradable polymers, self-immolative polymers (SIPs) are attracting increasing attention due to their ability to completely depolymerize from end to end following the cleavage of their endcap or backbone. Their amplified responses to stimuli, along with their ability to readily tune the stimulus to which they respond by changing only their endcap, are useful features for a variety of applications. This review covers the major classes of SIPs, including poly(benzyl carbamate)s, poly(benzyl ether)s, polyphthalaldehydes, polyglyoxylates, polydisulfides, polythioesters, and their related derivatives along with their endcaps. Distinctive features of their syntheses and depolymerizations are discussed. Applications of SIPs including imaging and sensing, therapeutics, gels, micro- and nanopatterning, transient or recyclable materials, and adhesives are described. We conclude with some challenges and future perspectives for the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080222-104556
2024-08-05
2025-04-28
Loading full text...

Full text loading...

/deliver/fulltext/matsci/54/1/annurev-matsci-080222-104556.html?itemId=/content/journals/10.1146/annurev-matsci-080222-104556&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ashraf I, Butt E, Veitch D, Wernham A. 2021.. Dermatological surgery: an update on suture materials and techniques. . Part 1 . Clin. Exp. Dermatol. 46::140010
    [Crossref] [Google Scholar]
  2. 2.
    Gadekar V, Borade Y, Kannaujia S, Rajpoot K, Anup N, et al. 2021.. Nanomedicines accessible in the market for clinical interventions. . J. Control. Release 330::37297
    [Crossref] [Google Scholar]
  3. 3.
    Capuana E, Lopresti F, Ceraulo M, La Carrubba V. 2022.. Poly-l-lactic acid (PLLA)-based biomaterials for regenerative medicine: a review on processing and applications. . Polymers 14::1153
    [Crossref] [Google Scholar]
  4. 4.
    Haward M. 2018.. Plastic pollution of the world's seas and oceans as a contemporary challenge in ocean governance. . Nat. Commun. 9::667
    [Crossref] [Google Scholar]
  5. 5.
    Rochman CM. 2018.. Microplastics research—from sink to source. . Science 360::2829
    [Crossref] [Google Scholar]
  6. 6.
    Filiciotto L, Rothenberg G. 2021.. Biodegradable plastics: standards, policies, and impacts. . ChemSusChem 14::5672
    [Crossref] [Google Scholar]
  7. 7.
    Shi C, Reilly LT, Kumar VSP, Coile MW, Nicholson SR, et al. 2021.. Design principles for intrinsically circular polymers with tunable properties. . Chemistry 7::2896912
    [Crossref] [Google Scholar]
  8. 8.
    Coates GW, Getzler YD. 2020.. Chemical recycling to monomer for an ideal, circular polymer economy. . Nat. Rev. Mater. 5::50116
    [Crossref] [Google Scholar]
  9. 9.
    Korley LT, Epps TH III, Helms BA, Ryan AJ. 2021.. Toward polymer upcycling—adding value and tackling circularity. . Science 373::6669
    [Crossref] [Google Scholar]
  10. 10.
    Jehanno C, Alty JW, Roosen M, De Meester S, Dove AP, et al. 2022.. Critical advances and future opportunities in upcycling commodity polymers. . Nature 603::80314
    [Crossref] [Google Scholar]
  11. 11.
    Wei M, Gao Y, Li X, Serpe MJ. 2017.. Stimuli-responsive polymers and their applications. . Polym. Chem. 8::12743
    [Crossref] [Google Scholar]
  12. 12.
    Li C, Deng Z, Gillies ER. 2022.. Designing polymers with stimuli-responsive degradation for biomedical applications. . Curr. Opin. Biomed. Eng. 25::100437
    [Crossref] [Google Scholar]
  13. 13.
    Tang X, Chen EY-X. 2019.. Toward infinitely recyclable plastics derived from renewable cyclic esters. . Chemistry 5::284312
    [Crossref] [Google Scholar]
  14. 14.
    Abel BA, Snyder RL, Coates GW. 2021.. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. . Science 373::78389
    [Crossref] [Google Scholar]
  15. 15.
    Zhou J, Hsu T-G, Wang J. 2023.. Mechanochemical degradation and recycling of synthetic polymers. . Angew. Chem. Int. Ed. 62::e202300768
    [Crossref] [Google Scholar]
  16. 16.
    Yuan J, Giardino GJ, Niu J. 2021.. Metathesis cascade-triggered depolymerization of enyne self-immolative polymers. . Angew. Chem. Int. Ed. 60::248005
    [Crossref] [Google Scholar]
  17. 17.
    Alouane A, Labruère R, Le Saux T, Schmidt F, Jullien L. 2015.. Self-immolative spacers: kinetic aspects, structure–property relationships, and applications. . Angew. Chem. Int. Ed. 54::7492509
    [Crossref] [Google Scholar]
  18. 18.
    Penczek S, Moad G. 2008.. Glossary of terms related to kinetics, thermodynamics, and mechanisms of polymerization (IUPAC recommendations 2008). . Pure Appl. Chem. 80::216393
    [Crossref] [Google Scholar]
  19. 19.
    Roth ME, Green O, Gnaim S, Shabat D. 2016.. Dendritic, oligomeric, and polymeric self-immolative molecular amplification. . Chem. Rev. 116::130952
    [Crossref] [Google Scholar]
  20. 20.
    Sirianni QE, Gillies ER. 2020.. The architectural evolution of self-immolative polymers. . Polymer 202::122638
    [Crossref] [Google Scholar]
  21. 21.
    Sagi A, Weinstain R, Karton N, Shabat D. 2008.. Self-immolative polymers. . J. Am. Chem. Soc. 130::543435
    [Crossref] [Google Scholar]
  22. 22.
    Robbins JS, Schmid KM, Phillips ST. 2013.. Effects of electronics, aromaticity, and solvent polarity on the rate of azaquinone–methide-mediated depolymerization of aromatic carbamate oligomers. . J. Org. Chem. 78::315969
    [Crossref] [Google Scholar]
  23. 23.
    Kim H, Brooks AD, DiLauro AM, Phillips ST. 2020.. Poly(carboxypyrrole)s that depolymerize from head to tail in the solid state in response to specific applied signals. . J. Am. Chem. Soc. 142::944752
    [Crossref] [Google Scholar]
  24. 24.
    Gnaim S, Shabat D. 2017.. Self-immolative chemiluminescence polymers: Innate assimilation of chemiexcitation in a domino-like depolymerization. . J. Am. Chem. Soc. 139::100028
    [Crossref] [Google Scholar]
  25. 25.
    Addy PS, Shivrayan M, Cencer M, Zhuang J, Moore JS, Thayumanavan S. 2020.. Polymer with competing depolymerization pathways: chain unzipping versus chain scission. . ACS Macro Lett. 9::85559
    [Crossref] [Google Scholar]
  26. 26.
    Powell CR, Foster JC, Swilley SN, Kaur K, Scannelli SJ, et al. 2019.. Self-amplified depolymerization of oligo(thiourethanes) for the release of COS/H2S. . Polym. Chem. 10::299195
    [Crossref] [Google Scholar]
  27. 27.
    DeWit MA, Gillies ER. 2009.. A cascade biodegradable polymer based on alternating cyclization and elimination reactions. . J. Am. Chem. Soc. 131::1832734
    [Crossref] [Google Scholar]
  28. 28.
    Chen EKY, McBride RA, Gillies ER. 2012.. Self-immolative polymers containing rapidly cyclizing spacers: toward rapid depolymerization rates. . Macromolecules 45::736474
    [Crossref] [Google Scholar]
  29. 29.
    Dewit MA, Beaton A, Gillies ER. 2010.. A reduction sensitive cascade biodegradable linear polymer. . J. Polym. Sci. A Polym. Chem. 48::397785
    [Crossref] [Google Scholar]
  30. 30.
    Uno T, Minari M, Kubo M, Itoh T. 2004.. Asymmetric anionic polymerization of 2,6-dimethyl-7-phenyl-1,4-benzoquinone methide. . J. Polym. Sci. A Polym. Chem. 42::454855
    [Crossref] [Google Scholar]
  31. 31.
    Olah MG, Robbins JS, Baker MS, Phillips ST. 2013.. End-capped poly(benzyl ethers): acid and base stable polymers that depolymerize rapidly from head-to-tail in response to specific applied signals. . Macromolecules 46::592428
    [Crossref] [Google Scholar]
  32. 32.
    Baker MS, Kim H, Olah MG, Lewis GG, Phillips ST. 2015.. Depolymerizable poly(benzyl ether)-based materials for selective room temperature recycling. . Green Chem. 17::454145
    [Crossref] [Google Scholar]
  33. 33.
    Xiao Y, Li H, Zhang B, Cheng Z, Li Y, et al. 2018.. Modulating the depolymerization of self-immolative brush polymers with poly(benzyl ether) backbones. . Macromolecules 51::2899905
    [Crossref] [Google Scholar]
  34. 34.
    Ergene C, Palermo EF. 2017.. Cationic poly(benzyl ether)s as self-immolative antimicrobial polymers. . Biomacromolecules 18::34009
    [Crossref] [Google Scholar]
  35. 35.
    Ergene C, Palermo EF. 2018.. Self-immolative polymers with potent and selective antibacterial activity by hydrophilic side chain grafting. . J. Mater. Chem. B 6::721729
    [Crossref] [Google Scholar]
  36. 36.
    Xiao Y, Li Y, Zhang B, Li H, Cheng Z, et al. 2019.. Functionalizable, side chain-immolative poly(benzyl ether)s. . ACS Macro Lett. 8::399402
    [Crossref] [Google Scholar]
  37. 37.
    Kim JW, Kim HJ, Park J, Chae JA, Song H-W, et al. 2022.. Self-immolative and amphiphilic poly(benzyl ether)-based copolymers: synthesis and triggered demicellization via head-to-tail depolymerization. . Macromolecules 55::614049
    [Crossref] [Google Scholar]
  38. 38.
    Schwartz JM, Engler A, Phillips O, Lee J, Kohl PA. 2018.. Determination of ceiling temperature and thermodynamic properties of low ceiling temperature polyaldehydes. . J. Polym. Sci. A Polym. Chem. 56::2218
    [Crossref] [Google Scholar]
  39. 39.
    Aso C, Tagami S. 1967.. Cyclopolymerization of o-phthalaldehyde. . J. Polym. Sci. B Polym. Lett. 5::21720
    [Crossref] [Google Scholar]
  40. 40.
    Ito H, Schwalm R. 1989.. Thermally developable, positive resist systems with high sensitivity. . J. Electrochem. Soc. 136::24145
    [Crossref] [Google Scholar]
  41. 41.
    Kaitz JA, Diesendruck CE, Moore JS. 2013.. End group characterization of poly(phthalaldehyde): surprising discovery of a reversible, cationic macrocyclization mechanism. . J. Am. Chem. Soc. 135::1275561
    [Crossref] [Google Scholar]
  42. 42.
    Lutz JP, Davydovich O, Hannigan MD, Moore JS, Zimmerman PM, McNeil AJ. 2019.. Functionalized and degradable polyphthalaldehyde derivatives. . J. Am. Chem. Soc. 141::1454448
    [Crossref] [Google Scholar]
  43. 43.
    Engler A, Phillips O, Miller RC, Tobin C, Kohl PA. 2019.. Cationic copolymerization of o-phthalaldehyde and functional aliphatic aldehydes. . Macromolecules 52::402029
    [Crossref] [Google Scholar]
  44. 44.
    Hernandez HL, Kang S-K, Lee OP, Hwang S-W, Kaitz JA, et al. 2014.. Triggered transience of metastable poly(phthalaldehyde) for transient electronics. . Adv. Mater. 26::763742
    [Crossref] [Google Scholar]
  45. 45.
    Phillips O, Engler A, Schwartz J, Jiang J, Tobin C, et al. 2019.. Sunlight photodepolymerization of transient polymers. . J. Appl. Polym. Sci. 136::47141
    [Crossref] [Google Scholar]
  46. 46.
    Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, et al. 2014.. Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. . Nat. Chem. 6::623
    [Crossref] [Google Scholar]
  47. 47.
    Aso C, Tagami S. 1969.. Polymerization of aromatic aldehydes. III. The cyclopolymerization of phthalaldehyde and the structure of the polymer. . Macromolecules 2::41419
    [Crossref] [Google Scholar]
  48. 48.
    Seo W, Phillips ST. 2010.. Patterned plastics that change physical structure in response to applied chemical signals. . J. Am. Chem. Soc. 132::923435
    [Crossref] [Google Scholar]
  49. 49.
    Coulembier O, Knoll A, Pires D, Gotsmann B, Duerig U, et al. 2010.. Probe-based nanolithography: self-amplified depolymerization media for dry lithography. . Macromolecules 43::57274
    [Crossref] [Google Scholar]
  50. 50.
    DiLauro AM, Robbins JS, Phillips ST. 2013.. Reproducible and scalable synthesis of end-cap-functionalized depolymerizable poly(phthalaldehydes). . Macromolecules 46::296368
    [Crossref] [Google Scholar]
  51. 51.
    DiLauro AM, Lewis GG, Phillips ST. 2015.. Self-immolative poly(4,5-dichlorophthalaldehyde) and its applications in multi-stimuli-responsive macroscopic plastics. . Angew. Chem. Int. Ed. 127::6298303
    [Crossref] [Google Scholar]
  52. 52.
    Kaitz JA, Possanza CM, Song Y, Diesendruck CE, Spiering AJH, et al. 2014.. Depolymerizable, adaptive supramolecular polymer nanoparticles and networks. . Polym. Chem. 5::378894
    [Crossref] [Google Scholar]
  53. 53.
    Kaitz JA, Moore JS. 2013.. Functional phthalaldehyde polymers by copolymerization with substituted benzaldehydes. . Macromolecules 46::60812
    [Crossref] [Google Scholar]
  54. 54.
    Crutchfield MM, Papanu VD, Warren CB. 1977.. Polymeric acetal carboxylates. US Patent 4, 144,226
    [Google Scholar]
  55. 55.
    Dyroff DR, Lynch GJ, Pananu VD. 1981.. Selectively controlling the hydrolytic stability of acetal carboxylate polymers. US Patent 4, 302,564
    [Google Scholar]
  56. 56.
    Gledhill WE, Saeger VW. 1987.. Degradation of sodium polyglyoxylate, a non-persistent metal sequestrant, in laboratory ecosystems. . J. Ind. Microbiol. 2::97105
    [Crossref] [Google Scholar]
  57. 57.
    Burel F, Rossignol L, Pontvianne P, Hartman J, Couesnon N, Bunel C. 2003.. Synthesis and characterization of poly(ethyl glyoxylate) – a new potentially biodegradable polymer. . e-Polymers 3::31
    [Crossref] [Google Scholar]
  58. 58.
    Belloncle B, Burel F, Oulyadi H, Bunel C. 2008.. Study of the in vitro degradation of poly(ethyl glyoxylate). . Polym. Degrad. Stab. 93::115157
    [Crossref] [Google Scholar]
  59. 59.
    Fan B, Trant JF, Wong AD, Gillies ER. 2014.. Polyglyoxylates: a versatile class of triggerable self-immolative polymers from readily accessible monomers. . J. Am. Chem. Soc. 136::1011623
    [Crossref] [Google Scholar]
  60. 60.
    Fan B, Trant JF, Gillies ER. 2016.. End-capping strategies for triggering end-to-end depolymerization of polyglyoxylates. . Macromolecules 49::930919
    [Crossref] [Google Scholar]
  61. 61.
    Rabiee Kenaree A, Gillies ER. 2018.. Controlled polymerization of ethyl glyoxylate using alkyllithium and alkoxide initiators. . Macromolecules 51::550110
    [Crossref] [Google Scholar]
  62. 62.
    Hewitt DR, Grubbs RB. 2021.. Amine-catalyzed chain polymerization of ethyl glyoxylate from alcohol and thiol initiators. . ACS Macro Lett. 10::37074
    [Crossref] [Google Scholar]
  63. 63.
    Yin X, Hewitt DR, Zheng B, Yu X, Carr AJ, et al. 2022.. Aqueous assembly and hydrogel rheology of sustainable glyoxylate-based copolymers. . ACS Appl. Polym. Mater. 4::5493500
    [Crossref] [Google Scholar]
  64. 64.
    Zhang C, Kermaniyan S, Smith SA, Gillies ER, Such GK. 2021.. Acid-responsive poly(glyoxylate) self-immolative star polymers. . Biomacromolecules 22::3892900
    [Crossref] [Google Scholar]
  65. 65.
    Fan B, Yardley RE, Trant JF, Borecki A, Gillies ER. 2018.. Tuning the hydrophobic cores of self-immolative polyglyoxylate assemblies. . Polym. Chem. 9::260110
    [Crossref] [Google Scholar]
  66. 66.
    Yardley RE, Rabiee Kenaree A, Liang X, Gillies ER. 2020.. Transesterification of poly(ethyl glyoxylate): a route to structurally diverse polyglyoxylates. . Macromolecules 53::86009
    [Crossref] [Google Scholar]
  67. 67.
    Rabiee Kenaree A, Sirianni QE, Classen K, Gillies ER. 2020.. Thermoresponsive self-immolative polyglyoxylamides. . Biomacromolecules 21::381725
    [Crossref] [Google Scholar]
  68. 68.
    Sirianni QE, Rabiee Kenaree A, Gillies ER. 2018.. Polyglyoxylamides: tuning structure and properties of self-immolative polymers. . Macromolecules 52::26270
    [Crossref] [Google Scholar]
  69. 69.
    Sirianni QE, Liang X, Such GK, Gillies ER. 2021.. Polyglyoxylamides with a pH-mediated solubility and depolymerization switch. . Macromolecules 54::1054756
    [Crossref] [Google Scholar]
  70. 70.
    Fava A, Iliceto A, Camera E. 1957.. Kinetics of the thiol-disulfide exchange. . J. Am. Chem. Soc. 79::83338
    [Crossref] [Google Scholar]
  71. 71.
    Endo K, Yamanaka T. 2006.. Copolymerization of lipoic acid with 1,2-dithiane and characterization of the copolymer as an interlocked cyclic polymer. . Macromolecules 39::403843
    [Crossref] [Google Scholar]
  72. 72.
    Barltrop JA, Hayes P, Calvin M. 1954.. The chemistry of 1,2-dithiolane(trimethylene disulfide) as a model for the primary quantum conversion act in photosynthesis. . J. Am. Chem. Soc. 76::434867
    [Crossref] [Google Scholar]
  73. 73.
    Zhang Q, Deng Y, Shi C-Y, Feringa BL, Tian H, Qu D-H. 2021.. Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides). . Matter 4::135264
    [Crossref] [Google Scholar]
  74. 74.
    Sakai N, Lista M, Kel O, Sakurai S-I, Emery D, et al. 2011.. Self-organizing surface-initiated polymerization: facile access to complex functional systems. . J. Am. Chem. Soc. 133::1522427
    [Crossref] [Google Scholar]
  75. 75.
    Zhang X, Waymouth RM. 2017.. 1,2-Dithiolane-derived dynamic, covalent materials: cooperative self-assembly and reversible cross-linking. . J. Am. Chem. Soc. 139::382233
    [Crossref] [Google Scholar]
  76. 76.
    Liu Y, Jia Y, Wu Q, Moore JS. 2019.. Architecture-controlled ring-opening polymerization for dynamic covalent poly(disulfide)s. . J. Am. Chem. Soc. 141::1707580
    [Crossref] [Google Scholar]
  77. 77.
    Kristensen MM, Løvschall KB, Zelikin AN. 2023.. Mechanisms of degradation for polydisulfides: main chain scission, self-immolation, or chain transfer depolymerization. . ACS Macro Lett. 12::95560
    [Crossref] [Google Scholar]
  78. 78.
    Bang E-K, Gasparini G, Molinard G, Roux A, Sakai N, Matile S. 2013.. Substrate-initiated synthesis of cell-penetrating poly(disulfide)s. . J. Am. Chem. Soc. 135::208891
    [Crossref] [Google Scholar]
  79. 79.
    Lu J, Wang H, Tian Z, Hou Y, Lu H. 2020.. Cryopolymerization of 1,2-dithiolanes for the facile and reversible grafting-from synthesis of protein–polydisulfide conjugates. . J. Am. Chem. Soc. 142::121721
    [Crossref] [Google Scholar]
  80. 80.
    Pal S, Sommerfeldt A, Davidsen MB, Hinge M, Pedersen SU, Daasbjerg K. 2020.. Synthesis and closed-loop recycling of self-immolative poly(dithiothreitol). . Macromolecules 53::468591
    [Crossref] [Google Scholar]
  81. 81.
    Hansen-Felby M, Henriksen ML, Pedersen SU, Daasbjerg K. 2022.. Postfunctionalization of self-immolative poly(dithiothreitol) using Steglich esterification. . Macromolecules 55::578894
    [Crossref] [Google Scholar]
  82. 82.
    Hansen-Felby M, Sommerfeldt A, Henriksen ML, Pedersen SU, Daasbjerg K. 2022.. Synthesis and depolymerization of self-immolative poly(disulfide)s with saturated aliphatic backbones. . Polym. Chem. 13::8590
    [Crossref] [Google Scholar]
  83. 83.
    Worrell BT, Mavila S, Wang C, Kontour TM, Lim C-H, et al. 2018.. A user's guide to the thiol-thioester exchange in organic media: scope, limitations, and applications in material science. . Polym. Chem. 9::452334
    [Crossref] [Google Scholar]
  84. 84.
    Mavila S, Worrell BT, Culver HR, Goldman TM, Wang C, et al. 2018.. Dynamic and responsive DNA-like polymers. . J. Am. Chem. Soc. 140::135948
    [Crossref] [Google Scholar]
  85. 85.
    Yuan J, Xiong W, Zhou X, Zhang Y, Shi D, et al. 2019.. 4-Hydroxyproline-derived sustainable polythioesters: controlled ring-opening polymerization, complete recyclability, and facile functionalization. . J. Am. Chem. Soc. 141::492835
    [Crossref] [Google Scholar]
  86. 86.
    Shi C, McGraw ML, Li ZC, Cavallo L, Falivene L, Chen EY. 2020.. High-performance pan-tactic polythioesters with intrinsic crystallinity and chemical recyclability. . Sci. Adv. 6::eabc0495
    [Crossref] [Google Scholar]
  87. 87.
    Xiong W, Chang W, Shi D, Yang L, Tian Z, et al. 2020.. Geminal dimethyl substitution enables controlled polymerization of penicillamine-derived β-thiolactones and reversed depolymerization. . Chemistry 6::183143
    [Crossref] [Google Scholar]
  88. 88.
    Stellmach KA, Paul MK, Xu M, Su Y-L, Fu L, et al. 2022.. Modulating polymerization thermodynamics of thiolactones through substituent and heteroatom incorporation. . ACS Macro Lett. 11::895901
    [Crossref] [Google Scholar]
  89. 89.
    Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. 2019.. Enzyme responsive drug delivery systems in cancer treatment. . J. Control. Release 308::17289
    [Crossref] [Google Scholar]
  90. 90.
    Weinstain R, Baran PS, Shabat D. 2009.. Activity-linked labeling of enzymes by self-immolative polymers. . Bioconjug. Chem. 20::178391
    [Crossref] [Google Scholar]
  91. 91.
    Kumar V, Munkhbat O, Secinti H, Thayumanavan S. 2020.. Disassembly of polymeric nanoparticles with enzyme-triggered polymer unzipping: polyelectrolyte complexes versus amphiphilic nanoassemblies. . Chem. Commun. 56::845659
    [Crossref] [Google Scholar]
  92. 92.
    Klán P, Šolomek T, Bochet CG, Blanc A, Givens R, et al. 2013.. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. . Chem. Rev. 113::11991
    [Crossref] [Google Scholar]
  93. 93.
    Liu G, Wang X, Hu J, Zhang G, Liu S. 2014.. Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. . J. Am. Chem. Soc. 136::749297
    [Crossref] [Google Scholar]
  94. 94.
    de Gracia Lux C, McFearin CL, Joshi-Barr S, Sankaranarayanan J, Fomina N, Almutairi A. 2012.. Single UV or near IR triggering event leads to polymer degradation into small molecules. . ACS Macro Lett. 1::92226
    [Crossref] [Google Scholar]
  95. 95.
    Fan B, Trant JF, Yardley RE, Pickering AJ, Lagugné-Labarthet F, Gillies ER. 2016.. Photocontrolled degradation of stimuli-responsive poly(ethyl glyoxylate): differentiating features and traceless ambient depolymerization. . Macromolecules 49::7196203
    [Crossref] [Google Scholar]
  96. 96.
    Yardley RE, Gillies ER. 2018.. Multi-stimuli-responsive self-immolative polymer assemblies. . J. Polym. Sci. A Polym. Chem. 56::186877
    [Crossref] [Google Scholar]
  97. 97.
    Liu G, Zhang G, Hu J, Wang X, Zhu M, Liu S. 2015.. Hyperbranched self-immolative polymers (hSIPs) for programmed payload delivery and ultrasensitive detection. . J. Am. Chem. Soc. 137::1164555
    [Crossref] [Google Scholar]
  98. 98.
    Yang B, Chen Y, Shi J. 2019.. Reactive oxygen species (ROS)-based nanomedicine. . Chem. Rev. 119::4881985
    [Crossref] [Google Scholar]
  99. 99.
    Lewis GG, Robbins JS, Phillips ST. 2013.. Phase-switching depolymerizable poly(carbamate) oligomers for signal amplification in quantitative time-based assays. . Macromolecules 46::517783
    [Crossref] [Google Scholar]
  100. 100.
    Jeon J, Yoon B, Dey A, Song SH, Li Y, et al. 2023.. Self-immolative polymer-based immunogenic cell death inducer for regulation of redox homeostasis. . Biomaterials 295::122064
    [Crossref] [Google Scholar]
  101. 101.
    Jeon J, You DG, Dey A, Yoon B, Li Y, Park JH. 2022.. Self-immolative polymer-based chemiluminescent nanoparticles for long-term in vivo imaging of reactive oxygen species. . Chem. Mater. 34::774149
    [Crossref] [Google Scholar]
  102. 102.
    Wang K, Xiao X, Liu Y, Zong Q, Tu Y, Yuan Y. 2022.. Self-immolative polyprodrug-based tumor-specific cascade amplificated drug release nanosystem for orchestrated synergistic cancer therapy. . Biomaterials 289::121803
    [Crossref] [Google Scholar]
  103. 103.
    Fan B, Gillies ER. 2017.. Poly(ethyl glyoxylate)-poly(ethylene oxide) nanoparticles: stimuli-responsive drug release via end-to-end polyglyoxylate depolymerization. . Mol. Pharm. 14::254859
    [Crossref] [Google Scholar]
  104. 104.
    Maher P. 2005.. The effects of stress and aging on glutathione metabolism. . Ageing Res. Rev. 4::288314
    [Crossref] [Google Scholar]
  105. 105.
    Agergaard AH, Sommerfeldt A, Pedersen SU, Birkedal H, Daasbjerg K. 2021.. Dual-responsive material based on catechol-modified self-immolative poly(disulfide) backbones. . Angew. Chem. Int. Ed. 60::2154349
    [Crossref] [Google Scholar]
  106. 106.
    Wong AD, Güngör TM, Gillies ER. 2014.. Multiresponsive azobenzene end-cap for self-immolative polymers. . ACS Macro Lett. 3::119195
    [Crossref] [Google Scholar]
  107. 107.
    Hu Y-B, Dammer EB, Ren R-J, Wang G. 2015.. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. . Transl. Neurodegener. 4::18
    [Crossref] [Google Scholar]
  108. 108.
    Esser-Kahn AP, Sottos NR, White SR, Moore JS. 2010.. Programmable microcapsules from self-immolative polymers. . J. Am. Chem. Soc. 132::102668
    [Crossref] [Google Scholar]
  109. 109.
    Xu J, Tan J, Song C, Zhang G, Hu X, Liu S. 2023.. Self-immolative amphiphilic poly(ferrocenes) for synergistic amplification of oxidative stress in tumor therapy. . Angew. Chem. Int. Ed. 62::e202303829
    [Crossref] [Google Scholar]
  110. 110.
    Yeung K, Kim H, Mohapatra H, Phillips ST. 2015.. Surface-accessible detection units in self-immolative polymers enable translation of selective molecular detection events into amplified responses in macroscopic, solid-state plastics. . J. Am. Chem. Soc. 137::532427
    [Crossref] [Google Scholar]
  111. 111.
    Kim H, Mohapatra H, Phillips ST. 2015.. Rapid, on-command debonding of stimuli-responsive cross-linked adhesives by continuous, sequential quinone methide elimination reactions. . Angew. Chem. Int. Ed. 54::1306367
    [Crossref] [Google Scholar]
  112. 112.
    Choi B, Kim JW, Choi G, Jeong S, Choi E, Kim H. 2023.. Grafting self-immolative poly(benzyl ether)s toward sustainable adhesive thermosets with reversible bonding and triggered de-bonding capabilities. . J. Mater. Chem. A 11::1053844
    [Crossref] [Google Scholar]
  113. 113.
    Fan B, Trant JF, Hemery G, Sandre O, Gillies ER. 2017.. Thermo-responsive self-immolative nanoassemblies: direct and indirect triggering. . Chem. Commun. 53::1206871
    [Crossref] [Google Scholar]
  114. 114.
    Nichol MF, Clark KD, Dolinski ND, de Alaniz JR. 2019.. Multi-stimuli responsive trigger for temporally controlled depolymerization of self-immolative polymers. . Polym. Chem. 10::491419
    [Crossref] [Google Scholar]
  115. 115.
    Gnaim S, Shabat D. 2019.. Activity-based optical sensing enabled by self-immolative scaffolds: monitoring of release events by fluorescence or chemiluminescence output. . Acc. Chem. Res. 52::280617
    [Crossref] [Google Scholar]
  116. 116.
    Lewis GG, Robbins JS, Phillips ST. 2013.. Point-of-care assay platform for quantifying active enzymes to femtomolar levels using measurements of time as the readout. . Anal. Chem. 85::104329
    [Crossref] [Google Scholar]
  117. 117.
    Shao K, Zhang W, Shen J, He Y. 2022.. Hypoxia-activated fluorescent probe based on self-immolative block copolymer. . Macromol. Biosci. 22::2100417
    [Crossref] [Google Scholar]
  118. 118.
    Grolman E, Sirianni QEA, Dunmore-Buyze J, Cruje C, Drangova M, Gillies ER. 2023.. Depolymerizing self-immolative polymeric lanthanide chelates for vascular imaging. . Acta Biomater. 169::530-41
    [Crossref] [Google Scholar]
  119. 119.
    Mavila S, Culver HR, Anderson AJ, Prieto TR, Bowman CN. 2022.. Athermal, chemically triggered release of RNA from thioester nucleic acids. . Angew. Chem. Int. Ed. 134::e202110741
    [Crossref] [Google Scholar]
  120. 120.
    Gisbert-Garzaran M, Berkmann JC, Giasafaki D, Lozano D, Spyrou K, et al. 2020.. Engineered pH-responsive mesoporous carbon nanoparticles for drug delivery. . ACS Appl. Mater. Interfaces 12::1494657
    [Crossref] [Google Scholar]
  121. 121.
    Gambles MT, Fan B, Borecki A, Gillies ER. 2018.. Hybrid polyester self-immolative polymer nanoparticles for controlled drug release. . ACS Omega 3::500211
    [Crossref] [Google Scholar]
  122. 122.
    Sirianni QE, Wang T, Borecki A, Deng Z, Ronald JA, Gillies ER. 2022.. Self-immolative polyplexes for DNA delivery. . Biomater. Sci. 10::255767
    [Crossref] [Google Scholar]
  123. 123.
    Gasparini G, Bang E-K, Molinard G, Tulumello DV, Ward S, et al. 2014.. Cellular uptake of substrate-initiated cell-penetrating poly(disulfide)s. . J. Am. Chem. Soc. 136::606974
    [Crossref] [Google Scholar]
  124. 124.
    Fu J, Yu C, Li L, Yao SQ. 2015.. Intracellular delivery of functional proteins and native drugs by cell-penetrating poly(disulfide)s. . J. Am. Chem. Soc. 137::1215360
    [Crossref] [Google Scholar]
  125. 125.
    Montasell MC, Monge P, Carmali S, Dias Loiola LM, Andersen DG, et al. 2022.. Chemical zymogens for the protein cysteinome. . Nat. Commun. 13::4861
    [Crossref] [Google Scholar]
  126. 126.
    Yang H, Shen W, Liu W, Chen L, Zhang P, et al. 2018.. PEGylated poly (α-lipoic acid) loaded with doxorubicin as a pH and reduction dual responsive nanomedicine for breast cancer therapy. . Biomacromolecules 19::4492503
    [Crossref] [Google Scholar]
  127. 127.
    Guo J, Wan T, Li B, Pan Q, Xin H, et al. 2021.. Rational design of poly(disulfide)s as a universal platform for delivery of CRISPR-Cas9 machineries toward therapeutic genome editing. . ACS Cent. Sci. 7::9901000
    [Crossref] [Google Scholar]
  128. 128.
    El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, et al. 2022.. Smart/stimuli-responsive hydrogels: cutting-edge platforms for tissue engineering and other biomedical applications. . Mater. Today Bio 13::100186
    [Crossref] [Google Scholar]
  129. 129.
    Soars S, Kamps J, Fairbanks B, Bowman C. 2021.. Stimuli-responsive depolymerization of poly(phthalaldehyde) copolymers and networks. . Macromol. Chem. Phys. 222::2100111
    [Crossref] [Google Scholar]
  130. 130.
    Soars SM, Kirkpatrick BE, Fairbanks BD, Kamps JT, Anseth KS, Bowman CN. 2022.. Synthesis, selective decoration and photocrosslinking of self-immolative poly(thioester)-PEG hydrogels. . Polym. Int. 71::90611
    [Crossref] [Google Scholar]
  131. 131.
    Gong J, Borecki A, Gillies ER. 2023.. Self-immolative hydrogels with stimulus-mediated on–off degradation. . Biomacromolecules 24::362937
    [Crossref] [Google Scholar]
  132. 132.
    Kumar V, Harris JT, Ribbe A, Franc M, Bae Y, et al. 2020.. Construction from destruction: hydrogel formation from triggered depolymerization-based release of an enzymatic catalyst. . ACS Macro Lett. 9::37781
    [Crossref] [Google Scholar]
  133. 133.
    Ito H, Willson CG. 1983.. Chemical amplification in the design of dry developing resist materials. . Polym. Eng. Sci. 23::101218
    [Crossref] [Google Scholar]
  134. 134.
    Ito H, England WP, Ueda M. 1990.. Chemical amplification based on acid-catalyzed depolymerization. . J. Photopolym. Sci. Tec. 3::21933
    [Crossref] [Google Scholar]
  135. 135.
    de Marneffe J-F, Chan BT, Spieser M, Vereecke G, Naumov S, et al. 2018.. Conversion of a patterned organic resist into a high performance inorganic hard mask for high resolution pattern transfer. . ACS Nano 12::1115260
    [Crossref] [Google Scholar]
  136. 136.
    Cheong LL, Paul P, Holzner F, Despont M, Coady DJ, et al. 2013.. Thermal probe maskless lithography for 27.5 nm half-pitch Si technology. . Nano Lett. 13::448591
    [Crossref] [Google Scholar]
  137. 137.
    Knoll AW, Pires D, Coulembier O, Dubois P, Hedrick JL, et al. 2010.. Probe-based 3-D nanolithography using self-amplified depolymerization polymers. . Adv. Mater. 22::336165
    [Crossref] [Google Scholar]
  138. 138.
    Skaug MJ, Schwemmer C, Fringes S, Rawlings CD, Knoll AW. 2018.. Nanofluidic rocking Brownian motors. . Science 359::15058
    [Crossref] [Google Scholar]
  139. 139.
    Deng J, Bailey S, Jiang S, Ober CK. 2022.. High-performance chain scissionable resists for extreme ultraviolet lithography: discovery of the photoacid generator structure and mechanism. . Chem. Mater. 34::617081
    [Crossref] [Google Scholar]
  140. 140.
    Deng J, Bailey S, Jiang S, Ober CK. 2022.. Modular synthesis of phthalaldehyde derivatives enabling access to photoacid generator-bound self-immolative polymer resists with next-generation photolithographic properties. . J. Am. Chem. Soc. 144::1950820
    [Crossref] [Google Scholar]
  141. 141.
    Deng J, Bailey S, Ai R, Delmonico A, Denbeaux G, et al. 2022.. Synthesis of end-cap enabled self-immolative photoresists for extreme ultraviolet lithography. . ACS Macro Lett. 11::104954
    [Crossref] [Google Scholar]
  142. 142.
    Heuchan SM, MacDonald JP, Bauman LA, Fan B, Henry HA, Gillies ER. 2018.. Photoinduced degradation of polymer films using polyglyoxylate–polyester blends and copolymers. . ACS Omega 3::1860312
    [Crossref] [Google Scholar]
  143. 143.
    Lloyd EM, Lopez Hernandez H, Feinberg EC, Yourdkhani M, Zen EK, et al. 2018.. Fully recyclable metastable polymers and composites. . Chem. Mater. 31::398406
    [Crossref] [Google Scholar]
  144. 144.
    Garg M, Ladd AC, Aw JE, Zhang X, Sottos NR. 2021.. Sacrificial cyclic poly(phthalaldehyde) templates for low-temperature vascularization of polymer matrices. . ACS Appl. Polym. Mater. 4::47987
    [Crossref] [Google Scholar]
  145. 145.
    Zhang Q, Shi C-Y, Qu D-H, Long Y-T, Feringa BL, Tian H. 2018.. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. . Sci. Adv. 4::eaat8192
    [Crossref] [Google Scholar]
  146. 146.
    Deng Y, Zhang Q, Shi C, Toyoda R, Qu D-H, et al. 2022.. Acylhydrazine-based reticular hydrogen bonds enable robust, tough, and dynamic supramolecular materials. . Sci. Adv. 8::eabk3286
    [Crossref] [Google Scholar]
  147. 147.
    Deng Y, Zhang Q, Qu DH, Tian H, Feringa BL. 2022.. A chemically recyclable crosslinked polymer network enabled by orthogonal dynamic covalent chemistry. . Angew. Chem. Int. Ed. 134::e202209100
    [Crossref] [Google Scholar]
  148. 148.
    Cheng Z, Zheng G, Tian Z, Chao X, Xiao Y, et al. 2022.. Multivalency for modularity: a versatile adhesive with cooperatively activated fast dismantlability. . ACS Appl. Polym. Mater. 4::681216
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-matsci-080222-104556
Loading
/content/journals/10.1146/annurev-matsci-080222-104556
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error