1932

Abstract

Polymer vesicles and lipid nanoparticles are supramolecular structures with similar physicochemical properties that are self-assembled from different amphiphilic molecules. Because of their efficient drug encapsulation capability, they are good candidates for drug delivery systems. In recent years, nanoparticles with different compositions, sizes, and morphologies have been applied to the delivery of a wide variety of different therapeutic molecules, such as nucleic acids, proteins, and enzymes; their remarkable chemical versatility allows for customization to specific biological applications. In this review, design approaches for polymer vesicles and lipid nanoparticles are summarized with representative examples in terms of their physicochemical properties (size, shape, and mechanical features), preparation strategies (film rehydration, solvent switch, and nanoprecipitation), and applications (with a focus on diagnosis, imaging, and RNA-based therapy). Finally, the challenges limiting the transition from laboratory to clinical application and future perspectives are discussed.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Polymer Vesicles and Lipid Nanoparticles
Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080222-105636
2024-08-05
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/matsci/54/1/annurev-matsci-080222-105636.html?itemId=/content/journals/10.1146/annurev-matsci-080222-105636&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lutz JF, Lehn JM, Meijer EW, Matyjaszewski K. 2016.. From precision polymers to complex materials and systems. . Nat. Rev. Mater. 1::16024
    [Crossref] [Google Scholar]
  2. 2.
    Lebleu C, Rodrigues L, Guigner J, Brûlet A, Garanger E, Lecommandoux E. 2019.. Self-assembly of PEG-b-PTMC copolymers: micelles and polymersomes size control. . Langmuir 35::1336474
    [Crossref] [Google Scholar]
  3. 3.
    Antonietti M, Förster S. 2003.. Vesicles and liposomes: a self-assembly principle beyond lipids. . Adv. Mater. 15::132333 3. Seminal perspective article highlighting the potential of nonlipid vesicles.
    [Crossref] [Google Scholar]
  4. 4.
    Gill KK, Kaddoumi A, Nazzal S. 2015.. PEG–lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication. . J. Drug Target. 23::22231
    [Crossref] [Google Scholar]
  5. 5.
    Edwardson TG, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. 2022.. Protein cages: from fundamentals to advanced applications. . Chem. Rev. 122::914597
    [Crossref] [Google Scholar]
  6. 6.
    Mendes AC, Baran ET, Reis RL, Azevedo HS. 2013.. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. . WIREs Nanomed. Nanobiotechnol. 5::582612
    [Crossref] [Google Scholar]
  7. 7.
    Ganesan P, Narayanasamy D. 2017.. Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. . Sustain. Chem. Pharm. 6::3756
    [Crossref] [Google Scholar]
  8. 8.
    Vauthier C, Bouchemal K. 2009.. Methods for the preparation and manufacture of polymeric nanoparticles. . Pharm. Res. 26::102558
    [Crossref] [Google Scholar]
  9. 9.
    Balasubramanian V, Herranz-Blanco B, Almeida PV, Hirvonen J, Santos HA. 2016.. Multifaceted polymersome platforms: spanning from self-assembly to drug delivery and protocells. . Prog. Polym. Sci. 60::5185
    [Crossref] [Google Scholar]
  10. 10.
    Liao J, Wang C, Wang Y, Luo F, Qian Z. 2012.. Recent advances in formation, properties, and applications of polymersomes. . Curr. Pharm. Des. 18::343241
    [Crossref] [Google Scholar]
  11. 11.
    El Jundi A, Buwalda SJ, Bakkour Y, Garric X, Nottelet B. 2020.. Double hydrophilic block copolymers self-assemblies in biomedical applications. . Adv. Colloid Interface Sci. 283::102213
    [Crossref] [Google Scholar]
  12. 12.
    Araste F, Aliabadi A, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. 2021.. Self-assembled polymeric vesicles: focus on polymersomes in cancer treatment. . J. Control. Release 330::50228
    [Crossref] [Google Scholar]
  13. 13.
    Borchers A, Pieler T. 2010.. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. . Genes 1::41326
    [Crossref] [Google Scholar]
  14. 14.
    Avramović N, Mandić B, Savić-Radojević A, Simić T. 2020.. Polymeric nanocarriers of drug delivery systems in cancer therapy. . Pharmaceutics 12::298
    [Crossref] [Google Scholar]
  15. 15.
    Rahimi M, Charmi G, Matyjaszewski K, Banquy X, Pietrasik J. 2021.. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. . Acta Biomater. 123::3150
    [Crossref] [Google Scholar]
  16. 16.
    Ghitman J, Biru EI, Stan R, Iovu H. 2020.. Review of hybrid PLGA nanoparticles: future of smart drug delivery and theranostics medicine. . Mater. Des. 193::108805
    [Crossref] [Google Scholar]
  17. 17.
    Sung YK, Kim SW. 2020.. Recent advances in polymeric drug delivery systems. . Biomater. Res. 24::12
    [Crossref] [Google Scholar]
  18. 18.
    Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, et al. 2021.. Solid lipid nanoparticles (SLNs): an advanced drug delivery system targeting brain through BBB. . Pharmaceutics 13::1183
    [Crossref] [Google Scholar]
  19. 19.
    Rommasi F, Esfandiari N. 2021.. Liposomal nanomedicine: applications for drug delivery in cancer therapy. . Nanoscale Res. Lett. 16::95
    [Crossref] [Google Scholar]
  20. 20.
    Mirza AZ, Siddiqui FA. 2014.. Nanomedicine and drug delivery: a mini review. . Int. Nano Lett. 4::94
    [Crossref] [Google Scholar]
  21. 21.
    Perin F, Motta A, Maniglio D. 2021.. Amphiphilic copolymers in biomedical applications: synthesis routes and property control. . Mater. Sci. Eng. C 123::111952
    [Crossref] [Google Scholar]
  22. 22.
    Duan Y, Dhar A, Patel C, Khimani M, Neogi S, et al. 2020.. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. . RSC Adv. 10::2677791
    [Crossref] [Google Scholar]
  23. 23.
    Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. 2018.. Liposomes and polymersomes: a comparative review towards cell mimicking. . Chem. Soc. Rev. 47::8572610
    [Crossref] [Google Scholar]
  24. 24.
    Kohli AG, Kierstead PH, Venditto VJ, Walsh CL, Szoka FC. 2014.. Designer lipids for drug delivery: from heads to tails. . J. Control. Release 190::27487
    [Crossref] [Google Scholar]
  25. 25.
    Maitani Y. 2011.. PEGylated lipidic systems with prolonged circulation longevity for drug delivery in cancer therapeutics. . J. Drug Deliv. Sci. Technol. 21::2734
    [Crossref] [Google Scholar]
  26. 26.
    Karayianni M, Pispas S. 2021.. Block copolymer solution self-assembly: recent advances, emerging trends, and applications. . Int. J. Polym. Sci. 59::187498
    [Crossref] [Google Scholar]
  27. 27.
    Kita-Tokarczyk K, Grumelard J, Haefele T, Meier W. 2005.. Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes. . Polymer 46::354063
    [Crossref] [Google Scholar]
  28. 28.
    Agrahari V, Agrahari V. 2018.. Advances and applications of block-copolymer-based nanoformulations. . Drug Discov. Today 23::113951
    [Crossref] [Google Scholar]
  29. 29.
    Lin Z, Liu S, Mao W, Tian H, Wang N, et al. 2017.. Tunable self-assembly of diblock copolymers into colloidal particles with triply periodic minimal surfaces. . Angew. Chem. Int. Ed. 129::724146
    [Crossref] [Google Scholar]
  30. 30.
    Discher DE, Ahmed F. 2006.. Polymersomes. . Annu. Rev. Biomed. Eng. 8::32341
    [Crossref] [Google Scholar]
  31. 31.
    Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai Y. 2020.. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. . Chem. Soc. Rev. 49::4681736
    [Crossref] [Google Scholar]
  32. 32.
    Mai Y, Eisenberg A. 2012.. Self-assembly of block copolymers. . Chem. Soc. Rev. 41::596985
    [Crossref] [Google Scholar]
  33. 33.
    Müller M. 2020.. Process-directed self-assembly of copolymers: results of and challenges for simulation studies. . Prog. Polym. Sci. 101::101198
    [Crossref] [Google Scholar]
  34. 34.
    Ridolfo R, Tavakoli S, Junnuthula V, Williams DS, Urtti A, van Hest JCM. 2020.. Exploring the impact of morphology on the properties of biodegradable nanoparticles and their diffusion in complex biological medium. . Biomacromolecules 22::12633 34. One of the few examples of a shape-defined polymer vesicle comparison study in biological media.
    [Crossref] [Google Scholar]
  35. 35.
    Ziserman L, Abezgauz L, Ramon O, Raghavan SR, Danino D. 2009.. Origins of the viscosity peak in wormlike micellar solutions. 1. Mixed catanionic surfactants. A cryo-transmission electron microscopy study. . Langmuir 25::1048389
    [Crossref] [Google Scholar]
  36. 36.
    Bleher S, Buck J, Muhl C, Sieber S, Barnert S, et al. 2019.. Poly(sarcosine) surface modification imparts stealth-like properties to liposomes. . Small 15::1904716
    [Crossref] [Google Scholar]
  37. 37.
    Zhang XY, Zhang PY. 2017.. Polymersomes in nanomedicine—a review. . Curr. Nanosci. 13::12429
    [Crossref] [Google Scholar]
  38. 38.
    Le Meins JF, Sandre O, Lecommandoux S. 2011.. Recent trends in the tuning of polymersomes’ membrane properties. . Eur. Phys. J. E 34::14
    [Crossref] [Google Scholar]
  39. 39.
    Jesorka A, Orwar O. 2008.. Liposomes: technologies and analytical applications. . Annu. Rev. Anal. Chem. 1::80132
    [Crossref] [Google Scholar]
  40. 40.
    Kansız S, Elçin YM. 2023.. Advanced liposome and polymersome-based drug delivery systems: considerations for physicochemical properties, targeting strategies and stimuli-sensitive approaches. . Adv. Colloid Interface Sci. 317::102930
    [Crossref] [Google Scholar]
  41. 41.
    Szoka F Jr., Papahadjopoulos D. 1980.. Comparative properties and methods of preparation of lipid vesicles (liposomes). . Annu. Rev. Biophys. Bioeng. 9::467508 41. Historic and widely recognized review article covering lipid micelle and liposome particles.
    [Crossref] [Google Scholar]
  42. 42.
    Buddingh’ BC, Elzinga J, van Hest JCM. 2020.. Intercellular communication between artificial cells by allosteric amplification of a molecular signal. . Nat. Commun. 11::1652
    [Crossref] [Google Scholar]
  43. 43.
    Cook AB, Novosedlik S, van Hest JCM. 2023.. Complex coacervate materials as artificial cells. . Acc. Mater. Res. 4::28798
    [Crossref] [Google Scholar]
  44. 44.
    Aibani N, Khan TN, Callan B. 2020.. Liposome mimicking polymersomes; a comparative study of the merits of polymersomes in terms of formulation and stability. . Int. J. Pharm. 2::100040
    [Google Scholar]
  45. 45.
    Che H, van Hest JCM. 2016.. Stimuli-responsive polymersomes and nanoreactors. . J. Mater. Chem. B 4::463247
    [Crossref] [Google Scholar]
  46. 46.
    Otrin L, Marušič N, Bednarz C, Vidakovic-Koch T, Lieberwirth I, et al. 2017.. Toward artificial mitochondrion: mimicking oxidative phosphorylation in polymer and hybrid membranes. . Nano Lett. 17::681621
    [Crossref] [Google Scholar]
  47. 47.
    Guinart A, Korpidou M, Doellerer D, Pacella G, Stuart MC, et al. 2023.. Synthetic molecular motor activates drug delivery from polymersomes. . PNAS . 120::e2301279120 47. The first report of molecular motor use in a responsive polymer-based drug delivery system.
    [Crossref] [Google Scholar]
  48. 48.
    Groeer S, Garni M, Samanta A, Walther A. 2022.. Insertion of 3D DNA origami nanopores into block copolymer vesicles. . ChemSusChem 4::e202200009
    [Google Scholar]
  49. 49.
    Lu Y, Zhang E, Yang J, Cao Z. 2018.. Strategies to improve micelle stability for drug delivery. . Nano Res. 11::498598
    [Crossref] [Google Scholar]
  50. 50.
    Fox ME, Szoka FC, Fréchet JM. 2009.. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. . Acc. Chem. Res. 42::114151
    [Crossref] [Google Scholar]
  51. 51.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC. 2008.. Factors affecting the clearance and biodistribution of polymeric nanoparticles. . Mol. Pharm. 5::50515
    [Crossref] [Google Scholar]
  52. 52.
    Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX. 2022.. Lipid nanoparticles for drug delivery. . Adv. Nanobiomed. Res. 2::2100109
    [Crossref] [Google Scholar]
  53. 53.
    Raza A, Sime FB, Cabot PJ, Maqbool F, Roberts JA, Falconer JR. 2019.. Solid nanoparticles for oral antimicrobial drug delivery: a review. . Drug Discov. Today 24::85866
    [Crossref] [Google Scholar]
  54. 54.
    Wang Y, Feng L, Wang S. 2019.. Conjugated polymer nanoparticles for imaging, cell activity regulation, and therapy. . Adv. Funct. Mater. 29::1806818
    [Crossref] [Google Scholar]
  55. 55.
    Han X, Zhang H, Butowska K, Swingle KL, Alameh MG, et al. 2021.. An ionizable lipid toolbox for RNA delivery. . Nat. Commun. 12::7233
    [Crossref] [Google Scholar]
  56. 56.
    Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, et al. 2021.. Cytosolic delivery of nucleic acids: the case of ionizable lipid nanoparticles. . Bioeng. Transl. Med. 6::e10213
    [Crossref] [Google Scholar]
  57. 57.
    Feng H, Lu X, Wang W, Kang NG, Mays JW. 2017.. Block copolymers: synthesis, self-assembly, and applications. . Polymers 9::494
    [Crossref] [Google Scholar]
  58. 58.
    Matsuo Y, Konno R, Ishizone T, Goseki R, Hirao A. 2013.. Precise synthesis of block polymers composed of three or more blocks by specially designed linking methodologies in conjunction with living anionic polymerization system. . Polymers 5::101240
    [Crossref] [Google Scholar]
  59. 59.
    Dey A, Haldar U, De P. 2021.. Block copolymer synthesis by the combination of living cationic polymerization and other polymerization methods. . Front. Chem. 9::644547
    [Crossref] [Google Scholar]
  60. 60.
    Orilall MC, Wiesner U. 2011.. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells. . Chem. Soc. Rev. 40::52035
    [Crossref] [Google Scholar]
  61. 61.
    Li C, Tang Y, Armes SP, Morris CJ, Rose SF, et al. 2005.. Synthesis and characterization of biocompatible thermo-responsive gelators based on ABA triblock copolymers. . Biomacromolecules 6::99499
    [Crossref] [Google Scholar]
  62. 62.
    Matyjaszewski K, Xia J. 2001.. Atom transfer radical polymerization. . Chem. Rev. 101::292190
    [Crossref] [Google Scholar]
  63. 63.
    Perrier S. 2017.. 50th anniversary perspective: RAFT polymerization—a user guide. . Macromolecules 50::743347
    [Crossref] [Google Scholar]
  64. 64.
    Tanaka J, Gurnani P, Cook AB, Häkkinen S, Zhang J, et al. 2019.. Microscale synthesis of multiblock copolymers using ultrafast RAFT polymerisation. . Polym. Chem. 10::118691
    [Crossref] [Google Scholar]
  65. 65.
    Moriceau G, Tanaka J, Lester D, Pappas GS, Cook AB, et al. 2019.. Influence of grafting density and distribution on material properties using well-defined alkyl functional poly(styrene-co-maleic anhydride) architectures synthesized by RAFT. . Macromolecules 52::146978
    [Crossref] [Google Scholar]
  66. 66.
    Nothling MD, Fu Q, Reyhani A, Allison-Logan S, Jung K, et al. 2020.. Progress and perspectives beyond traditional RAFT polymerization. . Adv. Sci. 7::2001656
    [Crossref] [Google Scholar]
  67. 67.
    Truong NP, Jones GR, Bradford KG, Konkolewicz D, Anastasaki A. 2021.. A comparison of RAFT and ATRP methods for controlled radical polymerization. . Nat. Rev. Chem. 5::85969
    [Crossref] [Google Scholar]
  68. 68.
    Nuyken O, Pask SD. 2013.. Ring-opening polymerization—an introductory review. . Polymers 5::361403
    [Crossref] [Google Scholar]
  69. 69.
    Rodrigues PR, Vieira RP. 2019.. Advances in atom-transfer radical polymerization for drug delivery applications. . Eur. Polym. J. 115::4558
    [Crossref] [Google Scholar]
  70. 70.
    Xian C, Yuan Q, Bao Z, Liu G, Wu J. 2020.. Progress on intelligent hydrogels based on RAFT polymerization: design strategy, fabrication and the applications for controlled drug delivery. . Chin. Chem. Lett. 31::1927
    [Crossref] [Google Scholar]
  71. 71.
    Tenchov R, Bird R, Curtze AE, Zhou Q. 2021.. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. . ACS Nano 15::169827015
    [Crossref] [Google Scholar]
  72. 72.
    Müller RH, Mäder K, Gohla S. 2000.. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. . Eur. J. Pharm. Sci. 50::16177
    [Google Scholar]
  73. 73.
    Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR, Surana SJ. 2013.. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. . Drug Deliv. 20::4756
    [Crossref] [Google Scholar]
  74. 74.
    Cho HJ, Park JW, Yoon IS, Kim DD. 2014.. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. . Int. J. Nanomed. 9::495504
    [Google Scholar]
  75. 75.
    Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JEN, Omidfar K. 2014.. Drug targeting using solid lipid nanoparticles. . Chem. Phys. Lipids 181::5661
    [Crossref] [Google Scholar]
  76. 76.
    Barenholz YC. 2012.. Doxil®—the first FDA-approved nano-drug: lessons learned. . J. Control. Release 160::11734
    [Crossref] [Google Scholar]
  77. 77.
    Zhang N, Chen H, Fan Y, Zhou L, Trépout S, et al. 2018.. Fluorescent polymersomes with aggregation-induced emission. . ACS Nano 12::402535
    [Crossref] [Google Scholar]
  78. 78.
    Che H, Zhu Y, Cao S, Huo M, van Hest JCM. 2023.. Recent advances in permeable polymersomes: fabrication, responsiveness, and applications. . Chem. Sci. 14::741137
    [Crossref] [Google Scholar]
  79. 79.
    Guo X, Wang L, Wei X, Zhou S. 2016.. Polymer-based drug delivery systems for cancer treatment. . J. Polym. Sci. A Polym. Chem. 54::352550
    [Crossref] [Google Scholar]
  80. 80.
    Kim KT, Zhu J, Meeuwissen SA, Cornelissen JJ, Pochan DJ, et al. 2010.. Polymersome stoma-tocytes: controlled shape transformation in polymer vesicles. . J. Am. Chem. Soc. 132::1252224 80. The first study to report a general method for preparation of bowl-shaped polymersomes.
    [Crossref] [Google Scholar]
  81. 81.
    Abdelmohsen LK, Williams DS, Pille J, Ozel SG, Rikken RS, et al. 2016.. Formation of well-defined, functional nanotubes via osmotically induced shape transformation of biodegradable polymersomes. . J. Am. Chem. Soc. 138::935356
    [Crossref] [Google Scholar]
  82. 82.
    Shao J, Cao S, Che H, De Martino MT, Wu H, et al. 2022.. Twin-engine Janus supramolecular nanomotors with counterbalanced motion. . J. Am. Chem. Soc. 144::1124652
    [Crossref] [Google Scholar]
  83. 83.
    Oerlemans RAJF, Shao J, Huisman SGAM, Li Y, Abdelmohsen LKEA, van Hest JCM. 2023.. Compartmentalized intracellular click chemistry with biodegradable polymersomes. . Macromol. Rapid Commun. 44::2200904
    [Crossref] [Google Scholar]
  84. 84.
    Cao S, Xia Y, Shao J, Guo B, Dong Y, et al. 2021.. Biodegradable polymersomes with structure inherent fluorescence and targeting capacity for enhanced photodynamic therapy. . Angew. Chem. Int. Ed. 60::1762937
    [Crossref] [Google Scholar]
  85. 85.
    Cao S, Shao J, Wu H, Song S, De Martino MT, et al. 2021.. Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy. . Nat. Commun. 12::2077 85. The first publication describing functional hybrid nanomotors from AIE polymersomes for enhanced phototherapy.
    [Crossref] [Google Scholar]
  86. 86.
    Van den Akker WP, Wu H, Welzen PLW, Friedrich H, Abdelmohsen LKEA, et al. 2023.. Nonlinear transient permeability in pH-responsive bicontinuous nanospheres. . J. Am. Chem. Soc. 145::86008
    [Crossref] [Google Scholar]
  87. 87.
    Majumder N, Das NG, Das SK. 2020.. Polymeric micelles for anticancer drug delivery. . Ther. Deliv. 11::61335
    [Crossref] [Google Scholar]
  88. 88.
    Ahmad Z, Shah A, Siddiq M, Kraatz HB. 2014.. Polymeric micelles as drug delivery vehicles. . RSC Adv. 4::1702838
    [Crossref] [Google Scholar]
  89. 89.
    Rijcken CJF, De Lorenzi F, Biancacci I, Hanssen RGJM, Thewissen M, et al. 2022.. Design, development and clinical translation of CriPec®-based core-crosslinked polymeric micelles. . Adv. Drug Deliv. Rev. 191::114613
    [Crossref] [Google Scholar]
  90. 90.
    Bauer TA, Schramm J, Fenaroli F, Siemer S, Seidl CI, et al. 2023.. Complex structures made simple – continuous flow production of core cross-linked polymeric micelles for paclitaxel pro-drug-delivery. . Adv. Mater. 35::2210704
    [Crossref] [Google Scholar]
  91. 91.
    Kataoka K, Harada A, Nagasaki Y. 2012.. Block copolymer micelles for drug delivery: design, characterization and biological significance. . Adv. Drug Deliv. Rev. 64:(Suppl.):3748
    [Crossref] [Google Scholar]
  92. 92.
    Gurnani P, Perrier S. 2020.. Controlled radical polymerization in dispersed systems for biological applications. . Prog. Polym. Sci. 102::101209
    [Crossref] [Google Scholar]
  93. 93.
    Gurnani P, Cook AB, Richardson RA, Perrier S. 2019.. A study on the preparation of alkyne functional nanoparticles via RAFT emulsion polymerisation. . Polym. Chem. 10::145259
    [Crossref] [Google Scholar]
  94. 94.
    Van Vlerken LE, Amiji MM. 2006.. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. . Expert Opin. Drug Deliv. 3::20516
    [Crossref] [Google Scholar]
  95. 95.
    Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. 2019.. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. . Nano-Struct. Nano-Objects 20::100397
    [Crossref] [Google Scholar]
  96. 96.
    Evers MJW, van de Wakker SI, de Groot EM, de Jong OG, Gitz-François JJJ, et al. 2022.. Functional siRNA delivery by extracellular vesicle-liposome hybrid nanoparticles. . Adv. Healthc. Mater. 11::2101202
    [Crossref] [Google Scholar]
  97. 97.
    Mason AF, Yewdall NA, Welzen PL, Shao J, van Stevendaal M, et al. 2019.. Mimicking cellular compartmentalization in a hierarchical protocell through spontaneous spatial organization. . ACS Cent. Sci. 5::136065
    [Crossref] [Google Scholar]
  98. 98.
    Ould-Ouali L, Noppe M, Langlois X, Willems B, Te Riele P, et al. 2005.. Self-assembling PEG-p(CL-co-TMC) copolymers for oral delivery of poorly water-soluble drugs: a case study with risperidone. . J. Control. Release 102::65768
    [Crossref] [Google Scholar]
  99. 99.
    Li J, Pu K. 2019.. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. . Chem. Soc. Rev. 48::3871
    [Crossref] [Google Scholar]
  100. 100.
    Huang S, Kannadorai RK, Chen Y, Liu Q, Wang M. 2015.. A narrow-bandgap benzobisthiadiazole derivative with high near-infrared photothermal conversion efficiency and robust photostability for cancer therapy. . Chem. Commun. 51::422326
    [Crossref] [Google Scholar]
  101. 101.
    Dou Y, Wang B, Jin M, Yu Y, Zhou G, Shui L. 2017.. A review on self-assembly in microfluidic devices. . J. Micromech. Microeng. 27::113002
    [Crossref] [Google Scholar]
  102. 102.
    Khor SY, Quinn JF, Whittaker MR, Truong NP, Davis TP. 2019.. Controlling nanomaterial size and shape for biomedical applications via polymerization-induced self-assembly. . Macromol. Rapid Commun. 40::1800438
    [Crossref] [Google Scholar]
  103. 103.
    D'Agosto F, Rieger J, Lansalot M. 2020.. RAFT-mediated polymerization-induced self-assembly. . Angew. Chem. Int. Ed. 59::836892
    [Crossref] [Google Scholar]
  104. 104.
    Deng Y, Ling J, Li MH. 2018.. Physical stimuli-responsive liposomes and polymersomes as drug delivery vehicles based on phase transitions in the membrane. . Nanoscale 10::6781800
    [Crossref] [Google Scholar]
  105. 105.
    Duan X, Li Y. 2013.. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. . Small 9::152132
    [Crossref] [Google Scholar]
  106. 106.
    Discher DE, Ortiz V, Srinivas G, Klein ML, Kim Y, et al. 2007.. Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. . Prog. Polym. Sci. 32::83857
    [Crossref] [Google Scholar]
  107. 107.
    Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. 2021.. Targeted drug delivery strategies for precision medicines. . Nat. Rev. Mater. 6::35170
    [Crossref] [Google Scholar]
  108. 108.
    Leong J, Teo JY, Aakalu VK, Yang YY, Kong H. 2018.. Engineering polymersomes for diagnostics and therapy. . Adv. Healthc. Mater. 7::1701276
    [Crossref] [Google Scholar]
  109. 109.
    Cook AB, Decuzzi P. 2021.. Harnessing endogenous stimuli for responsive materials in theranostics. . ACS Nano 15::206898
    [Crossref] [Google Scholar]
  110. 110.
    Fang F, Li M, Zhang J, Lee CS. 2020.. Different strategies for organic nanoparticle preparation in biomedicine. . ACS Mater. Lett. 2::53149
    [Crossref] [Google Scholar]
  111. 111.
    Changalvaie B, Han S, Moaseri E, Scaletti F, Truong L, et al. 2019.. Indocyanine green J aggregates in polymersomes for near-infrared photoacoustic imaging. . ACS Appl. Mater. Interfaces 11::4643750
    [Crossref] [Google Scholar]
  112. 112.
    Liu Y, Wang H, Li S, Chen C, Xu L, et al. 2020.. In situ supramolecular polymerization-enhanced self-assembly of polymer vesicles for highly efficient photothermal therapy. . Nat. Commun. 11::1724 112. Demonstration of photothermal polymersomes from hyperbranched polyporphyrins for efficient photothermal therapy.
    [Crossref] [Google Scholar]
  113. 113.
    Chakraborty S, Dhakshinamurthy GS, Misra SK. 2017.. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. . J. Biomed. Mater. Res. 105::290628
    [Crossref] [Google Scholar]
  114. 114.
    Blanco E, Shen H, Ferrari M. 2015.. Principles of nanoparticle design for overcoming biological barriers to drug delivery. . Nat. Biotechnol. 33::94151
    [Crossref] [Google Scholar]
  115. 115.
    Stylianopoulos T, Poh MZ, Insin N, Bawendi MG, Fukumura D, Munn LL, Jain RK. 2010.. Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. . Biophys. J. 99::134249
    [Crossref] [Google Scholar]
  116. 116.
    Chen B, Wang Z, Sun J, Song Q, He B, et al. 2016.. A tenascin C targeted nanoliposome with navitoclax for specifically eradicating of cancer-associated fibroblasts. . Nanomed. Nanotechnol. Biol. Med. 12::13141
    [Crossref] [Google Scholar]
  117. 117.
    Schrijver DP, Röring RJ, Deckers J, de Dreu A, Toner YC, et al. 2023.. Resolving sepsis-induced immunoparalysis via trained immunity by targeting interleukin-4 to myeloid cells. . Nat. Biomed. Eng. 7::1097112
    [Crossref] [Google Scholar]
  118. 118.
    Zou Y, Zheng M, Yang W, Meng F, Miyata K, et al. 2017.. Virus-mimicking chimaeric polymersomes boost targeted cancer siRNA therapy in vivo. . Adv. Mater. 29::1703285
    [Crossref] [Google Scholar]
  119. 119.
    Sabnis S, Kumarasinghe ES, Salerno T, Mihai C, Ketova T, et al. 2018.. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. . Mol. Ther. 26::150919
    [Crossref] [Google Scholar]
  120. 120.
    Adityan S, Tran M, Bhavsar C, Wu SY. 2020.. Nano-therapeutics for modulating the tumour microenvironment: design, development, and clinical translation. . J. Control. Release 327::51232
    [Crossref] [Google Scholar]
  121. 121.
    Hu J, Wu W, Qin Y, Liu C, Wei P, et al. 2020.. Fabrication of glyco-meta-organic frameworks for targeted interventional photodynamic/chemotherapy for hepatocellular carcinoma through percutaneous transperitoneal puncture. . Adv. Funct. Mater. 30::1910084
    [Crossref] [Google Scholar]
  122. 122.
    Wang J, Hu S, Mao W, Xiang J, Zhou Z, et al. 2019.. Assemblies of peptide-cytotoxin conjugates for tumor-homing chemotherapy. . Adv. Funct. Mater. 29::1807446
    [Crossref] [Google Scholar]
  123. 123.
    Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, et al. 2021.. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. . Int. J. Pharm. 601::120586
    [Crossref] [Google Scholar]
  124. 124.
    Hattori Y, Tamaki K, Ozaki KI, Kawano K, Onishi H. 2019.. Optimized combination of cationic lipids and neutral helper lipids in cationic liposomes for siRNA delivery into the lung by intravenous injection of siRNA lipoplexes. . J. Drug Deliv. Sci. Technol. 52::104250
    [Crossref] [Google Scholar]
  125. 125.
    Malone RW, Felgner PL, Verma IM. 1989.. Cationic liposome-mediated RNA transfection. . PNAS 86::607781
    [Crossref] [Google Scholar]
  126. 126.
    Fraley RT, Fornari CS, Kaplan S. 1979.. Entrapment of a bacterial plasmid in phospholipid vesicles: potential for gene transfer. . PNAS 76::334852
    [Crossref] [Google Scholar]
  127. 127.
    Chonn A, Cullis PR. 1995.. Recent advances in liposomal drug-delivery systems. . Curr. Opin. Biotechnol. 6::698708
    [Crossref] [Google Scholar]
  128. 128.
    Welzen PLW, Martinez Ciriano SW, Cao S, Mason AF, Welzen-Pijpers IAB, van Hest JCM. 2021.. Reversibly self-assembled pH-responsive PEG-p(CL-g-TMC) polymersomes. . Int. J. Polym. Sci. 59::124152
    [Crossref] [Google Scholar]
  129. 129.
    Li W, Huang Z, MacKay JA, Grube S, Szoka FC Jr. 2005.. Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. . J. Gene Med. 7::6779
    [Crossref] [Google Scholar]
  130. 130.
    Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN. 1997.. Improved DNA: liposome complexes for increased systemic delivery and gene expression. . Nat. Biotechnol. 15::64752
    [Crossref] [Google Scholar]
  131. 131.
    Kulkarni JA, Witzigmann D, Leung J, Tam YYC, Cullis PR. 2019.. On the role of helper lipids in lipid nanoparticle formulations of siRNA. . Nanoscale 11::2173339
    [Crossref] [Google Scholar]
  132. 132.
    Belliveau NM, Huft J, Lin PJ, Chen S, Leung AK, et al. 2012.. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. . Mol. Ther. Nucleic Acids 1::E37
    [Crossref] [Google Scholar]
  133. 133.
    Pangburn TO, Georgiou K, Bates FS, Kokkoli E. 2012.. Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon Orai3 protein expression. . Langmuir 28::1281630
    [Crossref] [Google Scholar]
  134. 134.
    Kim Y, Tewari M, Pajerowski JD, Cai S, Sen S, et al. 2009.. Polymersome delivery of siRNA and antisense oligonucleotides. . J. Control. Release 134::13240 134. Article describing the elegant use of polymersomes for the delivery of siRNA and antisense oligonucleotides.
    [Crossref] [Google Scholar]
  135. 135.
    Ruiz-Pérez L, Messager L, Gaitzsch J, Joseph A, Sutto L, et al. 2016.. Molecular engineering of polymersome surface topology. . Sci. Adv. 2::e1500948
    [Crossref] [Google Scholar]
  136. 136.
    Acosta-Gutiérrez S, Matias D, Avila-Olias M, Gouveia VM, Scarpa E, et al. 2022.. A multiscale study of phosphorylcholine driven cellular phenotypic targeting. . ACS Cent. Sci. 8::891904
    [Crossref] [Google Scholar]
  137. 137.
    Cook AB, Peltier R, Zhang J, Gurnani P, Tanaka J, et al. 2019.. Hyperbranched poly(ethylenimine-co-oxazoline) by thiolyne chemistry for non-viral gene delivery: investigating the role of polymer architecture. . Polym. Chem. 10::120212
    [Crossref] [Google Scholar]
  138. 138.
    Ornelas-Megiatto C, Wich PR, Fréchet JM. 2012.. Polyphosphonium polymers for siRNA delivery: an efficient and nontoxic alternative to polyammonium carriers. . J. Am. Chem. Soc. 134::19025
    [Crossref] [Google Scholar]
  139. 139.
    Hanson MG, Grimme CJ, Kreofsky NW, Panda S, Reineke TM. 2023.. Blended block polycation micelles enhance antisense oligonucleotide delivery. . Bioconjug. Chem. 34::141828
    [Crossref] [Google Scholar]
  140. 140.
    Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, et al. 2021.. Polymeric delivery of therapeutic nucleic acids. . Chem. Rev. 121::11527652
    [Crossref] [Google Scholar]
  141. 141.
    Cook AB, Peltier R, Hartlieb M, Whitfield R, Moriceau G, et al. 2018.. Cationic and hydrolysable branched polymers by RAFT for complexation and controlled release of dsRNA. . Polym. Chem. 9::402535
    [Crossref] [Google Scholar]
  142. 142.
    Cook MT, Haddow P, Kirton SB, McAuley WJ. 2021.. Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare. . Adv. Funct. Mater. 31::2008123
    [Crossref] [Google Scholar]
  143. 143.
    Cook AB, Perrier S. 2020.. Branched and dendritic polymer architectures: functional nanomaterials for therapeutic delivery. . Adv. Funct. Mater. 30::1901001
    [Crossref] [Google Scholar]
  144. 144.
    Pack DW, Hoffman AS, Pun S, Stayton PS. 2005.. Design and development of polymers for gene delivery. . Nat. Rev. Drug Discov. 4::58193
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-matsci-080222-105636
Loading
/content/journals/10.1146/annurev-matsci-080222-105636
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error