1932

Abstract

Steel production accounts for approximately 8% of all global CO emissions, with the primary steelmaking route using iron ores contributing approximately 80% of those emissions, mainly due to the use of fossil-based reductants and fuel. Hydrogen-based reduction of iron oxide is an alternative for primary synthesis. However, to counteract global warming, decarbonization of the steel sector must proceed much faster than the ongoing transition kinetics in primary steelmaking. Insufficient supply of green hydrogen is a particular bottleneck. Realizing a higher fraction of secondary steelmaking is thus gaining momentum as a sustainable alternative to primary production. Steel production from scrap is well established for long products (rails, bars, wire), but there are two main challenges. First, there is not sufficient scrap available to satisfy market needs. Today, only one-third of global steel demand can be met by secondary metallurgy using scrap since many steel products have a lifetime of several decades. However, scrap availability will increase to about two-thirds of total demand by 2050 such that this sector will grow massively in the next decades. Second, scrap is often too contaminated to produce high-performance sheet steels. This is a serious obstacle because advanced products demand explicit low-tolerance specifications for safety-critical and high-strength steels, such as for electric vehicles, energy conversion and grids, high-speed trains, sustainable buildings, and infrastructure. Therefore, we review the metallurgical and microstructural challenges and opportunities for producing high-performance sheet steels via secondary synthesis. Focus is placed on the thermodynamic, kinetic, chemical, and microstructural fundamentals as well as the effects of scrap-related impurities on steel properties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080222-123648
2024-08-05
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/matsci/54/1/annurev-matsci-080222-123648.html?itemId=/content/journals/10.1146/annurev-matsci-080222-123648&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Raabe D, Tasan CC, Olivetti EA. 2019.. Strategies for improving the sustainability of structural metals. . Nature 575:(7781):6474
    [Crossref] [Google Scholar]
  2. 2.
    World Steel Assoc. 2023.. 2023 World steel in figures. . World Steel Association. https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2023/
    [Google Scholar]
  3. 3.
    Raabe D. 2023.. The materials science behind sustainable metals and alloys. . Chem. Rev. 123:(5):2436608
    [Crossref] [Google Scholar]
  4. 4.
    Allwood JM, Cullen JM, Milford RL. 2010.. Options for achieving a 50% cut in industrial carbon emissions by 2050. . Environ. Sci. Technol. 44:(6):188894
    [Crossref] [Google Scholar]
  5. 5.
    Allwood JM, Cullen JM, McBrien M, Milford RL, Carruth MA, et al. 2011.. Sustainable Materials: With Both Eyes Open. Cambridge, UK:: UIT Cambridge Ltd.
    [Google Scholar]
  6. 6.
    Ma Y, Souza Filho IR, Zhang X, Nandy S, Barriobero-Vila P, et al. 2022.. Hydrogen-based direct reduction of iron oxide at 700°C: heterogeneity at pellet and microstructure scales. . Int. J. Miner. Metall. Mater. 29:(10):19017
    [Crossref] [Google Scholar]
  7. 7.
    Vogl V, Åhman M. 2019.. What is green steel? Towards a strategic decision tool for decarbonising EU steel. . Proc. 4th ESTAD 2019::P532
    [Google Scholar]
  8. 8.
    Ma Y, Souza Filho IR, Bai Y, Schenk J, Patisson F, et al. 2022.. Hierarchical nature of hydrogen-based direct reduction of iron oxides. . Scr. Mater. 213::114571
    [Crossref] [Google Scholar]
  9. 9.
    Arens M, Worrell E, Eichhammer W, Hasanbeigi A, Zhang Q. 2017.. Pathways to a low-carbon iron and steel industry in the medium-term – the case of Germany. . J. Clean. Prod. 163::8498
    [Crossref] [Google Scholar]
  10. 10.
    Cavaliere P. 2022.. Flash ironmaking. . In Hydrogen Assisted Direct Reduction of Iron Oxides, pp. 33957. Cham, Switz:.: Springer
    [Google Scholar]
  11. 11.
    Ma Y, Bae JW, Kim S-H, Jovičević-Klug M, Li K, et al. 2023.. Reducing iron oxide with ammonia: a sustainable path to green steel. . Adv. Sci. 10::2300111
    [Crossref] [Google Scholar]
  12. 12.
    Souza Filho IR, Springer H, Ma Y, Mahajan A, da Silva CC, et al. 2022.. Green steel at its crossroads: hybrid hydrogen-based reduction of iron ores. . J. Clean. Prod. 340::130805
    [Crossref] [Google Scholar]
  13. 13.
    Åhman M, Olsson O, Vogl V, Nyqvist B, Maltais A, et al. 2018.. Hydrogen steelmaking for a low-carbon economy. Work. Pap. 2018-07 , Stockh. Environ. Inst., Stockh., Swed:.
    [Google Scholar]
  14. 14.
    Souza Filho IR, Ma Y, Kulse M, Ponge D, Gault B, et al. 2021.. Sustainable steel through hydrogen plasma reduction of iron ore: process, kinetics, microstructure, chemistry. . Acta Mater. 213::116971
    [Crossref] [Google Scholar]
  15. 15.
    Allanore A, Lavelaine H, Valentin G, Birat JP, Lapicque F. 2008.. Iron metal production by bulk electrolysis of iron ore particles in aqueous media. . J. Electrochem. Soc. 155:(9):E125
    [Crossref] [Google Scholar]
  16. 16.
    Allanore A, Lavelaine H, Valentin G, Birat JP, Delcroix P, Lapicque F. 2010.. Observation and modeling of the reduction of hematite particles to metal in alkaline solution by electrolysis. . Electrochim. Acta. 55:(12):400713
    [Crossref] [Google Scholar]
  17. 17.
    Holappa L. 2020.. A general vision for reduction of energy consumption and CO2 emissions from the steel industry. . Metals 10:(9):1117
    [Crossref] [Google Scholar]
  18. 18.
    Lechtenböhmer S, Schneider C, Roche MY, Höller S. 2015.. Re-industrialisation and low-carbon economy—can they go together? Results from stakeholder-based scenarios for energy-intensive industries in the German state of North Rhine Westphalia. . Energies 8:(10):1140429
    [Crossref] [Google Scholar]
  19. 19.
    Lan C, Hao Y, Shao J, Zhang S, Liu R, Lyu Q. 2022.. Effect of H2 on blast furnace ironmaking: a review. . Metals 12:(11):1864
    [Crossref] [Google Scholar]
  20. 20.
    Weigel M, Fischedick M, Marzinkowski J, Winzer P. 2016.. Multicriteria analysis of primary steelmaking technologies. . J. Clean. Prod. 112::106476
    [Crossref] [Google Scholar]
  21. 21.
    Leeson D, Mac Dowell N, Shah N, Petit C, Fennell PS. 2017.. A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. . Int. J. Greenh. Gas Control 61::7184
    [Crossref] [Google Scholar]
  22. 22.
    Rissman J, Bataille C, Masanet E, Aden N, Morrow WR, et al. 2020.. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. . Appl. Energy. 266::114848
    [Crossref] [Google Scholar]
  23. 23.
    Philibert C. 2019.. Direct and indirect electrification of industry and beyond. . Oxford Rev. Econ. Policy. 35:(2):197217
    [Crossref] [Google Scholar]
  24. 24.
    Züttel A, Remhof A, Borgschulte A, Friedrichs O. 2010.. Hydrogen: the future energy carrier. . Philos. Trans. R. Soc. A 368::332942
    [Crossref] [Google Scholar]
  25. 25.
    Hertwich EG, Ali S, Ciacci L, Fishman T, Heeren N, et al. 2019.. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. . Environ. Res. Lett. 14:(4):043004
    [Crossref] [Google Scholar]
  26. 26.
    Fruehan RJ. 2009.. Research on sustainable steelmaking. . Metall. Mater. Trans. B 40:(2):12333
    [Crossref] [Google Scholar]
  27. 27.
    de Souza JFT, Pacca SA. 2021.. Carbon reduction potential and costs through circular bioeconomy in the Brazilian steel industry. . Resour. Conserv. Recycl. 169::105517
    [Crossref] [Google Scholar]
  28. 28.
    Kuramochi T. 2016.. Assessment of midterm CO2 emissions reduction potential in the iron and steel industry: a case of Japan. . J. Clean. Prod. 132::8197
    [Crossref] [Google Scholar]
  29. 29.
    Fan Z, Friedmann SJ. 2021.. Low-carbon production of iron and steel: technology options, economic assessment, and policy. . Joule 5:(4):82962
    [Crossref] [Google Scholar]
  30. 30.
    Zhao J, Zuo H, Wang Y, Wang J, Xue Q. 2020.. Review of green and low-carbon ironmaking technology. . Ironmak. Steelmak. 47:(3):296306
    [Crossref] [Google Scholar]
  31. 31.
    Broadbent C. 2016.. Steel's recyclability: demonstrating the benefits of recycling steel to achieve a circular economy. . Int. J. Life Cycle Assess. 21:(11):165865
    [Crossref] [Google Scholar]
  32. 32.
    Wang P, Ryberg M, Yang Y, Feng K, Kara S, et al. 2021.. Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts. . Nat. Commun. 12:(1):2066
    [Crossref] [Google Scholar]
  33. 33.
    Graedel TE, Harper EM, Nassar NT, Reck BK. 2015.. On the materials basis of modern society. . PNAS 112:(20):6295300
    [Crossref] [Google Scholar]
  34. 34.
    Sandberg E, Lennox B, Undvall P. 2007.. Scrap management by statistical evaluation of EAF process data. . Control Eng. Pract. 15:(9):106375
    [Crossref] [Google Scholar]
  35. 35.
    Çiftçi BB. 2018.. The future of global scrap availability. . World Steel Association. https://worldsteel.org/media-centre/blog/2018/future-of-global-scrap-availability/
    [Google Scholar]
  36. 36.
    Oda J, Akimoto K, Tomoda T. 2013.. Long-term global availability of steel scrap. . Resour. Conserv. Recycl. 81::8191
    [Crossref] [Google Scholar]
  37. 37.
    Morfeldt J, Nijs W, Silveira S. 2015.. The impact of climate targets on future steel production – an analysis based on a global energy system model. . J. Clean. Prod. 103::46982
    [Crossref] [Google Scholar]
  38. 38.
    World Steel Assoc. 2018.. Is it time for China to switch to electric arc furnace steelmaking?. World Steel Association. https://worldsteel.org/media-centre/blog/2018/is-it-time-for-china-to-switch-to-eaf-steelmaking/
    [Google Scholar]
  39. 39.
    Boldrini A, Koolen D, Crijns-Graus W, Worrell E, van den Broek M. 2024.. Flexibility options in a decarbonising iron and steel industry. . Renew. Sustain. Energy Rev. 189::113988
    [Crossref] [Google Scholar]
  40. 40.
    World Steel Assoc. 2023.. Steelthe permanent material in the circular economy. Rep., World Steel Assoc., Brussels, Belgium:
    [Google Scholar]
  41. 41.
    Hu R, Zhang C. 2017.. Discussion on energy conservation strategies for steel industry: based on a Chinese firm. . J. Clean. Prod. 166::6680
    [Crossref] [Google Scholar]
  42. 42.
    Shatokha V. 2016.. Environmental sustainability of the iron and steel industry: towards reaching the climate goals. . Eur. J. Sustain. Dev. 5:(4):289300
    [Crossref] [Google Scholar]
  43. 43.
    He K, Wang L. 2017.. A review of energy use and energy-efficient technologies for the iron and steel industry. . Renew. Sustain. Energy Rev. 70::102239
    [Crossref] [Google Scholar]
  44. 44.
    Milford RL, Pauliuk S, Allwood JM, Müller DB. 2013.. The roles of energy and material efficiency in meeting steel industry CO2 targets. . Environ. Sci. Technol. 47:(7):345562
    [Crossref] [Google Scholar]
  45. 45.
    Pauliuk S, Milford RL, Müller DB, Allwood JM. 2013.. The steel scrap age. . Environ. Sci. Technol. 47:(7):344854
    [Crossref] [Google Scholar]
  46. 46.
    Pauliuk S, Kondo Y, Nakamura S, Nakajima K. 2017.. Regional distribution and losses of end-of-life steel throughout multiple product life cycles—insights from the global multiregional MaTrace model. . Resour. Conserv. Recycl. 116::8493
    [Crossref] [Google Scholar]
  47. 47.
    Panasiuk D, Daigo I, Hoshino T, Hayashi H, Yamasue E, et al. 2022.. International comparison of impurities mixing and accumulation in steel scrap. . J. Ind. Ecol. 26:(3):104050
    [Crossref] [Google Scholar]
  48. 48.
    Raabe D, Ponge D, Uggowitzer PJ, Roscher M, Paolantonio M, et al. 2022.. Making sustainable aluminum by recycling scrap: the science of “dirty” alloys. . Prog. Mater. Sci. 128::100947
    [Crossref] [Google Scholar]
  49. 49.
    Daigo I, Tajima K, Hayashi H, Panasiuk D, Takeyama K, et al. 2021.. Potential influences of impurities on properties of recycled carbon steel. . ISIJ Int. 61:(1):498505
    [Crossref] [Google Scholar]
  50. 50.
    Spooner S, Davis C, Li Z. 2020.. Modelling the cumulative effect of scrap usage within a circular UK steel industry-residual element aggregation. . Ironmak. Steelmak. 47:(10):110013
    [Crossref] [Google Scholar]
  51. 51.
    Hisashige S, Nakagaki T, Yamamoto T. 2019.. CO2 emission reduction and exergy analysis of SMART steelmaking system adaptive for flexible operating conditions. . ISIJ Int. 59:(4):598606
    [Crossref] [Google Scholar]
  52. 52.
    Zhang X, Ma G, Liu M, Li Z. 2019.. Removal of residual element tin in the ferrous metallurgy process: a review. . Metals 9:(8):834
    [Crossref] [Google Scholar]
  53. 53.
    Daehn KE, Serrenho AC, Allwood J. 2019.. Finding the most efficient way to remove residual copper from steel scrap. . Metall. Mater. Trans. B 50:(3):122540
    [Crossref] [Google Scholar]
  54. 54.
    Bell S, Davis BR, Javaid A, Essadiqi E. 2006.. Effects of impurities in steel. Rep. 2005-41(CF) , Nat. Resour. Can., Hamilton, ON:
    [Google Scholar]
  55. 55.
    Daigo I, Fujimura L, Hayashi H, Yamasue E, Ohta S, et al. 2017.. Quantifying the total amounts of tramp elements associated with carbon steel production in Japan. . ISIJ Int. 57:(2):38893
    [Crossref] [Google Scholar]
  56. 56.
    Gao Z, Sridhar S, Spiller DE, Taylor PR. 2021.. Review of impurity removal methods in steel scrap recycling. . J. Solid Waste Technol. Manag. 47:(4):73245
    [Crossref] [Google Scholar]
  57. 57.
    Toi A, Sato J, Kanero T. 1997.. Analysis of tramp element in iron scraps. . Tetsu-To-Hagane 83:(12):85055
    [Crossref] [Google Scholar]
  58. 58.
    Igarashi Y, Daigo I, Matsuno Y, Adachi Y. 2007.. Estimation of the change in quality of domestic steel production affected by steel scrap exports. . ISIJ Int. 47:(5):75357
    [Crossref] [Google Scholar]
  59. 59.
    Dworak S, Rechberger H, Fellner J. 2022.. How will tramp elements affect future steel recycling in Europe? – A dynamic material flow model for steel in the EU-28 for the period 1910 to 2050. . Resour. Conserv. Recycl. 179::106072
    [Crossref] [Google Scholar]
  60. 60.
    Geerlings H, Promel L, Seetharaman S, Clarke A, Klemm-Toole J, Clarke K. 2022.. Maximizing scrap recycling by designing Cu tolerant steel compositions. Rep., Colo. Sch. Mines, Golden, CO:
    [Google Scholar]
  61. 61.
    Dubreuil A, Young SB, Atherton J, Gloria TP. 2010.. Metals recycling maps and allocation procedures in life cycle assessment. . Int. J. Life Cycle Assess. 15:(6):62134
    [Crossref] [Google Scholar]
  62. 62.
    Ohno H, Matsubae K, Nakajima K, Kondo Y, Nakamura S, Nagasaka T. 2015.. Toward the efficient recycling of alloying elements from end of life vehicle steel scrap. . Resour. Conserv. Recycl. 100::1120
    [Crossref] [Google Scholar]
  63. 63.
    Watari T, Hata S, Nakajima K, Nansai K. 2023.. Limited quantity and quality of steel supply in a zero-emission future. . Nat. Sustain. 6::336343
    [Crossref] [Google Scholar]
  64. 64.
    Raabe D, Sun B, Kwiatkowski Da Silva A, Gault B, Yen HW, et al. 2020.. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels. . Metall. Mater. Trans. A 51:(11):551786
    [Crossref] [Google Scholar]
  65. 65.
    Yen HW, Ooi SW, Eizadjou M, Breen A, Huang CY, et al. 2015.. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels. . Acta Mater. 82::10014
    [Crossref] [Google Scholar]
  66. 66.
    Tasan CC, Diehl M, Yan D, Bechtold M, Roters F, et al. 2015.. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. . Annu. Rev. Mater. Res. 45::391431
    [Crossref] [Google Scholar]
  67. 67.
    Bhadeshia HKDH. 2016.. Prevention of hydrogen embrittlement in steels. . ISIJ Int. 56:(1):2436
    [Crossref] [Google Scholar]
  68. 68.
    Djukic MB, Bakic GM, Sijacki Zeravcic V, Sedmak A, Rajicic B. 2019.. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion. . Eng. Fract. Mech. 216::106528
    [Crossref] [Google Scholar]
  69. 69.
    Bajaj P, Hariharan A, Kini A, Kürnsteiner P, Raabe D, Jägle EA. 2020.. Steels in additive manufacturing: a review of their microstructure and properties. . Mater. Sci. Eng. A 772::138633
    [Crossref] [Google Scholar]
  70. 70.
    Song R, Ponge D, Raabe D, Speer JG, Matlock DK. 2006.. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. . Mater. Sci. Eng. A 441:(1–2):117
    [Crossref] [Google Scholar]
  71. 71.
    De Moor E, Gibbs PJ, Speer JG, Matlock D, Schroth JG. Strategies for third-generation advanced high-strength steel development. . Iron Steel Technol. 7:(11):13344
    [Google Scholar]
  72. 72.
    Koyama M, Akiyama E, Lee YK, Raabe D, Tsuzaki K. 2017.. Overview of hydrogen embrittlement in high-Mn steels. . Int. J. Hydrog. Energy 42:(17):1270623
    [Crossref] [Google Scholar]
  73. 73.
    Werheit P, Fricke-Begemann C, Gesing M, Noll R. 2011.. Fast single piece identification with a 3D scanning LIBS for aluminium cast and wrought alloys recycling. . J. Anal. At. Spectrom. 26:(11):216674
    [Crossref] [Google Scholar]
  74. 74.
    Rombach G, Bauerschlag N. 2019.. LIBS based sorting—a solution for automotive scrap. . In Light Metals 2019, ed. C Chesonis, pp. 135157. Cham, Switz:.; Springer
    [Google Scholar]
  75. 75.
    Grand View Res. 2023.. Sheet metal market size, share & trends analysis report by material (steel, aluminum), by end-use (automotive & transportation, building & construction), by region, and segment forecasts, 2020–2025. Rep. GVR-3-68038-775-9 , Grand View Res., San Francisco, CA:. https://www.grandviewresearch.com/industry-analysis/sheet-metal-market
    [Google Scholar]
  76. 76.
    WorldAutoSteel. 2023.. WorldAutoSteel report on recycling. . WorldAutoSteel. https://www.worldautosteel.org/life-cycle-thinking/recycling/
    [Google Scholar]
  77. 77.
    Kuziak R, Kawalla R, Waengler S. 2008.. Advanced high strength steels for automotive industry: a review. . Arch. Civ. Mech. Eng. 8:(2):10317
    [Crossref] [Google Scholar]
  78. 78.
    Galán J, Samek L, Verleysen P, Verbeken K, Houbaert Y. 2012.. Advanced high strength steels for automotive industry. . Rev. Metal. 48:(2):11831
    [Crossref] [Google Scholar]
  79. 79.
    Bleck W, Guo X, Ma Y. 2017.. The TRIP Effect and its application in cold formable sheet steels. . Steel Res. Int. 88:(10):1700218
    [Crossref] [Google Scholar]
  80. 80.
    Uthaisangsuk V, Prahl U, Bleck W. 2009.. Characterisation of formability behaviour of multiphase steels by micromechanical modelling. . Int. J. Fract. 157:(1–2):5569
    [Crossref] [Google Scholar]
  81. 81.
    Tasan CC, Diehl M, Yan D, Zambaldi C, Shanthraj P, et al. 2014.. Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys. . Acta Mater. 81::386400
    [Crossref] [Google Scholar]
  82. 82.
    Seo EJ, Cho L, Estrin Y, De Cooman BC. 2016.. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel. . Acta Mater. 113::12439
    [Crossref] [Google Scholar]
  83. 83.
    Birat JP. 2020.. Society, materials, and the environment: the case of steel. . Metals 10:(3):331
    [Crossref] [Google Scholar]
  84. 84.
    Compañero RJ, Feldmann A, Tilliander A. 2021.. Circular steel: how information and actor incentives impact the recyclability of scrap. . J. Sustain. Metall. 7:(4):165470
    [Crossref] [Google Scholar]
  85. 85.
    Daehn KE, Cabrera Serrenho A, Allwood JM. 2017.. How will copper contamination constrain future global steel recycling?. Environ. Sci. Technol. 51:(11):6599606
    [Crossref] [Google Scholar]
  86. 86.
    Graedel TE, Allwood J, Birat JP, Buchert M, Hagelüken C, et al. 2011.. What do we know about metal recycling rates?. J. Ind. Ecol. 15:(3):35566
    [Crossref] [Google Scholar]
  87. 87.
    Reck BK, Graedel TE. 2012.. Challenges in metal recycling. . Science 337:(6095):69095
    [Crossref] [Google Scholar]
  88. 88.
    Tisza M, Czinege I. 2018.. Comparative study of the application of steels and aluminium in lightweight production of automotive parts. . Int. J. Lightweight Mater. Manuf. 1:(4):22938
    [Google Scholar]
  89. 89.
    Richter JL. 2022.. A circular economy approach is needed for electric vehicles. . Nat. Electron. 5:(1):57
    [Crossref] [Google Scholar]
  90. 90.
    Hagelüken C, Goldmann D. 2022.. Recycling and circular economy—towards a closed loop for metals in emerging clean technologies. . Miner. Econ. 35:(3–4):53962
    [Crossref] [Google Scholar]
  91. 91.
    Ortego A, Valero A, Valero A, Iglesias M. 2018.. Downcycling in automobile recycling process: a thermodynamic assessment. . Resour. Conserv. Recycl. 136::2432
    [Crossref] [Google Scholar]
  92. 92.
    Valero A, Valero A, Calvo G, Ortego A. 2018.. Material bottlenecks in the future development of green technologies. . Renew. Sustain. Energy Rev. 93::178200
    [Crossref] [Google Scholar]
  93. 93.
    Harvey LDD. 2021.. Iron and steel recycling: review, conceptual model, irreducible mining requirements, and energy implications. . Renew. Sustain. Energy Rev. 138::110553
    [Crossref] [Google Scholar]
  94. 94.
    Ohno H, Matsubae K, Nakajima K, Kondo Y, Nakamura S, et al. 2017.. Optimal recycling of steel scrap and alloying elements: input-output based linear programming method with its application to end-of-life vehicles in Japan. . Environ. Sci. Technol. 51:(22):1308694
    [Crossref] [Google Scholar]
  95. 95.
    Nakamura S, Kondo Y, Nakajima K, Ohno H, Pauliuk S. 2017.. Quantifying recycling and losses of Cr and Ni in steel throughout multiple life cycles using MaTrace-alloy. . Environ. Sci. Technol. 51:(17):946976
    [Crossref] [Google Scholar]
  96. 96.
    Lu X, Hiraki T, Nakajima K, Takeda O, Matsuabe K, et al. 2012.. Thermodynamic analysis of separation of alloying elements in recycling of end-of-life titanium products. . Sep. Purif. Technol. 89::13541
    [Crossref] [Google Scholar]
  97. 97.
    Judge WD, Paeng J, Azimi G. 2022.. Electrorefining for direct decarburization of molten iron. . Nat. Mater. 21:(10):113036
    [Crossref] [Google Scholar]
  98. 98.
    Cann JL, De Luca A, Dunand DC, Dye D, Miracle DB, et al. 2021.. Sustainability through alloy design: challenges and opportunities. . Prog. Mater. Sci. 117::100722
    [Crossref] [Google Scholar]
  99. 99.
    Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, et al. 2000.. Recent development in aluminium alloys for the automotive industry. . Mater. Sci. Eng. A 280:(1):3749
    [Crossref] [Google Scholar]
  100. 100.
    Stemper L, Tunes MA, Tosone R, Uggowitzer PJ, Pogatscher S. 2021.. On the potential of aluminum crossover alloys. . Prog. Mater. Sci. 124::100873
    [Crossref] [Google Scholar]
  101. 101.
    Paraskevas D, Ingarao G, Deng Y, Duflou JR, Pontikes Y, Blanpain B. 2019.. Evaluating the material resource efficiency of secondary aluminium production: a Monte Carlo-based decision-support tool. . J. Clean. Prod. 215::48896
    [Crossref] [Google Scholar]
  102. 102.
    Modaresi R, Müller DB. 2012.. The role of automobiles for the future of aluminum recycling. . Environ. Sci. Technol. 46:(16):858794
    [Crossref] [Google Scholar]
  103. 103.
    Løvik AN, Modaresi R, Müller DB. 2014.. Long-term strategies for increased recycling of automotive aluminum and its alloying elements. . Environ. Sci. Technol. 48:(8):425765
    [Crossref] [Google Scholar]
  104. 104.
    Duan J, Farrugia D, Davis C, Li Z. 2022.. Effect of impurities on the microstructure and mechanical properties of a low carbon steel. . Ironmak. Steelmak. 49:(2):14046
    [Crossref] [Google Scholar]
  105. 105.
    Ahmed S, Sabr A, Peltola A, Oja O, Järn S, et al. 2023.. The effect of scrap originating trace elements on the properties of low alloyed steels. . IOP Conf. Ser. Mater. Sci. Eng. 1284:(1):012041
    [Crossref] [Google Scholar]
  106. 106.
    Kato K, Ono H. 2021.. Effect of ratio of scrap to iron source on slag-metal reaction at the bottom of blast furnace and packed bed type partial smelting reduction furnace. . ISIJ Int. 61:(12):297990
    [Crossref] [Google Scholar]
  107. 107.
    Lu C, Wang W, Zeng J, Zhu C. 2024.. Sub-rapid solidified high copper-bearing steel with excellent resistance to hot shortness. . Scr. Mater. 239::115800
    [Crossref] [Google Scholar]
  108. 108.
    Savov L, Janke D. 1998.. Recycling of scrap in steelmaking in view of the tramp element problem. . METALL 52:(6):37483
    [Google Scholar]
  109. 109.
    Gramlich A, Hinrichs T, Springer H, Krupp U. 2023.. Recycling-induced copper contamination of a 42CrMo4 quench and tempering steel: alterations in transformation behavior and mechanical properties. . Steel Res. Int. 94:(3):2200623
    [Crossref] [Google Scholar]
  110. 110.
    Ono H, Maeda T, Konishi H. 2018.. Interaction coefficients of B, Co and Ni on Cu in molten iron. . Tetsu-To-Hagane 104:(3):12127
    [Crossref] [Google Scholar]
  111. 111.
    Kondo Y. 2004.. Behaviour of copper during high temperature oxidation of steel containing copper. . ISIJ Int. 44:(9):157680
    [Crossref] [Google Scholar]
  112. 112.
    Liu Z, Lin Z, Qiu Y, Li N, Liu X, Wang G. 2007.. Segregation in twin roll strip cast steels and the effect on mechanical properties. . ISIJ Int. 47:(2):25458
    [Crossref] [Google Scholar]
  113. 113.
    Gudenau HW, Kleinschmidt G. 1996.. Removal of impurities from scrap and dust. . ISIJ Int. 36:(Suppl.):S23538
    [Crossref] [Google Scholar]
  114. 114.
    Shibata K, Seo SJ, Kaga M, Uchino H, Sasanuma A, et al. 2002.. Suppression of surface hot shortness due to Cu in recycled steels. . Mater. Trans. 43:(3):292300
    [Crossref] [Google Scholar]
  115. 115.
    Hammer B, Kawalla R, Reip CP. 2001.. Influence of residuals on the metallurgical features of low carbon steel grades. . Steel Res. 72:(4):14652
    [Crossref] [Google Scholar]
  116. 116.
    Savov L, Volkova E, Janke D. 2003.. Copper and tin in steel scrap recycling. . Mater. Geoenviron. 50:(3):62740
    [Google Scholar]
  117. 117.
    Kamguo Kamga H. 2010.. Influence of alloying elements iron and silicon on mechanical properties of aluminum-copper type B206 alloys. PhD Diss., Univ. Québec, Chicoutimi, Qué:.
    [Google Scholar]
  118. 118.
    Kunishige K, Hatano M. 2007.. Surface hot-shortness of steels induced by a small amount of copper and tin from scrap steels and its suppression methods. . Mater. Sci. Forum. 539–43::411318
    [Crossref] [Google Scholar]
  119. 119.
    Andersson JO, Helander T, Höglund L, Shi P, Sundman B. 2002.. Thermo-Calc & DICTRA, computational tools for materials science. . Calphad 26:(2):273312
    [Crossref] [Google Scholar]
  120. 120.
    Thermo-Calc Softw. 2023.. Steel and Fe-alloys databases.. Thermo-Calc Software. https://thermocalc.com/products/databases/steel-and-fe-alloys/
    [Google Scholar]
  121. 121.
    Thermo-Calc Softw. 2023.. Metal slag and oxides database.. Thermo-Calc Software. https://thermocalc.com/products/databases/metal-oxide-solutions/
    [Google Scholar]
  122. 122.
    IUPAC. 2006.. Activity. . Compendium of Chemical Terminology, , 3rd ed.. https://goldbook.iupac.org/terms/view/A00115
    [Google Scholar]
  123. 123.
    Kondo Y, Tanei H. 2015.. Effect of oxygen concentration on surface hot shortness of steel induced by copper. . ISIJ Int. 55:(5):104447
    [Crossref] [Google Scholar]
  124. 124.
    Sahoo G, Deepa M, Singh B, Saxena A. 2016.. Hot ductility and hot-shortness of steel and measurement techniques: a review mechanism of hot shortness. . J. Met. Mater. Miner. 26:(2). https://www.doi.org/10.14456/jmmm.2016.5
    [Crossref] [Google Scholar]
  125. 125.
    IUPAC. 2006.. Evaporation. . Compendium of Chemical Terminology, , 3rd ed.. https://goldbook.iupac.org/terms/view/E02227
    [Google Scholar]
  126. 126.
    Peter J, Peaslee KD, Robertson DGC, Thomas BG. 2005.. Experimental study of kinetic processes during the steel treatment at two LMF's. . In AISTech 2005 & ICS: Conference Proceedings, pp. 95967. Warrendale, PA:: Assoc. Iron Steel Technol.
    [Google Scholar]
  127. 127.
    Harada A, Maruoka N, Shibata H, Kitamura SY. 2013.. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: part 1. Basic concept and application. . ISIJ Int. 53:(12):211017
    [Crossref] [Google Scholar]
  128. 128.
    Van Ende MA, Jung IH. 2017.. A kinetic ladle furnace process simulation model: effective equilibrium reaction zone model using FactSage macro processing. . Metall. Mater. Trans. B 48:(1):2836
    [Crossref] [Google Scholar]
  129. 129.
    Van Ende MA, Jung I. 2015.. A kinetic process simulation model for basic oxygen furnace (BOF): importance of slag chemistry for BOF operation. . CAMP-ISIJ 28::52730
    [Google Scholar]
  130. 130.
    Van Ende MA. 2022.. Development of an electric arc furnace simulation model using the effective equilibrium reaction zone (EERZ) approach. . JOM 74::161023
    [Crossref] [Google Scholar]
  131. 131.
    Graham KJ, Irons GA. 2009.. Toward integrated ladle metallurgy control. . Iron Steel Technol. 6:(1):16473
    [Google Scholar]
  132. 131a.
    Preßlinger H. 1997.. Verhalten der Begleit- und Spurenelemente bei der LD-Stahlerzeugung und deren Auswirkungen auf die Stahleigenschaften. . In Kontaktstudium Metallurgie, Teil IV, Recycling. Freiberg, Ger.: Ver. Dtsch. Eisenhüttenleute
    [Google Scholar]
  133. 132.
    Daehn K, Basuhi R, Gregory J, Berlinger M, Somjit V, Olivetti EA. 2022.. Innovations to decarbonize materials industries. . Nat. Rev. Mater. 7::27594
    [Crossref] [Google Scholar]
  134. 133.
    Serrano L, Lewandrowski T, Liu P, Kaewunruen S. 2017.. Environmental risks and uncertainty with respect to the utilization of recycled rolling stocks. . Environments 4:(3):62
    [Crossref] [Google Scholar]
  135. 134.
    Zhu Y, Chappuis LB, De Kleine R, Kim HC, Wallington TJ, et al. 2021.. The coming wave of aluminum sheet scrap from vehicle recycling in the United States. . Resour. Conserv. Recycl. 164::105208
    [Crossref] [Google Scholar]
  136. 135.
    Hatayama H, Daigo I, Matsuno Y, Adachi Y. 2010.. Outlook of the world steel cycle based on the stock and flow dynamics. . Environ. Sci. Technol. 44:(16):645763
    [Crossref] [Google Scholar]
  137. 136.
    Dworak S, Fellner J. 2021.. Steel scrap generation in the EU-28 since 1946 – sources and composition. . Resour. Conserv. Recycl. 173::105692
    [Crossref] [Google Scholar]
  138. 137.
    Ono K, Ichise E, Suzuki RO, Hidani T. 1995.. Elimination of copper from the molten steel by NH3 blowing under reduced pressure. . Steel Res. 66:(9):37276
    [Crossref] [Google Scholar]
  139. 138.
    Sasabe M, Harada E, Yamashita S. 1996.. Removal of copper from carbon saturated molten iron by using FeCl2. . Tetsu-To-Hagane 82:(2):12934
    [Crossref] [Google Scholar]
  140. 139.
    Eliasson J, Siwecki T, Hutchinson B. 2006.. Processing of copper-containing steel via strip casting—a laboratory evaluation. . Steel Res. Int. 77:(6):40915
    [Crossref] [Google Scholar]
  141. 140.
    Kondo Y. 2006.. Behaviour of copper and nickel during high temperature oxidation of steel containing them. . Mater. Sci. Forum. 522–23::5360
    [Crossref] [Google Scholar]
  142. 141.
    Kondo Y. 2023.. Review of oxide scale in hot-rolling process. . Tetsu-To-Hagane 109:(2):87105
    [Crossref] [Google Scholar]
  143. 142.
    Uchino H, Nagasaki C, Kaga M, Seo S-J, Asakura K, Shibata K. 2001.. Effects of C and P on surface hot shortness of steel due to Cu mixed from steel scrap. . J. Adv. Sci. 13:(3):26064
    [Crossref] [Google Scholar]
  144. 143.
    Comineli O, Qaban A, Mintz B. 2022.. Influence of Cu and Ni on the hot ductility of low C steels with respect to the straightening operation when continuous casting. . Metals 12:(10):1671
    [Crossref] [Google Scholar]
  145. 144.
    Mintz B, Qaban A, Kang SE. 2023.. The influence of small additions of alloying elements on the hot ductility of AHSS steels: a critical review part 2. . Metals 13:(2):406
    [Crossref] [Google Scholar]
  146. 145.
    Ruck A, Monceau D, Grabke HJ. 1996.. Effects of tramp elements Cu, P, Pb, Sb and Sn on the kinetics of carburization of case hardening steels. . Steel Res. 67:(6):24046
    [Crossref] [Google Scholar]
  147. 146.
    Sampson E, Sridhar S. 2013.. Effect of silicon on hot shortness in Fe-Cu-Ni-Sn-Si alloys during isothermal oxidation in air. . Metall. Mater. Trans. B 44:(5):112436
    [Crossref] [Google Scholar]
  148. 147.
    Mintz B, Comineli O, Karjalainen LP. 2004.. The influence of Ni on the hot ductility of C-Mn-Al, Cu containing steels as a way of preventing “hot shortness.” Paper presented at the 59th Annual Conference of Associação Brasileira de Metalurgia e Materiais, São Paulo, Brazil:, July 19–22
    [Google Scholar]
  149. 148.
    Kuzuhara S, Sakuma H, Hayashi H, Daigo I. 2017.. Spatial distribution of tramp element contents in recycled steel. . ISIJ Int. 57:(4):75863
    [Crossref] [Google Scholar]
  150. 149.
    Skoufari-Themistou L, Crowther DN, Mintz B. 1999.. Strength and impact behaviour of age hardenable copper containing steels. . Mater. Sci. Technol. 15:(9):106979
    [Crossref] [Google Scholar]
  151. 150.
    Leroy V. 1995.. Mechanical working (rolling mills): effects of tramp elements in flat and long products. Rep. 16672 , Eur. Comm., Brussels, Belg:.
    [Google Scholar]
  152. 151.
    Kondo Y. 2011.. Suppression of surface hot shortness caused by copper during hot rolling. . Mater. Sci. Forum. 696::18388
    [Crossref] [Google Scholar]
  153. 152.
    Kovács A, Pradeep KG, Herzer G, Raabe D, Dunin-Borkowski RE. 2016.. Magnetic microstructure in a stress-annealed Fe73.5Si15.5B7Nb3Cu1 soft magnetic alloy observed using off-axis electron holography and Lorentz microscopy. . AIP Adv. 6:(5):56501
    [Crossref] [Google Scholar]
  154. 153.
    Pradeep KG, Herzer G, Choi P, Raabe D. 2014.. Atom probe tomography study of ultrahigh nanocrystallization rates in FeSiNbBCu soft magnetic amorphous alloys on rapid annealing. . Acta Mater. 68::295309
    [Crossref] [Google Scholar]
  155. 154.
    Lücke K, Hölscher M. 2008.. Rolling and recrystallization textures of BCC steels. . Texture Stress Microstruct. 14:(100):58596
    [Google Scholar]
  156. 155.
    Steiner Petrovič D, Jenko M, Godec M, Vodopivec F, Jeram M, Prešern V. 2007.. The influence of copper on the microtexture of Fe-Si-Al alloys for non-oriented electrical sheets. . Metalurgija 46:(2):7578
    [Google Scholar]
  157. 156.
    Gutierrez-Urrutia I, Böttcher A, Lahn L, Raabe D, Gutiérrez-Urrutia I, et al. 2014.. Microstructure-magnetic property relations in grain-oriented electrical steels: quantitative analysis of the sharpness of the Goss orientation. . J. Mater. Sci. 49:(1):26976
    [Crossref] [Google Scholar]
  158. 157.
    Liu WC, Man CS, Raabe D, Morris JG. 2005.. Effect of hot and cold deformation on the recrystallization texture of continuous cast AA 5052 aluminum alloy. . Scr. Mater. 53:(11):127377
    [Crossref] [Google Scholar]
  159. 158.
    Osei R, Lekakh S, O'Malley R. 2022.. Effect of Cu additions on scale structure and descaling efficiency of low C steel reheated in a combustion gas atmosphere. . Oxid. Met. 98:(3–4):36383
    [Crossref] [Google Scholar]
  160. 159.
    Kondo Y. 2007.. Effect of atmospheric conditions on copper behaviour during high temperature oxidation of a steel containing copper. . ISIJ Int. 47:(9):130914
    [Crossref] [Google Scholar]
  161. 160.
    Yin L, Sampson E, Nakano J, Sridhar S. 2011.. The effects of nickel/tin ratio on Cu induced surface hot shortness in Fe. . Oxid. Met. 76:(5–6):36783
    [Crossref] [Google Scholar]
  162. 161.
    Lee CG, Kim SJ, Lee TH, Oh CS. 2004.. Effects of tramp elements on formability of low-carbon TRIP-aided multiphase cold-rolled steel sheets. . ISIJ Int. 44:(4):73743
    [Crossref] [Google Scholar]
  163. 162.
    Hosseini Far AR, Mousavi Anijdan SH, Abbasi M. 2019.. The effect of Ni and Cu addition on mechanical behavior of thermomechanically controlled processed HSLA X100 steels. . In TMS 2019 148th Annual Meeting & Symposium Supplemental Proceedings, pp. 57990. Cham, Switz:.: Springer
    [Google Scholar]
  164. 163.
    Hosseini Far AR, Anijdan SHM, Abbasi SM. 2019.. The effect of increasing Cu and Ni on a significant enhancement of mechanical properties of high strength low alloy, low carbon steels of HSLA-100 type. . Mater. Sci. Eng. A 746::38493
    [Crossref] [Google Scholar]
  165. 164.
    Pierce DT, Jiménez JA, Bentley J, Raabe D, Wittig JE. 2015.. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. . Acta Mater. 100::17890
    [Crossref] [Google Scholar]
  166. 165.
    Dmitrieva O, Ponge D, Inden G, Millán J, Choi P, et al. 2011.. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. . Acta Mater. 59:(1):36474
    [Crossref] [Google Scholar]
  167. 166.
    Rana R, Bleck W, Singh SB, Mohanty ON. 2007.. Development of high strength interstitial free steel by copper precipitation hardening. . Mater. Lett. 61:(14–15):291922
    [Crossref] [Google Scholar]
  168. 167.
    Rana R, Bleck W, Singh SB, Mohanty ON. 2007.. Laboratory investigations on copper-alloyed interstitial free steel – part II: effect of colling temperature. . Steel Res. Int. 78:(8):62230
    [Crossref] [Google Scholar]
  169. 168.
    Görzen D, Schwich H, Blinn B, Bleck W, Beck T. 2020.. Influence of different precipitation states of Cu on the quasi-static and cyclic deformation behavior of Cu alloyed steels with different carbon contents. . Int. J. Fatigue 136::105587
    [Crossref] [Google Scholar]
  170. 169.
    Görzen D, Schwich H, Blinn B, Song W, Krupp U, et al. 2021.. Influence of Cu precipitates and C content on the defect tolerance of steels. . Int. J. Fatigue 144::106042
    [Crossref] [Google Scholar]
  171. 170.
    Schwich H, Görzen D, Blinn B, Beck T, Bleck W. 2020.. Characterization of the precipitation behavior and resulting mechanical properties of copper-alloyed ferritic steel. . Mater. Sci. Eng. A 772::138807
    [Crossref] [Google Scholar]
  172. 171.
    Jung JG, Jung M, Lee SM, Shin E, Shin HC, Lee YK. 2013.. Cu precipitation kinetics during martensite tempering in a medium C steel. . J. Alloys Compd. 553::299307
    [Crossref] [Google Scholar]
  173. 172.
    Miglin MT, Hirth JP, Rosenfield AR, Clark WAT. 1986.. Microstructure of a quenched and tempered Cu-bearing high-strength low-alloy steel. . Metall. Trans. A 17:(5):79198
    [Crossref] [Google Scholar]
  174. 173.
    Xu Z, Li J, Shen X, Allam T, Richter S, et al. 2021.. Tailoring the austenite fraction of a Cu and Ni containing medium-Mn steel via warm rolling. . Metals 11:(12):1888
    [Crossref] [Google Scholar]
  175. 174.
    Xu Z, Shen X, Allam T, Song W, Bleck W. 2022.. Austenite transformation and deformation behavior of a cold-rolled medium-Mn steel under different annealing temperatures. . Mater. Sci. Eng. A 829::142115
    [Crossref] [Google Scholar]
  176. 175.
    Elbeltagy A, Xu Z, Shen X, Krupp U, Song W. 2023.. Yield strength enhancement without ductility loss through controlling the intercritical annealing time in medium-Mn steels. . Adv. Eng. Mater. 25:(15):2300067
    [Crossref] [Google Scholar]
  177. 176.
    Hao X, Dong J, Mu X, Wei J, Wang C, Ke W. 2019.. Influence of Sn and Mo on corrosion behavior of ferrite-pearlite steel in the simulated bottom plate environment of cargo oil tank. . J. Mater. Sci. Technol. 35:(5):799811
    [Crossref] [Google Scholar]
  178. 177.
    Sun M, Yang X, Du C, Liu Z, Li Y, et al. 2021.. Distinct beneficial effect of Sn on the corrosion resistance of Cr-Mo low alloy steel. . J. Mater. Sci. Technol. 81::17589
    [Crossref] [Google Scholar]
  179. 178.
    Janke D, Savov L, Weddige HJ, Schulz E. 2000.. Scrap-based steel production and recycling of steel. . Mater. Technol. 34:(6):38799
    [Google Scholar]
  180. 179.
    Sasaki N, Uchida YI, Miki YJ, Matsuno H. 2016.. Fundamental study of Sn removal from hot metal by NH3 gas blowing. . Tetsu-To-Hagane 102:(1):1723
    [Crossref] [Google Scholar]
  181. 180.
    Grabke HJ. 2008.. Surface and grain boundary segregation on and in iron and steels. . ISIJ Int. 29:(7):52938
    [Crossref] [Google Scholar]
  182. 181.
    Grabke HJ. 2000.. Surface and interface segregation in the oxidation of metals. . Surf. Interface Anal. 30:(1):11219
    [Crossref] [Google Scholar]
  183. 182.
    Faulkner RG. 1981.. Non-equilibrium grain-boundary segregation in austenitic alloys. . J. Mater. Sci. 16:(2):37383
    [Crossref] [Google Scholar]
  184. 183.
    Karlsson L, Nordén H, Odelius H. 1988.. Overview no. 63 non-equilibrium grain boundary segregation of boron in austenitic stainless steel—I. Large scale segregation behaviour. . Acta Metall. 36:(1):112
    [Crossref] [Google Scholar]
  185. 184.
    Kuzmina M, Ponge D, Raabe D. 2015.. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: example of a 9 wt.% medium Mn steel. . Acta Mater. 86::18292
    [Crossref] [Google Scholar]
  186. 185.
    Raabe D, Ponge D, Dmitrieva O, Sander B. 2009.. Designing ultrahigh strength steels with good ductility by combining transformation induced plasticity and martensite aging. . Adv. Eng. Mater. 11:(7):54755
    [Crossref] [Google Scholar]
  187. 186.
    Seah MP. 1980.. Grain boundary segregation. . J. Phys. F 10:(6):104364
    [Crossref] [Google Scholar]
  188. 187.
    Seah MP. 1980.. Adsorption-induced interface decohesion. . Acta Metall. 28:(7):95562
    [Crossref] [Google Scholar]
  189. 188.
    Seah MP. 1975.. Interface adsorption, embrittlement and fracture in metallurgy. A review. . Surf. Sci. 53:(1):168212
    [Crossref] [Google Scholar]
  190. 189.
    Hondros ED, Seah MP. 2014.. Segregation to interfaces. . Int. Met. Rev. 22:(1):262301
    [Crossref] [Google Scholar]
  191. 190.
    Grabke HJ. 1989.. Surface and grain boundary segregation on and in iron and steels. . ISIJ Int. 29:(7):52938
    [Crossref] [Google Scholar]
  192. 191.
    Jenko M, Godec M, Viefhaus H, Grabke HJ. 1999.. Antimony, tin and selenium segregation in FeSiC alloys. . Mater. Sci. Forum. 294–96::74750
    [Google Scholar]
  193. 192.
    Clauberg E, Uebing C, Viefhaus H, Grabke HJ. 2000.. Surface segregation of antimony on ferritic single crystals. . Surf. Sci. 454:(1):61317
    [Crossref] [Google Scholar]
  194. 193.
    Mast R, Viefhaus H, Grabke HJ. 1999.. Grain boundary segregation of antimony in iron base alloys and its effect on toughness. . Steel Res. 70:(6):23946
    [Crossref] [Google Scholar]
  195. 194.
    Hoile S. 2000.. Processing and properties of mild interstitial free steels. . Mater. Sci. Technol. 16:(10):107993
    [Crossref] [Google Scholar]
  196. 195.
    Raabe D, Lücke K. 1992.. Rolling and annealing textures of bcc metals. . Scr. Metall. Mater. 27:(Part 1):597610
    [Google Scholar]
  197. 196.
    Hölscher M, Raabe D, Lücke K. 1991.. Rolling and recrystallization textures of bcc steels. . Steel Res. 62::56775
    [Crossref] [Google Scholar]
  198. 197.
    Jenko M, Vodopivec F, Juergen Grabke H, Viefhaus H, Pracek B, et al. 1994.. Orientation dependent surface segregation of antimony on non-oriented electrical steel sheet. . Steel Res. 65:(11):5004
    [Crossref] [Google Scholar]
  199. 198.
    Godec M, Jenko M, Grabke HJ, Mast R. 1999.. Sn segregation and its influence on electrical steel texture development. . ISIJ Int. 39:(7):74246
    [Crossref] [Google Scholar]
  200. 199.
    Juntunen P, Karjalainen P, Raabe D, Bolle G, Kopio T. 2001.. Optimizing continuous annealing of interstitial-free steels for improving deep drawability. . Metall. Mater. Trans. A 32:(8):198995
    [Crossref] [Google Scholar]
  201. 200.
    Tee JKS, Fray DJ. 1999.. Removing impurities from steel scrap using air and chlorine mixtures. . JOM 51:(8):2427
    [Crossref] [Google Scholar]
  202. 201.
    Talapatra A, Datta J, Bandhyopadhyay NR. 2013.. Structure-properties relationship of TRIP-assisted steels by non-destructive testing method. . Chem. Mater. Eng. 1:(1):1827
    [Crossref] [Google Scholar]
  203. 202.
    Kim SJ, Lee CG, Lee TH, Lee S. 2000.. Effects of coiling temperature on microstructure and mechanical properties of high-strength hot-rolled steel plates containing Cu, Cr and Ni. . ISIJ Int. 40:(7):69298
    [Crossref] [Google Scholar]
  204. 203.
    Choi JH, Jo MC, Lee H, Zargaran A, Song T, et al. 2019.. Cu addition effects on TRIP to TWIP transition and tensile property improvement of ultra-high-strength austenitic high-Mn steels. . Acta Mater. 166::24660
    [Crossref] [Google Scholar]
  205. 204.
    Martins AR, Rizzo F, Coelho D, Speer JG, Matlock D, et al. 2009.. Microstructure and mechanical properties of Ni-added high strength steels subjected to quenching and partitioning (Q&P) heat treatment. . Mater. Sci. Technol. Conf. Exhib. 3::156474
    [Google Scholar]
  206. 205.
    Pierce DT, Coughlin DR, Clarke KD, De Moor E, Poplawsky J, et al. 2018.. Microstructural evolution during quenching and partitioning of 0.2C-1.5Mn-1.3Si steels with Cr or Ni additions. . Acta Mater. 151::45469
    [Crossref] [Google Scholar]
  207. 206.
    Entezari E, Mousalou H, Yazdani S, González-Velázquez JL, Szpunar JA. 2021.. The evaluation of quenching temperature effect on microstructural and mechanical properties of advanced high strength low carbon steel after quenching partitioning treatment. . Procedia Struct. Integr. 37:(C):14552
    [Google Scholar]
  208. 207.
    Mohrbacher H, Kern A. 2023.. Nickel alloying in carbon steel: fundamentals and applications. . Alloys 2:(1):128
    [Crossref] [Google Scholar]
  209. 208.
    Wang MM, Tasan CC, Ponge D, Raabe D. 2016.. Spectral TRIP enables ductile 1.1 GPa martensite. . Acta Mater. 111::26272
    [Crossref] [Google Scholar]
  210. 209.
    Sun B, Kwiatkowski A, Wu Y, Ma Y, Chen H, et al. 2022.. Physical metallurgy of medium-Mn advanced high-strength steels. . Int. Mater. Rev. 68::786824
    [Crossref] [Google Scholar]
  211. 210.
    Li Y, Yuan G, Li L, Kang J, Yan F, et al. 2023.. Ductile 2-GPa steels with hierarchical substructure. . Science 379:(6628):16873
    [Crossref] [Google Scholar]
  212. 211.
    Sun B, Palanisamy D, Ponge D, Gault B, Fazeli F, et al. 2019.. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite. . Acta Mater. 164::68396
    [Crossref] [Google Scholar]
  213. 212.
    Ma Y. 2017.. Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications. . Mater. Sci. Technol. 33:(15):171327
    [Crossref] [Google Scholar]
  214. 213.
    Brüx U, Frommeyer G, Grässel O, Meyer LW, Weise A. 2002.. Development and characterization of high strength impact resistant Fe-Mn-(Al-, Si) TRIP/TWIP steels. . Steel Res. 73:(6–7):29498
    [Crossref] [Google Scholar]
  215. 214.
    Gramlich A, Stieben A, Menzel M, Pape F, Lüneburg B, Bleck W. 2019.. Manganese alloyed Q & T steel with high hardenability for forging parts with large diameters. . J. Heat Treat. Mater. 74:(6):35765
    [Crossref] [Google Scholar]
  216. 215.
    Gramlich A, Schmiedl T, Schönborn S, Melz T, Bleck W. 2020.. Development of air-hardening martensitic forging steels. . Mater. Sci. Eng. A 784::139321
    [Crossref] [Google Scholar]
  217. 216.
    Sun B, Lu W, Gault B, Ding R, Makineni SK, et al. 2021.. Chemical heterogeneity enhances hydrogen resistance in high-strength steels. . Nat. Mater. 20::162934
    [Crossref] [Google Scholar]
  218. 217.
    Ding R, Yao Y, Sun B, Liu G, He J, et al. 2020.. Chemical boundary engineering: a new route toward lean, ultrastrong yet ductile steels. . Sci. Adv. 6:(13):eaay1430
    [Crossref] [Google Scholar]
  219. 218.
    Kwiatkowski da Silva A, Leyson G, Kuzmina M, Ponge D, Herbig M, et al. 2017.. Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: a correlative TEM-atom probe study combined with multiscale modelling. . Acta Mater. 124::30515
    [Crossref] [Google Scholar]
  220. 219.
    De Cooman BC. 2016.. High Mn TWIP steel and medium Mn steel. . In Automotive Steels: Design, Metallurgy, Processing and Applications, ed. R Rana, SB Singh , pp. 31785. Duxford, UK:: Woodhead Publ.
    [Google Scholar]
  221. 220.
    Haupt M, Dutta A, Ponge D, Sandlöbes S, Nellessen M, Hirt G. 2017.. Influence of intercritical annealing on microstructure and mechanical properties of a medium manganese steel. . Procedia Eng. 207::18038
    [Crossref] [Google Scholar]
  222. 221.
    Itman A, Cardoso KR, Kestenbach HJ. 1997.. Quantitative study of carbonitride precipitation in niobium and titanium microalloyed hot strip steel. . Mater. Sci. Technol. 13:(1):4955
    [Crossref] [Google Scholar]
  223. 222.
    Barani AA, Li F, Romano P, Ponge D, Raabe D. 2007.. Design of high-strength steels by microalloying and thermomechanical treatment. . Mater. Sci. Eng. A 463:(1–2):13846
    [Crossref] [Google Scholar]
  224. 223.
    Courtois E, Epicier T, Scott C. 2006.. EELS study of niobium carbo-nitride nano-precipitates in ferrite. . Micron 37:(5):492502
    [Crossref] [Google Scholar]
  225. 224.
    Cameron BC, Tasan CC. 2019.. Microstructural damage sensitivity prediction using spatial statistics. . Sci. Rep. 9:(1):2774
    [Crossref] [Google Scholar]
  226. 225.
    De Cooman BC. 2004.. Structure–properties relationship in TRIP steels containing carbide-free bainite. . Curr. Opin. Solid State Mater. Sci. 8:(3–4):285303
    [Crossref] [Google Scholar]
  227. 226.
    Nazari KA, Shabestari SG. 2009.. Effect of micro alloying elements on the interfacial reactions between molten aluminum alloy and tool steel. . J. Alloys Compd. 478:(1–2):52330
    [Crossref] [Google Scholar]
  228. 227.
    Hunkel M. 2021.. Segregations in steels during heat treatment—a consideration along the process chain. . J. Heat Treat. Mater. 76:(2):79104
    [Crossref] [Google Scholar]
  229. 228.
    Grabke HJ, Möller R, Erhart H, Brenner SS. 1987.. Effects of the alloying elements Ti, Nb, Mo and V on the grain boundary segregation of P in iron and steels. . Surf. Interface Anal. 10:(4):2029
    [Crossref] [Google Scholar]
  230. 229.
    Miranda AM, Assis PS, Brooks GA, Rhamdhani MA, Fontana A, et al. 2019.. Monitoring of less-common residual elements in scrap feeds for EAF steelmaking. . Ironmak. Steelmak. 46:(7):598608
    [Crossref] [Google Scholar]
  231. 230.
    Yamada Y, Kuwabara T. 2007.. Materials for Springs. Berlin:: Springer
    [Google Scholar]
  232. 231.
    Li F, Barani AA, Ponge D, Raabe D. 2006.. Austenite grain coarsening behaviour in a medium carbon Si-Cr spring steel with and without vanadium. . Steel Res. Int. 77:(8):59094
    [Crossref] [Google Scholar]
  233. 232.
    Hayakawa Y. 2020.. Recent developments in non-oriented electrical steels. . Tetsu-To-Hagane 106:(10):68396
    [Crossref] [Google Scholar]
  234. 233.
    Kawalla R, Stöcker A, Prahl U, Wei X, Dierdorf J, et al. 2018.. Low-loss FeSi sheet for energy-efficient electrical drives. . AIMS Mater. Sci. 5:(6):118498
    [Crossref] [Google Scholar]
  235. 234.
    Benzing JT, Bentley J, McBride JR, Ponge D, Han J, et al. 2017.. Characterization of partitioning in a medium-Mn third-generation AHSS. . Microsc. Microanal. 23:(S1):4023
    [Crossref] [Google Scholar]
  236. 235.
    Archie F, Li X, Zaefferer S. 2017.. Micro-damage initiation in ferrite-martensite DP microstructures: a statistical characterization of crystallographic and chemical parameters. . Mater. Sci. Eng. A 701::30213
    [Crossref] [Google Scholar]
  237. 236.
    Hoefnagels JPM, Tasan CC, Maresca F, Peters FJ, Kouznetsova VG. 2015.. Retardation of plastic instability via damage-enabled microstrain delocalization. . J. Mater. Sci. 50:(21):688297
    [Crossref] [Google Scholar]
  238. 237.
    Matlock DK, Speer JG. 2009.. Third generation of AHSS: microstructure design concepts. . In Microstructure and Texture in Steels, ed. A Haldar, S Suwas, D Bhattacharjee , pp. 185205. London:: Springer
    [Google Scholar]
  239. 238.
    Calcagnotto M, Ponge D, Raabe D. 2008.. Ultrafine grained ferrite/martensite dual phase steel fabricated by large strain warm deformation and subsequent intercritical annealing. . ISIJ Int. 48:(8):1096101
    [Crossref] [Google Scholar]
  240. 239.
    Yan D, Tasan CC, Raabe D. 2015.. High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels. . Acta Mater. 96::399409
    [Crossref] [Google Scholar]
  241. 240.
    Teo PT, Zakaria SK, Salleh SZ, Taib MAA, Sharif NM, et al. 2020.. Assessment of electric arc furnace (EAF) steel slag waste's recycling options into value added green products: a review. . Metals 10:(10):1347
    [Crossref] [Google Scholar]
  242. 241.
    Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D. 2010.. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. . Acta Mater. 58:(4):1152211
    [Crossref] [Google Scholar]
  243. 242.
    Deleted in proof
  244. 243.
    Graham MJ, Wild RK, Grabke HJ. 1994.. Interfacial chemistry of high temperature scaling. . Mater. High Temp. 12:(2–3):13539
    [Crossref] [Google Scholar]
  245. 244.
    Paju M, Viefhaus H, Grabke HJ. 1988.. Phosphorus segregation in austenite in Fe–P–C, Fe–P–B and Fe–P–C–B alloys. . Steel Res. 59:(8):33643
    [Crossref] [Google Scholar]
  246. 245.
    Ruedl E, Sasaki T. 1983.. Effect of lithium on grain-boundary precipitation in a Cr-Mn austfnitic steel. . J. Nucl. Mater. 116:(1):11222
    [Crossref] [Google Scholar]
  247. 246.
    Barnett MR, Senadeera M, Fabijanic D, Shamlaye KF, Joseph J, et al. 2020.. A scrap-tolerant alloying concept based on high entropy alloys. . Acta Mater. 200::73544
    [Crossref] [Google Scholar]
  248. 247.
    Pérez I, Arribas M, Aranguren I, Mangas Á, Rana R, et al. 2019.. Processing of new dual-phase (DP) and complex-phase (CP) steels for automotive applications by tailored hot forming routes. . AIP Conf. Proc. 2113::170008
    [Crossref] [Google Scholar]
  249. 248.
    Krauss G. 2001.. Deformation and fracture in martensitic carbon steels tempered at low temperatures. . Metall. Mater. Trans. A 32:(4):86177
    [Crossref] [Google Scholar]
  250. 249.
    Calcagnotto M, Ponge D, Raabe D. 2010.. Effect of grain refinement to 1μm on strength and toughness of dual-phase steels. . Mater. Sci. Eng. A 527:(29–30):783240
    [Crossref] [Google Scholar]
  251. 250.
    Han J, Kwiatkowski Da Silva A, Ponge D, Raabe D, Lee SM, et al. 2017.. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. . Acta Mater. 122::199206
    [Crossref] [Google Scholar]
  252. 251.
    Calcagnotto M, Ponge D, Demir E, Raabe D. 2010.. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. . Mater. Sci. Eng. A 527:(10–11):273846
    [Crossref] [Google Scholar]
  253. 252.
    Song R, Ponge D, Raabe D. 2005.. Influence of Mn content on the microstructure and mechanical properties of ultrafine grained C–Mn steels. . ISIJ Int. 45:(11):172126
    [Crossref] [Google Scholar]
  254. 253.
    Schemmann L, Zaefferer S, Raabe D, Friedel F, Mattissen D. 2015.. Alloying effects on microstructure formation of dual phase steels. . Acta Mater. 95::38698
    [Crossref] [Google Scholar]
  255. 254.
    Nakajima K, Takeda O, Miki T, Matsubae K, Nagasaka T. 2011.. Thermodynamic analysis for the controllability of elements in the recycling process of metals. . Environ. Sci. Technol. 45:(11):492936
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-matsci-080222-123648
Loading
/content/journals/10.1146/annurev-matsci-080222-123648
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article