1932

Abstract

Lithium-ion batteries (LIBs) are now widely exploited for multiple applications, from portable electronics to electric vehicles and storage of renewable energy. Along with improving battery performance, current research efforts are focused on diminishing the levelized cost of energy storage (LCOS), which has become increasingly important in light of the development of LIBs for large transport vehicles and power grid energy storage applications. Since LCOS depends on the battery's lifetime, understanding the mechanisms responsible for battery degradation and developing strategies to increase the lifetime of LIBs is very important. In this review, the latest developments related to the performance and degradation of the most common LIBs on the market are reviewed. The numerous processes underlying LIB degradation are described in terms of three degradation loss modes: loss of lithium inventory (LLI), active positive electrode material loss and degradation, and active negative electrode material loss and degradation. A strong emphasis is placed on the most recent strategies and tactics for LIB degradation mitigation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080522-104112
2024-08-05
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/matsci/54/1/annurev-matsci-080522-104112.html?itemId=/content/journals/10.1146/annurev-matsci-080522-104112&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Beltran H, Ayuso P, Pérez E. 2020.. Lifetime expectancy of Li-ion batteries used for residential solar storage. . Energies 13:(3):568
    [Crossref] [Google Scholar]
  2. 2.
    Maia LK, Drünert L, La Mantia F, Zondervan E. 2019.. Expanding the lifetime of Li-ion batteries through optimization of charging profiles. . J. Clean. Prod. 225::92838
    [Crossref] [Google Scholar]
  3. 3.
    Edge JS, O'Kane S, Prosser R, Kirkaldy ND, Patel AN, et al. 2021.. Lithium ion battery degradation: what you need to know. . Phys. Chem. Chem. Phys. 23:(14):820021
    [Crossref] [Google Scholar]
  4. 4.
    Liu J, Yue M, Wang S, Zhao Y, Zhang J. 2022.. A review of performance attenuation and mitigation strategies of lithium-ion batteries. . Adv. Funct. Mater. 32:(8):2107769
    [Crossref] [Google Scholar]
  5. 5.
    Reniers JM, Mulder G, Howey DA. 2019.. Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries. . J. Electrochem. Soc. 166:(14):A3189200
    [Crossref] [Google Scholar]
  6. 6.
    Planella FB, Ai W, Boyce A, Ghosh A, Korotkin I, et al. 2022.. A continuum of physics-based lithium-ion battery models reviewed. . Prog. Energy 4::042003
    [Crossref] [Google Scholar]
  7. 7.
    O'Kane SE, Ai W, Madabattula G, Alonso-Alvarez D, Timms R. 2022.. Lithium-ion battery degradation: how to model it. . Phys. Chem. Chem. Phys. 24:(13):790922
    [Crossref] [Google Scholar]
  8. 8.
    Franco AA, Rucci A, Brandell D, Frayret C, Gaberscek M, et al. 2019.. Boosting rechargeable batteries R&D by multiscale modeling: myth or reality?. Chem. Rev. 119:(7):4569627
    [Crossref] [Google Scholar]
  9. 9.
    Han X, Lu L, Zheng Y, Feng X, Li Z, et al. 2019.. A review on the key issues of the lithium ion battery degradation among the whole life cycle. . eTransportation 1::100005
    [Crossref] [Google Scholar]
  10. 10.
    Dong Y, Li J. 2023.. Oxide cathodes: functions, instabilities, self-healing, and degradation mitigations. . Chem. Rev. 123:(2):81133
    [Crossref] [Google Scholar]
  11. 11.
    Santos DA, Rezaei S, Zhang D, Luo Y, Lin B, et al. 2023.. Chemistry–mechanics–geometry coupling in positive electrode materials: a scale-bridging perspective for mitigating degradation in lithium-ion batteries through materials design. . Chem. Sci. 14:(3):45884
    [Crossref] [Google Scholar]
  12. 12.
    Gao Y, Zhang B. 2023.. Probing the mechanically stable solid electrolyte interphase and the implications in design strategies. . Adv. Mater. 35:(18):2205421
    [Crossref] [Google Scholar]
  13. 13.
    Iurilli P, Brivio C, Wood V. 2022.. Detection of lithium-ion cells’ degradation through deconvolution of electrochemical impedance spectroscopy with distribution of relaxation time. . Energy Technol. 10:(10):2200547
    [Crossref] [Google Scholar]
  14. 14.
    Guo J, Jin S, Sui X, Huang X, Xu Y, et al. 2023.. Unravelling and quantifying the aging processes of commercial Li(Ni0.5Co0.2Mn0.3)O2/graphite lithium-ion batteries under constant current cycling. . J. Mater. Chem. A 11:(1):4152
    [Crossref] [Google Scholar]
  15. 15.
    Teliz E, Zinola CF, Díaz V. 2022.. Identification and quantification of ageing mechanisms in Li-ion batteries by electrochemical impedance spectroscopy. . Electrochim. Acta 426::140801
    [Crossref] [Google Scholar]
  16. 16.
    Hosen MS, Yadav P, Van Mierlo J, Berecibar M. 2023.. A post-mortem study case of a dynamically aged commercial NMC cell. . Energies 16:(3):1046
    [Crossref] [Google Scholar]
  17. 17.
    Harris OC, Lee SE, Lees C, Tang M. 2020.. Review: mechanisms and consequences of chemical cross-talk in advanced Li-ion batteries. . J. Phys. Energy 2:(3):032002
    [Crossref] [Google Scholar]
  18. 18.
    Birkl CR, Roberts MR, McTurk E, Bruce PG, Howey DA. 2017.. Degradation diagnostics for lithium ion cells. . J. Power Sources 341::37386
    [Crossref] [Google Scholar]
  19. 19.
    Zhang S, Zhao K, Zhu T, Li J. 2017.. Electrochemomechanical degradation of high-capacity battery electrode materials. . Prog. Mater. Sci. 89::479521
    [Crossref] [Google Scholar]
  20. 20.
    Dose WM, Xu C, Grey CP, De Volder MF. 2020.. Effect of anode slippage on cathode cutoff potential and degradation mechanisms in Ni-rich Li-ion batteries. . Cell Rep. Phys. Sci. 1:(11):100253
    [Crossref] [Google Scholar]
  21. 21.
    Ho JS, Zhu Z, Stallworth P, Greenbaum SG, Zhang SS, et al. 2022.. Quantifying lithium ion exchange in solid electrolyte interphase (SEI) on graphite anode surfaces. . Inorganics 10:(5):64
    [Crossref] [Google Scholar]
  22. 22.
    Adenusi H, Chass GA, Passerini S, Tian KV, Chen G. 2023.. Lithium batteries and the solid electrolyte interphase (SEI)—progress and outlook. . Adv. Energy Mater. 13:(10):2203307
    [Crossref] [Google Scholar]
  23. 23.
    Wang A, Kadam S, Li H, Shi S, Qi Y. 2018.. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. . npj Comput. Mater. 4::15
    [Crossref] [Google Scholar]
  24. 24.
    Ziv B, Borgel V, Aurbach D, Kim JH, Xiao X, et al. 2014.. Investigation of the reasons for capacity fading in Li-Ion battery cells. . J. Electrochem. Soc. 161:(10):A167280
    [Crossref] [Google Scholar]
  25. 25.
    Single F, Latz A, Horstmann B. 2018.. Identifying the mechanism of continued growth of the solid–electrolyte interphase. . ChemSusChem 11:(12):195055
    [Crossref] [Google Scholar]
  26. 26.
    Nowak S, Winter M. 2018.. The role of cations on the performance of lithium ion batteries: a quantitative analytical approach. . Acc. Chem. Res. 51:(2):26572
    [Crossref] [Google Scholar]
  27. 27.
    Fedorov RG, Maletti S, Heubner C, Michaelis A, Ein-Eli Y. 2021.. Molecular engineering approaches to fabricate artificial solid-electrolyte interphases on anodes for Li-ion batteries: a critical review. . Adv. Energy Mater. 11:(26):2101173
    [Crossref] [Google Scholar]
  28. 28.
    Beheshti SH, Javanbakht M, Omidvar H, Hosen MS, Hubin A, et al. 2022.. Development, retainment and assessment of the graphite-electrolyte interphase in Li-ion batteries regarding the functionality of SEI-forming additives. . iScience 25::103862
    [Crossref] [Google Scholar]
  29. 29.
    Quan Y, Gao C, Wu S, Zhao D, Wang J, Li C, Li S. 2022.. Improving the performances of low concentration electrolytes via dual interfacial modification of the fluoroethylene carbonate solvent and lithium difluoro(oxalato) borate additive. . New J. Chem. 46:(38):18498504
    [Crossref] [Google Scholar]
  30. 30.
    Kitz PG, Lacey MJ, Novák P, Berg EJ. 2020.. Operando investigation of the solid electrolyte interphase mechanical and transport properties formed from vinylene carbonate and fluoroethylene carbonate. . J. Power Sources 477::228567
    [Crossref] [Google Scholar]
  31. 31.
    Kim J, Adiraju VA, Rodrigo N, Hoffmann J, Payne M, et al. 2021.. Lithium bis(trimethylsilyl) phosphate as a novel bifunctional additive for high-voltage LiNi1.5Mn0.5O4/graphite lithium-ion batteries. . ACS Appl. Mater. Interfaces 13:(19):2235160
    [Crossref] [Google Scholar]
  32. 32.
    Tong B, Song Z, Wan H, Feng W, Armand M, et al. 2021.. Sulfur-containing compounds as electrolyte additives for lithium-ion batteries. . InfoMat 3:(12):136492
    [Crossref] [Google Scholar]
  33. 33.
    Mosallanejad B, Javanbakht M, Shariatinia Z, Akrami M. 2022.. Improvement of cycle stability for graphite-based lithium-ion batteries via usage of phenyl methanesulfonate as an electrolyte additive. . Batteries 8:(10):152
    [Crossref] [Google Scholar]
  34. 34.
    Zhou J, Ma K, Lian X, Shi Q, Wang J, et al. 2022.. Eliminating graphite exfoliation with an artificial solid electrolyte interphase for stable lithium-ion batteries. . Small 18:(15):2107460
    [Crossref] [Google Scholar]
  35. 35.
    Xie Q, Chen J, Xing L, Zhou X, Ma Z, et al. 2022.. Revealing the critical effect of solid electrolyte interphase on the deposition and detriment of Co(II) ions to graphite anode. . J. Energy Chem. 69::38996
    [Crossref] [Google Scholar]
  36. 36.
    Harris OC, Lee SE, Lees C, Tang M. 2020.. Review: mechanisms and consequences of chemical cross-talk in advanced Li-ion batteries. . J. Phys. Energy 2:(3):032002
    [Crossref] [Google Scholar]
  37. 37.
    Joshi T, Eom K, Yushin G, Fuller TF. 2014.. Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries. . J. Electrochem. Soc. 161:(12):A191521
    [Crossref] [Google Scholar]
  38. 38.
    Gilbert JA, Shkrob IA, Abraham DP. 2017.. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells. . J. Electrochem. Soc. 164:(2):A38999
    [Crossref] [Google Scholar]
  39. 39.
    Li W, Kim UH, Dolocan A, Sun YK, Manthiram A. 2017.. Formation and inhibition of metallic lithium microstructures in lithium batteries driven by chemical crossover. . ACS Nano 11:(6):585363
    [Crossref] [Google Scholar]
  40. 40.
    Yoon SG, Lee KH, Kim M. 2022.. Transition metal crosstalk in conventional graphite-based batteries and advanced silicon-based batteries. . Appl. Phys. Lett. 121:(20):200503
    [Crossref] [Google Scholar]
  41. 41.
    Li J, Manthiram A. 2019.. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries. . Adv. Energy Mater. 9:(45):1902731
    [Crossref] [Google Scholar]
  42. 42.
    Xu H, Li Z, Liu T, Han C, Guo C, et al. 2022.. Impacts of dissolved Ni2+ on the solid electrolyte interphase on a graphite anode. . Angew. Chem. Int. Ed. 61:(30):e202202894
    [Crossref] [Google Scholar]
  43. 43.
    Wang C, Xing L, Vatamanu J, Chen Z, Lan G, et al. 2019.. Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries. . Nat. Commun. 10:(1):3423
    [Crossref] [Google Scholar]
  44. 44.
    Choi W, Manthiram A. 2006.. Comparison of metal ion dissolutions from lithium ion battery cathodes. . J. Electrochem. Soc. 153:(9):A176064
    [Crossref] [Google Scholar]
  45. 45.
    Wang LF, Ou CC, Striebel KA, Chen JS. 2003.. Study of Mn dissolution from LiMn2O4 spinel electrodes using rotating ring-disk collection experiments. . J. Electrochem. Soc. 150:(7):A90511
    [Crossref] [Google Scholar]
  46. 46.
    Meunier V, De Souza ML, Morcrette M, Grimaud A. 2022.. Electrochemical protocols to assess the effects of dissolved transition metal in graphite/LiNiO2 cells performance. . J. Electrochem. Soc. 169:(7):070506
    [Crossref] [Google Scholar]
  47. 47.
    Jung R, Linsenmann F, Thomas R, Wandt J, Solchenbach S, et al. 2019.. Nickel, manganese, and cobalt dissolution from Ni-rich NMC and their effects on NMC622-graphite cells. . J. Electrochem. Soc. 166:(2):A37889
    [Crossref] [Google Scholar]
  48. 48.
    Wandt J, Freiberg A, Thomas R, Gorlin Y, Siebel A, et al. 2016.. Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy. . J. Mater. Chem. A 4:(47):183005
    [Crossref] [Google Scholar]
  49. 49.
    Leung K. 2017.. First-principles modeling of Mn(II) migration above and dissolution from LixMn2O4 (001) surfaces. . Chem. Mater. 29:(6):255062
    [Crossref] [Google Scholar]
  50. 50.
    Lu J, Zhan C, Wu T, Wen J, Lei Y, et al. 2014.. Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. . Nat. Commun. 5:(1):5693
    [Crossref] [Google Scholar]
  51. 51.
    Metzger M, Walke P, Solchenbach S, Salitra G, Aurbach D, et al. 2020.. Evaluating the high-voltage stability of conductive carbon and ethylene carbonate with various lithium salts. . J. Electrochem. Soc. 167:(16):160522
    [Crossref] [Google Scholar]
  52. 52.
    Metzger M, Sicklinger J, Haering D, Kavakli C, Stinner C, et al. 2015.. Carbon coating stability on high-voltage cathode materials in H2O-free and H2O-containing electrolyte. . J. Electrochem. Soc. 162:(7):A122735
    [Crossref] [Google Scholar]
  53. 53.
    Okubo M, Ko S, Dwibedi D, Yamada A. 2021.. Designing positive electrodes with high energy density for lithium-ion batteries. . J. Mater. Chem. A 9:(12):740721
    [Crossref] [Google Scholar]
  54. 54.
    Zhang Z, Yang J, Huang W, Wang H, Zhou W, et al. 2021.. Cathode-electrolyte interphase in lithium batteries revealed by cryogenic electron microscopy. . Matter 4:(1):30212
    [Crossref] [Google Scholar]
  55. 55.
    Zhang X, Liu G, Zhou K, Jiao T, Zou Y, et al. 2021.. Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive-pentafluoropyridine. . Energy Mater. 1:(1):100005
    [Crossref] [Google Scholar]
  56. 56.
    Zheng Y, Xu N, Chen S, Liao Y, Zhong G, et al. 2020.. Construction of a stable LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface by a multifunctional organosilicon electrolyte additive. . ACS Appl. Energy Mater. 3:(3):283745
    [Crossref] [Google Scholar]
  57. 57.
    Xu J. 2022.. Critical review on cathode–electrolyte interphase toward high-voltage cathodes for Li-ion batteries. . Nano-Micro Lett. 14:(1):166
    [Crossref] [Google Scholar]
  58. 58.
    Fan T, Wang Y, Harika VK, Nimkar A, Wang K, et al. 2022.. Highly stable 4.6 V LiCoO2 cathodes for rechargeable li batteries by rubidium-based surface modifications. . Adv. Sci. 9:(33):2202627
    [Crossref] [Google Scholar]
  59. 59.
    Park J, Lee S, Kim M, Seok E, Park D, et al. 2022.. Design of a hydrolysis-supported coating layer on the surface of Ni-rich cathodes in secondary batteries. . Int. J. Energy Res. 46:(11):1502742
    [Crossref] [Google Scholar]
  60. 60.
    Kaur G, Gates BD. 2022.. Surface coatings for cathodes in lithium ion batteries: from crystal structures to electrochemical performance. . J. Electrochem. Soc. 169:(4):043504
    [Crossref] [Google Scholar]
  61. 61.
    Heng YL, Gu ZY, Guo JZ, Wang XT, Zhao XX, et al. 2022.. Research progress on the surface/interface modification of high-voltage lithium oxide cathode materials. . Energy Mater. 2:(3):200017
    [Crossref] [Google Scholar]
  62. 62.
    Zhao Y, Zhang L, Liu J, Adair K, Zhao F, et al. 2021.. Atomic/molecular layer deposition for energy storage and conversion. . Chem. Soc. Rev. 50:(6):3889956
    [Crossref] [Google Scholar]
  63. 63.
    Vandenbroucke SS, Henderick L, De Taeye LL, Li J, Jans K, et al. 2022.. Titanium carboxylate molecular layer deposited hybrid films as protective coatings for lithium-ion batteries. . ACS Appl. Mater. Interfaces 14:(21):2490818
    [Crossref] [Google Scholar]
  64. 64.
    Lidor-Shalev O, Leifer N, Ejgenberg M, Aviv H, Perelshtein I, et al. 2021.. Molecular layer deposition of alucone thin film on LiCoO2 to enable high voltage operation. . Batteries Supercaps 4:(11):173948
    [Crossref] [Google Scholar]
  65. 65.
    Li L, Wang D, Xu G, Zhou Q, Ma J, et al. 2022.. Recent progress on electrolyte functional additives for protection of nickel-rich layered oxide cathode materials. . J. Energy Chem. 65::28092
    [Crossref] [Google Scholar]
  66. 66.
    Ma Z, Chen H, Zhou H, Xing L, Li W. 2021.. Cost-efficient film-forming additive for high-voltage lithium–nickel–manganese oxide cathodes. . ACS Omega 6:(46):313308
    [Crossref] [Google Scholar]
  67. 67.
    Li J, Liu H, Xia J, Cameron AR, Nie M, et al. 2017.. The impact of electrolyte additives and upper cut-off voltage on the formation of a rocksalt surface layer in LiNi0.8Mn0.1Co0.1O2 electrodes. . J. Electrochem. Soc. 164:(4):A65565
    [Crossref] [Google Scholar]
  68. 68.
    Chen BX, Brahma S, Chen YQ, Huang PC, Huang JL, et al. 2022.. Methylboronic acid MIDA ester (ADM) as an effective additive in electrolyte to improve cathode electrolyte interlayer performance of LiNi0.8Co0.15Al0.05O2electrode. SSRN Work. Pap. 4111381
    [Google Scholar]
  69. 69.
    Li Y, Li W, Shimizu R, Cheng D, Nguyen H, et al. 2022.. Elucidating the effect of borate additive in high-voltage electrolyte for Li-rich layered oxide materials. . Adv. Energy Mater. 12:(11):2103033
    [Crossref] [Google Scholar]
  70. 70.
    Wang T, Rao L, Jiao X, Choi J, Yap J, et al. 2022.. Impact of triethyl borate on the performance of 5 V spinel/graphite lithium-ion batteries. . ACS Appl. Energy Mater. 5:(6):734655
    [Crossref] [Google Scholar]
  71. 71.
    Zhou L, Qian S, Yang C, Han T, Song Y, et al. 2022.. Synergistic effect of bis(2,2,2-trifluoroethyl) carbonate and succinonitrile in suppressing the dissolution of nickel for performance improvement of nickel-rich lithium metal batteries. . ACS Appl. Energy Mater. 5:(11):1420110
    [Crossref] [Google Scholar]
  72. 72.
    Liu F, Zhang Z, Yu Z, Fan X, Yi M, et al. 2022.. Bifunctional nitrile-borate based electrolyte additive enables excellent electrochemical stability of lithium metal batteries with single-crystal Ni-rich cathode at 4.7V. . Chem. Eng. J. 434::134745
    [Crossref] [Google Scholar]
  73. 73.
    Li T, Lin J, Xing L, Zhong Y, Chai H, et al. 2022.. Insight into the contribution of nitriles as electrolyte additives to the improved performances of the LiCoO2 cathode. . J. Phys. Chem. Lett. 13:(37):88017
    [Crossref] [Google Scholar]
  74. 74.
    Wu Q, Li J, Sheng Y, Tong Q. 2022.. 4-Fluorophenylsulfonylacetonitrile as an electrolyte additive for improving the high-voltage performance of LiNi0.83Co0.11Mn0.06O2 cathode batteries. . ChemElectroChem 9:(11):e202200219
    [Crossref] [Google Scholar]
  75. 75.
    Zhao Q, Wu Y, Yang Z, Song D, Sun X, et al. 2022.. A fluorinated electrolyte stabilizing high-voltage graphite/NCM811 batteries with an inorganic-rich electrode-electrolyte interface. . Chem. Eng. J. 440::135939
    [Crossref] [Google Scholar]
  76. 76.
    Wang K, Cao Y, Yang Y, Wang Z, Ouyang D. 2022.. Exploring fluorinated electrolyte for high-voltage and high-safety Li-ion cells with Li(Ni0.8Mn0.1Co0.1)O2 cathode. . Int. J. Energy Res. 46:(15):2424353
    [Crossref] [Google Scholar]
  77. 77.
    Zhang D, Liu M, Ma J, Yang K, Chen Z, et al. 2022.. Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries. . Nat. Commun. 13:(1):6966
    [Crossref] [Google Scholar]
  78. 78.
    Lin J, Yang Y, Lin X, Li G, Zhang W, et al. 2022.. Insight into the improved performances of Ni-rich/graphite cells by 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl) cyclotrisiloxane as an electrolyte additive. . ACS Appl. Energy Mater. 5:(9):1168493
    [Crossref] [Google Scholar]
  79. 79.
    Sadeghi BA, Wölke C, Pfeiffer F, Baghernejad M, Winter M, et al. 2023.. Synergistic role of functional electrolyte additives containing phospholane-based derivative to address interphasial chemistry and phenomena in NMC811||Si-graphite cells. . J. Power Sources 557::232570
    [Crossref] [Google Scholar]
  80. 80.
    Zhao H, Qian Y, Hu S, Luo G, Nie C, et al. 2021.. Tale of three phosphate additives for stabilizing NCM811/graphite pouch cells: significance of molecular structure–reactivity in dictating interphases and cell performance. . ACS Appl. Mater. Interfaces 13:(25):2967690
    [Crossref] [Google Scholar]
  81. 81.
    Lu D, He J, Qiu Y, Zhu J, Zhang M, et al. 2022.. Using triallyl phosphate as electrolyte additive to stabilize electrode–electrolyte interface of LiNi0.5Mn1.5O4/graphite high voltage lithium ion cells. . ACS Appl. Energy Mater. 5:(11):136009
    [Crossref] [Google Scholar]
  82. 82.
    Tong B, Song Z, Wan H, Feng W, Armand M, et al. 2021.. Sulfur-containing compounds as electrolyte additives for lithium-ion batteries. . InfoMat 3:(12):136492
    [Crossref] [Google Scholar]
  83. 83.
    Johnson NM, Yang Z, Bloom I, Zhang Z. 2021.. Enabling high-temperature and high-voltage lithium-ion battery performance through a novel cathode surface-targeted additive. . ACS Appl. Mater. Interfaces 13:(49):5953845
    [Crossref] [Google Scholar]
  84. 84.
    Yang Y, Xu L, Yan C, Huang J, Zhang Q. 2023.. Towards the intercalation and lithium plating mechanism for high safety and fast-charging lithium-ion batteries: a review. . Energy Lab 1:(1):220011
    [Google Scholar]
  85. 85.
    Purushothaman BK, Landau U. 2006.. Rapid charging of lithium-ion batteries using pulsed currents: a theoretical analysis. . J. Electrochem. Soc. 153:(3):A53342
    [Crossref] [Google Scholar]
  86. 86.
    Tang M, Albertus P, Newman J. 2009.. Two-dimensional modeling of lithium deposition during cell charging. . J. Electrochem. Soc. 156:(5):A39099
    [Crossref] [Google Scholar]
  87. 87.
    Fang Y, Smith AJ, Lindström RW, Lindbergh G, Furó I. 2022.. Quantifying lithium lost to plating and formation of the solid-electrolyte interphase in graphite and commercial battery components. . Appl. Mater. Today 28::101527
    [Crossref] [Google Scholar]
  88. 88.
    Weiss M, Ruess R, Kasnatscheew J, Levartovsky Y, Levy NR, et al. 2021.. Fast charging of lithium-ion batteries: a review of materials aspects. . Adv. Energy Mater. 11:(33):2101126
    [Crossref] [Google Scholar]
  89. 89.
    Zhao J, Song C, Li G. 2022.. Fast-charging strategies for lithium-ion batteries: advances and perspectives. . ChemPlusChem 87:(7):e202200155
    [Crossref] [Google Scholar]
  90. 90.
    Dufek EJ, Abraham DP, Bloom I, Chen BR, Chinnam PR, et al. 2022.. Developing extreme fast charge battery protocols—a review spanning materials to systems. . J. Power Sources 526::231129
    [Crossref] [Google Scholar]
  91. 91.
    Colclasure AM, Dunlop AR, Trask SE, Polzin BJ, Jansen AN, et al. 2019.. Requirements for enabling extreme fast charging of high energy density Li-ion cells while avoiding lithium plating. . J. Electrochem. Soc. 166:(8):A141224
    [Crossref] [Google Scholar]
  92. 92.
    Mijailovic AS, Wang G, Li Y, Yang J, Lu W, et al. 2022.. Analytical and numerical analysis of lithium plating onset in single and bilayer graphite electrodes during fast charging. . J. Electrochem. Soc. 169:(6):060529
    [Crossref] [Google Scholar]
  93. 93.
    Sun C, Ji X, Weng S, Li R, Huang X, et al. 2022.. 50C fast-charge Li-ion batteries using a graphite anode. . Adv. Mater. 34:(43):2206020
    [Crossref] [Google Scholar]
  94. 94.
    Yang Y, Fang Z, Yin Y, Cao Y, Wang Y, et al. 2022.. Synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature. . Angew. Chem. Int. Ed. 134:(36):e202208345
    [Crossref] [Google Scholar]
  95. 95.
    Yang XG, Liu T, Gao Y, Ge S, Leng Y, et al. 2019.. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries. . Joule 3:(12):300219
    [Crossref] [Google Scholar]
  96. 96.
    Wang CY, Liu T, Yang XG, Ge S, Stanley NV, et al. 2022.. Fast charging of energy-dense lithium-ion batteries. . Nature 611:(7936):48590
    [Crossref] [Google Scholar]
  97. 97.
    Tallman KR, Yan S, Quilty CD, Abraham A, McCarthy AH, et al. 2020.. Improved capacity retention of lithium ion batteries under fast charge via metal-coated graphite electrodes. . J. Electrochem. Soc. 167:(16):160503
    [Crossref] [Google Scholar]
  98. 98.
    Dasgupta NP, Chen KH, Kayak E. 2021.. Atomic layer deposition of ionically conductive coatings for lithium battery fast charging. US Patent Appl. 2021/0376310 A1
    [Google Scholar]
  99. 99.
    Kazyak E, Chen KH, Chen Y, Cho TH, Dasgupta NP. 2022.. Enabling 4C fast charging of lithium-ion batteries by coating graphite with a solid-state electrolyte. . Adv. Energy Mater. 12:(1):2102618
    [Crossref] [Google Scholar]
  100. 100.
    Xie L, Tang C, Bi Z, Song M, Fan Y, et al. 2021.. Hard carbon anodes for next-generation Li-ion batteries: review and perspective. . Adv. Energy Mater. 11:(38):2101650
    [Crossref] [Google Scholar]
  101. 101.
    Alvin S, Cahyadi HS, Hwang J, Chang W, Kwak SK, et al. 2020.. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. . Adv. Energy Mater. 10:(20):2000283
    [Crossref] [Google Scholar]
  102. 102.
    Gotoh K, Yamakami T, Nishimura I, Kometani H, Ando H, et al. 2020.. Mechanisms for overcharging of carbon electrodes in lithium-ion/sodium-ion batteries analyzed by operando solid-state NMR. . J. Mater. Chem. A 8:(29):1447281
    [Crossref] [Google Scholar]
  103. 103.
    Soltani N, Bahrami A, Giebeler L, Gemming T, Mikhailova D. 2021.. Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. . Prog. Energy Combust. Sci. 87::100929
    [Crossref] [Google Scholar]
  104. 104.
    Chen KH, Goel V, Namkoong MJ, Wied M, Müller S, et al. 2021.. Enabling 6C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes. . Adv. Energy Mater. 11:(5):2003336
    [Crossref] [Google Scholar]
  105. 105.
    Lee D, Kim B, Shin CB. 2022.. Modeling fast charge protocols to prevent lithium plating in a lithium-ion battery. . J. Electrochem. Soc. 169:(9):090502
    [Crossref] [Google Scholar]
  106. 106.
    Duan X, Li B, Li J, Gao X, Wang L, et al. 2023.. Quantitative understanding of lithium deposition-stripping process on graphite anodes of lithium-ion batteries. . Adv. Energy Mater. 13:(10):2203767
    [Crossref] [Google Scholar]
  107. 107.
    Eur. Carbon Graph. Assoc. (ECGA). 2022.. Towards CO2 neutrality due to carbon and graphite. Rep. , ECGA, Brussels:. http://www.ecga.net/sites/default/files/pdf/ecga_decarbonisation_brochure_i.pdf
    [Google Scholar]
  108. 108.
    Lherbier A, Vander Marcken G, Van Troeye B, Botello-Méndez AR, Adjizian JJ, et al. 2018.. Lithiation properties of sp2 carbon allotropes. . Phys. Rev. Mater. 2:(8):085408
    [Crossref] [Google Scholar]
  109. 109.
    Schweidler S, de Biasi L, Schiele A, Hartmann P, Brezesinski T, et al. 2018.. Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study. . J. Phys. Chem. C 122:(16):882935
    [Crossref] [Google Scholar]
  110. 110.
    Iqbal N, Choi J, Lee C, Khan A, Tanveer M, et al. 2022.. A review on modeling of chemo-mechanical behavior of particle–binder systems in lithium-ion batteries. . Multiscale Sci. Eng. 4:(3):7993
    [Crossref] [Google Scholar]
  111. 111.
    Lu B, Ning C, Shi D, Zhao Y, Zhang J. 2020.. Review on electrode-level fracture in lithium-ion batteries. . Chin. Phys. B 29:(2):026201
    [Crossref] [Google Scholar]
  112. 112.
    Ai W, Wu B, Martínez-Pañeda E. 2022.. A coupled phase field formulation for modelling fatigue cracking in lithium-ion battery electrode particles. . J. Power Sources 544::231805
    [Crossref] [Google Scholar]
  113. 113.
    Pistorio F, Clerici D, Mocera F, Somà A. 2022.. Review on the experimental characterization of fracture in active material for lithium-ion batteries. . Energies 5:(23):9168
    [Crossref] [Google Scholar]
  114. 114.
    Iqbal N, Ali Y, Lee S. 2020.. Debonding mechanisms at the particle-binder interface in the Li-ion battery electrode. . J. Electrochem. Soc. 167:(6):060515
    [Crossref] [Google Scholar]
  115. 115.
    Chepurnaya I, Smirnova E, Karushev M. 2022.. Electrochemically active polymer components in next-generation LiFePO4 cathodes: Can small things make a big difference?. Batteries 8:(10):185
    [Crossref] [Google Scholar]
  116. 116.
    Li Q, Lu D, Zheng J, Jiao S, Luo L, et al. 2017.. Li+-desolvation dictating lithium-ion battery's low-temperature performances. . ACS Appl. Mater. Interfaces 9:(49):427618
    [Crossref] [Google Scholar]
  117. 117.
    Chung GC, Kim HJ, Yu SI, Jun SH, Choi JW, et al. 2000.. Origin of graphite exfoliation an investigation of the important role of solvent cointercalation. . J. Electrochem. Soc. 147:(12):439198
    [Crossref] [Google Scholar]
  118. 118.
    Inoo A, Fukutsuka T, Miyahara Y, Kondo Y, Yokoyama Y, et al. 2022.. Effects of solvation structures on the co-intercalation suppression ability of the solid electrolyte interphase formed on graphite electrodes. . Chem. Lett. 51:(6):61821
    [Crossref] [Google Scholar]
  119. 119.
    Ma S, Jiang M, Tao P, Song C, Wu J, et al. 2018.. Temperature effect and thermal impact in lithium-ion batteries: a review. . Prog. Nat. Sci. Mater. Int. 28:(6):65366
    [Crossref] [Google Scholar]
  120. 120.
    Chen L, Shu J, Huang Y, Shi Z, Luo H, et al. 2022.. Engineering solid electrolyte interphase for the application of propylene carbonate solvent for graphite anode in low temperate battery. . Appl. Surf. Sci. 598::153740
    [Crossref] [Google Scholar]
  121. 121.
    Xiang H, Mei D, Yan P, Bhattacharya P, Burton SD, et al. 2015.. The role of cesium cation in controlling interphasial chemistry on graphite anode in propylene carbonate-rich electrolytes. . ACS Appl. Mater. Interfaces 7:(37):2068795
    [Crossref] [Google Scholar]
  122. 122.
    Hubble D, Brown DE, Zhao Y, Fang C, Lau J, et al. 2022.. Liquid electrolyte development for low-temperature lithium-ion batteries. . Energy Environ. Sci. 15:(2):55078
    [Crossref] [Google Scholar]
  123. 123.
    Michael H, Iacoviello F, Heenan TM, Llewellyn A, Weaving JS, et al. 2021.. A dilatometric study of graphite electrodes during cycling with X-ray computed tomography. . J. Electrochem. Soc. 168:(1):010507
    [Crossref] [Google Scholar]
  124. 124.
    Lin N, Jia Z, Wang Z, Zhao H, Ai G, et al. 2017.. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy. . J. Power Sources 365::23539
    [Crossref] [Google Scholar]
  125. 125.
    Iqbal N, Lee S. 2018.. Mechanical failure analysis of graphite anode particles with PVDF binders in Li-ion batteries. . J. Electrochem. Soc. 165:(9):A196170
    [Crossref] [Google Scholar]
  126. 126.
    Zhang Y, Guo Z. 2018.. Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors. . Acta Mech. Sin. 34::70615
    [Crossref] [Google Scholar]
  127. 127.
    Marin-Montin J, Zurita-Gotor M, Montero-Chacón F. 2022.. Numerical analysis of degradation and capacity loss in graphite active particles of Li-ion battery anodes. . Materials 15:(11):3979
    [Crossref] [Google Scholar]
  128. 128.
    Beard KW, Reddy T, eds. 2019.. Linden's Handbook of Batteries. New York:: McGraw Hill. , 5th ed..
    [Google Scholar]
  129. 129.
    Chen J, Liu J, Qi Y, Sun T, Li X. 2013.. Unveiling the roles of binder in the mechanical integrity of electrodes for lithium-ion batteries. . J. Electrochem. Soc. 160:(9):A15029
    [Crossref] [Google Scholar]
  130. 130.
    Marin-Montin J, Montero-Chacón F. 2021.. A coupled diffusion-mechanical lattice model for the degradation of graphite active particles of Li-ion battery anodes. . In 14th World Congress in Computational Mechanics (WCCM) ECCOMAS Congress 2020, ed. F Chinesta, R Abgrall, O Allix, M Kaliske. https://doi.org/10.23967/wccm-eccomas.2020.010
    [Google Scholar]
  131. 131.
    Iqbal N, Ali Y, Haq IU, Lee S. 2021.. Progressive interface de-bonding in composite electrodes of Li-ion batteries via mixed-mode cohesive zone model: effects of binder characteristics. . Compos. Struct. 259::113173
    [Crossref] [Google Scholar]
  132. 132.
    Somerville L, Bareño J, Trask S, Jennings P, McGordon A, et al. 2016.. The effect of charging rate on the graphite electrode of commercial lithium-ion cells: a post-mortem study. . J. Power Sources 335::18996
    [Crossref] [Google Scholar]
  133. 133.
    Dai C, Wang Z, Liu K, Zhu X, Liao X, et al. 2019.. Effects of cycle times and C-rate on mechanical properties of copper foil and adhesive strength of electrodes in commercial LiCoO2 LIBs. . Eng. Fail. Anal. 101::193205
    [Crossref] [Google Scholar]
  134. 134.
    Babaiee M, Zarei-Jelyani M, Baktashian S, Eqra R. 2022.. Surface modification of copper current collector to improve the mechanical and electrochemical properties of graphite anode in lithium-ion battery. . J. Renew. Energy Environ. 9:(1):6369
    [Google Scholar]
  135. 135.
    Wang C, Yuan W, Chen Y, Zhao B, Tang Y, et al. 2022.. Plowing-extrusion processes and performance of functional surface structures of copper current collectors for lithium-ion batteries. . Nanomanuf. Metrol. 5:(4):33653
    [Crossref] [Google Scholar]
  136. 136.
    Wang Y, Zhao Z, Zhong J, Wang T, Wang L, et al. 2022.. Hierarchically micro/nanostructured current collectors induced by ultrafast femtosecond laser strategy for high-performance lithium-ion batteries. . Energy Environ. Mater. 5:(3):96976
    [Crossref] [Google Scholar]
  137. 137.
    Zhang J, Zuo D, Pei X, Mu C, Chen K, et al. 2022.. Effects of electrolytic copper foil roughness on lithium-ion battery performance. . Metals 12:(12):2110
    [Crossref] [Google Scholar]
  138. 138.
    Wang S, Wang Y, Zhang S, Wang L, Chen S, et al. 2021.. Nanoscale-precision removal of copper in integrated circuits based on a hybrid process of plasma oxidation and femtosecond laser ablation. . Micromachines 12:(10):1188
    [Crossref] [Google Scholar]
  139. 139.
    Manthiram A. 2020.. A reflection on lithium-ion battery cathode chemistry. . Nat. Commun. 11:(1):1550
    [Crossref] [Google Scholar]
  140. 140.
    Lu SJ, Tang LB, Wei HX, Huang YD, Yan C, et al. 2022.. Single-crystal nickel-based cathodes: fundamentals and recent advances. . Electrochem. Energy Rev. 5:(4):15
    [Crossref] [Google Scholar]
  141. 141.
    Trevisanello E, Ruess R, Conforto G, Richter FH, Janek J. 2021.. Polycrystalline and single crystalline NCM cathode materials—quantifying particle cracking, active surface area, and lithium diffusion. . Adv. Energy Mater. 11:(18):2003400
    [Crossref] [Google Scholar]
  142. 142.
    Yoon CS, Jun DW, Myung ST, Sun YK. 2017.. Structural stability of LiNiO2 cycled above 4.2 V. . ACS Energy Lett. 2:(5):115055
    [Crossref] [Google Scholar]
  143. 143.
    Lin Q, Guan W, Zhou J, Meng J, Huang W, et al. 2020.. Ni–Li anti-site defect induced intragranular cracking in Ni-rich layer-structured cathode. . Nano Energy 76::105021
    [Crossref] [Google Scholar]
  144. 144.
    Liu H, Wolfman M, Karki K, Yu YS, Stach EA, et al. 2017.. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. . Nano Lett. 17:(6):345257
    [Crossref] [Google Scholar]
  145. 145.
    Zhang Y, Zhao C, Guo Z. 2019.. Simulation of crack behavior of secondary particles in Li-ion battery electrodes during lithiation/de-lithiation cycles. . Int. J. Mech. Sci. 155::17886
    [Crossref] [Google Scholar]
  146. 146.
    Xu X, Huo H, Jian J, Wang L, Zhu H, et al. 2019.. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. . Adv. Energy Mater. 9:(15):1803963
    [Crossref] [Google Scholar]
  147. 147.
    Jiang Y, Lu Y, Zhang Z, Chang L, Li J, et al. 2023.. Misfit strain-induced mechanical cracking aggravating surface degradation of LiCoO2. . Mater. Res. Lett. 11:(6):47179
    [Crossref] [Google Scholar]
  148. 148.
    Liao C, Li F, Liu J. 2022.. Challenges and modification strategies of Ni-rich cathode materials operating at high-voltage. . Nanomaterials 12:(11):1888
    [Crossref] [Google Scholar]
  149. 149.
    Jiang M, Danilov DL, Eichel RA, Notten PH. 2021.. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. . Adv. Energy Mater. 11:(48):2103005
    [Crossref] [Google Scholar]
  150. 150.
    Yin S, Deng W, Chen J, Gao X, Zou G, et al. 2021.. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. . Nano Energy 83::105854
    [Crossref] [Google Scholar]
  151. 151.
    Hebert A, McCalla E. 2021.. The role of metal substitutions in the development of Li batteries, part I: cathodes. . Adv. Mater. 2:(11):3474518
    [Crossref] [Google Scholar]
  152. 152.
    Cui Z, Li X, Bai X, Ren X, Ou X. 2023.. A comprehensive review of foreign-ion doping and recent achievements for nickel-rich cathode materials. . Energy Storage Mater. 57::1443
    [Crossref] [Google Scholar]
  153. 153.
    Gomez-Martin A, Reissig F, Frankenstein L, Heidbüchel M, Winter M, et al. 2022.. Magnesium substitution in Ni-rich NMC layered cathodes for high-energy lithium ion batteries. . Adv. Energy Mater. 12:(8):2103045
    [Crossref] [Google Scholar]
  154. 154.
    Xie Q, Li W, Manthiram A. 2019.. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. . Chem. Mater. 31:(3):93846
    [Crossref] [Google Scholar]
  155. 155.
    Sun Y, Huang W, Zhao G, Liu Q, Duan L, et al. 2023.. LiNi0.9Co0.09Mo0.01O2 cathode with Li3PO4 coating and Ti doping for next-generation lithium-ion batteries. . ACS Energy Lett. 8:(3):162938
    [Crossref] [Google Scholar]
  156. 156.
    Guo W, Wei W, Zhu H, Hu Y, Jiang H, et al. 2023.. In situ surface engineering enables high interface stability and rapid reaction kinetics for Ni-rich cathodes. . eScience 3:(1):100082
    [Crossref] [Google Scholar]
  157. 157.
    Liu L, Zhao Y, Jiang G, Shan L, Yang Z, et al. 2023.. Dual-site lattice co-doping strategy regulated crystal-structure and microstructure for enhanced cycling stability of Co-free Ni-rich layered cathode. . Nano Res. 16::925058
    [Crossref] [Google Scholar]
  158. 158.
    Li Z, Huang X, Liang J, Qin J, Wang R, et al. 2023.. Element doping induced microstructural engineering enhancing the lithium storage performance of high-nickel layered cathodes. . J. Energy Chem. 77::46168
    [Crossref] [Google Scholar]
  159. 159.
    Yu H, Cao Y, Chen L, Hu Y, Duan X, et al. 2021.. Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries. . Nat. Commun. 12::4564
    [Crossref] [Google Scholar]
  160. 160.
    Hashem AM, Abdel-Ghany AE, El-Tawil RS, Mauger A, Julien CM. 2022.. Effect of Na doping on the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries. . Sustain. Chem. 3:(2):13148
    [Crossref] [Google Scholar]
  161. 161.
    Cao YL, Yang XK, Lu WA, Ling XI, Ni FU, et al. 2022.. Improving electrochemical performance of Ni-rich layered oxide cathodes via one-step dual modification strategy. . Trans. Nonferr. Met. Soc. China 32:(11):366378
    [Crossref] [Google Scholar]
  162. 162.
    Kim DH, Song JH, Jung CH, Eum D, Kim B, et al. 2022.. Stepwise dopant selection process for high-nickel layered oxide cathodes. . Adv. Energy Mater. 12:(18):2200136
    [Crossref] [Google Scholar]
  163. 163.
    Chu R, Zou Y, Zhu P, Tan S, Qiu F, et al. 2022.. Progress of single-crystal nickel-cobalt-manganese cathode research. . Energies 15:(23):9235
    [Crossref] [Google Scholar]
  164. 164.
    Han Y, Lei Y, Ni J, Zhang Y, Geng Z, et al. 2022.. Single-crystalline cathodes for advanced Li-ion batteries: progress and challenges. . Small 18:(43):2107048
    [Crossref] [Google Scholar]
  165. 165.
    Ni L, Guo R, Fang S, Chen J, Gao J, et al. 2022.. Crack-free single-crystalline Co-free Ni-rich LiNi0. 95Mn0. 05O2 layered cathode. . eScience 2:(1):11624
    [Crossref] [Google Scholar]
  166. 166.
    Chiba K, Yoshizawa A, Isogai Y. 2020.. Thermal safety diagram for lithium-ion battery using single-crystal and polycrystalline particles LiNi0.8Co0.1Mn0.1O2. . J. Energy Storage 32::101775
    [Crossref] [Google Scholar]
  167. 167.
    Wei Z, Liang C, Jiang L, Sun M, Cheng S, et al. 2023.. Probing the thermal degradation mechanism of polycrystalline and single-crystal Li(Ni0.8Co0.1Mn0.1)O2 cathodes from the perspective of oxygen vacancy diffusion. . Energy Storage Mater. 56::495505
    [Crossref] [Google Scholar]
  168. 168.
    Yan P, Zheng J, Gu M, Xiao J, Zhang JG, et al. 2017.. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. . Nat. Commun. 8:(1):14101
    [Crossref] [Google Scholar]
  169. 169.
    Huang HY, Wang YX. 2012.. Dislocation based stress developments in lithium-ion batteries. . J. Electrochem. Soc. 159:(6):A81521
    [Crossref] [Google Scholar]
  170. 170.
    Yan P, Zheng J, Chen T, Luo L, Jiang Y, et al. 2018.. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. . Nat. Commun. 9:(1):2437
    [Crossref] [Google Scholar]
  171. 171.
    Kondrakov AO, Geßwein H, Galdina K, De Biasi L, Meded V, et al. 2017.. Charge-transfer-induced lattice collapse in Ni-rich NCM cathode materials during delithiation. . J. Phys. Chem. C 121:(44):2438188
    [Crossref] [Google Scholar]
  172. 172.
    Liu X, Xu GL, Kolluru VS, Zhao C, Li Q, et al. 2022.. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. . Nat. Energy 7:(9):80817
    [Crossref] [Google Scholar]
  173. 173.
    Liao C, Li F, Liu J. 2022.. Challenges and modification strategies of Ni-rich cathode materials operating at high-voltage. . Nanomaterials 12:(11):1888
    [Crossref] [Google Scholar]
  174. 174.
    Tan J, Wang Z, Li G, Hu H, Li J, et al. 2021.. Electrochemically driven phase transition in LiCoO2 cathode. . Materials 14:(2):242
    [Crossref] [Google Scholar]
  175. 175.
    Jung R, Metzger M, Maglia F, Stinner C, Gasteiger HA. 2017.. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. . J. Electrochem. Soc. 164:(7):A136177
    [Crossref] [Google Scholar]
  176. 176.
    Sharifi-Asl S, Lu J, Amine K, Shahbazian-Yassar R. 2019.. Oxygen release degradation in Li-ion battery cathode materials: mechanisms and mitigating approaches. . Adv. Energy Mater. 9:(22):1900551
    [Crossref] [Google Scholar]
  177. 177.
    Lee E, Persson KA. 2014.. Structural and chemical evolution of the layered Li-excess LixMnO3 as a function of Li content from first-principles calculations. . Adv. Energy Mater. 4:(15):1400498
    [Crossref] [Google Scholar]
  178. 178.
    Zhang H, Liu H, Piper LF, Whittingham MS, Zhou G. 2022.. Oxygen loss in layered oxide cathodes for Li-ion batteries: mechanisms, effects, and mitigation. . Chem. Rev. 122:(6):564181
    [Crossref] [Google Scholar]
  179. 179.
    Ruff Z, Xu C, Grey CP. 2021.. Transition metal dissolution and degradation in NMC811-graphite electrochemical cells. . J. Electrochem. Soc. 168:(6):060518
    [Crossref] [Google Scholar]
  180. 180.
    Tesfamhret Y. 2022.. Transition metal dissolution from Li-ion battery cathodes. PhD Diss. , Uppsala University, Uppsala, Sweden:
    [Google Scholar]
  181. 181.
    Zhang C, Wei B, Wang M, Zhang D, Uchiyama T, et al. 2022.. Regulating oxygen covalent electron localization to enhance anionic redox reversibility of lithium-rich layered oxide cathodes. . Energy Storage Mater. 46::51222
    [Crossref] [Google Scholar]
  182. 182.
    Xu J, Wan J, Zhang W, Li Y, Cheng F, et al. 2023.. Regulating the unhybridized O 2p orbitals of high-performance Li-rich Mn-based layered oxide cathode by Gd-doping induced bulk oxygen vacancies. . Adv. Funct. Mater. 33:(18):2214613
    [Crossref] [Google Scholar]
  183. 183.
    Lu Q, Wang Y, Yu K, Zhao G, Cheng Y, et al. 2023.. One-step constructed oxygen vacancies and Fe-doping to improve the electrochemical performance of Li-rich Mn-based cathode. . J. Alloys Compd. 937::168426
    [Crossref] [Google Scholar]
  184. 184.
    Zhang F, Lou S, Li S, Yu Z, Liu Q, et al. 2020.. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. . Nat. Commun. 11:(1):3050
    [Crossref] [Google Scholar]
  185. 185.
    He Y, Pham H, Liang X, Park J. 2022.. Impact of ultrathin coating layer on lithium-ion intercalation into particles for lithium-ion batteries. . Chem. Eng. J. 440::135565
    [Crossref] [Google Scholar]
  186. 186.
    Kang J, Han B. 2015.. First-principles study on the thermal stability of LiNiO2 materials coated by amorphous Al2O3 with atomic layer thickness. . ACS Appl. Mater. Interfaces 7:(21):11599603
    [Crossref] [Google Scholar]
  187. 187.
    Langdon J, Manthiram A. 2021.. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. . Energy Storage Mater. 37::14360
    [Crossref] [Google Scholar]
  188. 188.
    Kraytsberg A, Drezner H, Auinat M, Shapira A, Solomatin N, et al. 2015.. Atomic layer deposition of a particularized protective MgF2 film on a Li-ion battery LiMn1.5Ni0.5O4 cathode powder material. . ChemNanoMat 1:(8):57785
    [Crossref] [Google Scholar]
  189. 189.
    Tiurin O, Solomatin N, Auinat M, Ein-Eli Y. 2020.. Atomic layer deposition (ALD) of lithium fluoride (LiF) protective film on Li-ion battery LiMn1.5Ni0.5O4 cathode powder material. . J. Power Sources 448::227373
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-matsci-080522-104112
Loading
/content/journals/10.1146/annurev-matsci-080522-104112
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error