1932

Abstract

The energy-efficient manipulation of the properties of functional materials is of great interest from both a scientific and an applied perspective. The application of electric fields is one of the most widely used methods to induce significant changes in the properties of materials, such as their structural, transport, magnetic, and optical properties. This article presents an overview of recent research on the manipulation of the electronic and magnetic properties of various material systems via electrolyte-based ionic gating. Oxides, magnetic thin-film heterostructures, and van der Waals 2D layers are discussed as exemplary systems. The detailed mechanisms through which ionic gating can induce significant changes in material properties, including their crystal and electronic structure and their electrical, optical, and magnetic properties, are summarized. Current and potential future functional devices enabled by such ionic control mechanisms are also briefly summarized, especially with respect to the emerging field of neuromorphic computing. Finally, a brief outlook and some key challenges are presented.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Ionic Gating for Tuning Electronic and Magnetic Properties
Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080619-012219
2023-07-03
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-080619-012219.html?itemId=/content/journals/10.1146/annurev-matsci-080619-012219&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahn CH, Triscone J-M, Mannhart J 2003. Electric field effect in correlated oxide systems. Nature 424:1015–18
    [Google Scholar]
  2. 2.
    Ahn CH, Bhattacharya A, Di Ventra M, Eckstein JN, Frisbie CD et al. 2006. Electrostatic modification of novel materials. Rev. Mod. Phys. 78:1185–212
    [Google Scholar]
  3. 3.
    Ramesh R, Schlom DG 2008. Whither oxide electronics?. MRS Bull. 33:1006–14
    [Google Scholar]
  4. 4.
    Chakhalian J, Millis A, Rondinelli J 2012. Whither the oxide interface. Nat. Mater. 11:92–94
    [Google Scholar]
  5. 5.
    Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012. Emergent phenomena at oxide interfaces. Nat. Mater. 11:103–13
    [Google Scholar]
  6. 6.
    Matsukura F, Tokura Y, Ohno H 2015. Control of magnetism by electric fields. Nat. Nanotechnol. 10:209–20
    [Google Scholar]
  7. 7.
    Weisheit M, Fähler S, Marty A, Souche Y, Poinsignon C, Givord D 2007. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315:349–51
    [Google Scholar]
  8. 8.
    Chiba D, Fukami S, Shimamura K, Ishiwata N, Kobayashi K, Ono T 2011. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat. Mater. 10:853–56
    [Google Scholar]
  9. 9.
    Ye J, Zhang YJ, Akashi R, Bahramy MS, Arita R, Iwasa Y 2012. Superconducting dome in a gate-tuned band insulator. Science 338:1193–96
    [Google Scholar]
  10. 10.
    Costanzo D, Jo S, Berger H, Morpurgo AF 2016. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat. Nanotechnol. 11:339–44
    [Google Scholar]
  11. 11.
    Kim SH, Hong K, Xie W, Lee KH, Zhang S et al. 2013. Electrolyte‐gated transistors for organic and printed electronics. Adv. Mater. 25:1822–46
    [Google Scholar]
  12. 12.
    Fujimoto T, Awaga K 2013. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15:8983–9006
    [Google Scholar]
  13. 13.
    Du H, Lin X, Xu Z, Chu D 2015. Electric double-layer transistors: a review of recent progress. J. Mater. Sci. 50:5641–73
    [Google Scholar]
  14. 14.
    Bisri SZ, Shimizu S, Nakano M, Iwasa Y 2017. Endeavor of iontronics: from fundamentals to applications of ion‐controlled electronics. Adv. Mater. 29:1607054
    [Google Scholar]
  15. 15.
    Cho JH, Lee J, Xia Y, Kim B, He Y et al. 2008. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7:900–6
    [Google Scholar]
  16. 16.
    Wang S, Ha M, Manno M, Frisbie CD, Leighton C 2012. Hopping transport and the Hall effect near the insulator–metal transition in electrochemically gated poly(3-hexylthiophene) transistors. Nat. Commun. 3:1210
    [Google Scholar]
  17. 17.
    Yuan H, Shimotani H, Ye J, Yoon S, Aliah H et al. 2010. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. J. Am. Chem. Soc. 132:18402–7
    [Google Scholar]
  18. 18.
    Jeong J, Aetukuri N, Graf T, Schladt TD, Samant MG, Parkin SS 2013. Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation. Science 339:1402–5
    [Google Scholar]
  19. 19.
    Li M, Han W, Jiang X, Jeong J, Samant MG, Parkin SS 2013. Suppression of ionic liquid gate-induced metallization of SrTiO3(001) by oxygen. Nano Lett. 13:4675–78
    [Google Scholar]
  20. 20.
    Yi HT, Gao B, Xie W, Cheong S-W, Podzorov V 2014. Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic gating. Sci. Rep. 4:6604
    [Google Scholar]
  21. 21.
    Bubel S, Hauser AJ, Glaudell AM, Mates TE, Stemmer S, Chabinyc ML 2015. The electrochemical impact on electrostatic modulation of the metal-insulator transition in nickelates. Appl. Phys. Lett. 106:122102
    [Google Scholar]
  22. 22.
    Walter J, Wang H, Luo B, Frisbie CD, Leighton C 2016. Electrostatic versus electrochemical doping and control of ferromagnetism in ion-gel-gated ultrathin La0.5Sr0.5CoO3−δ. ACS Nano 10:7799–810
    [Google Scholar]
  23. 23.
    Walter J, Yu G, Yu B, Grutter A, Kirby B et al. 2017. Ion-gel-gating-induced oxygen vacancy formation in epitaxial La0.5Sr0.5CoO3−δ films from in operando X-ray and neutron scattering. Phys. Rev. Lett. 1:071403
    [Google Scholar]
  24. 24.
    Perez-Muñoz AM, Schio P, Poloni R, Fernandez-Martinez A, Rivera-Calzada A et al. 2017. In operando evidence of deoxygenation in ionic liquid gating of YBa2Cu3O7-x. PNAS 114:215–20
    [Google Scholar]
  25. 25.
    Dong Y, Xu H, Luo Z, Zhou H, Fong DD et al. 2017. Effect of gate voltage polarity on the ionic liquid gating behavior of NdNiO3/NdGaO3 heterostructures. APL Mater. 5:051101
    [Google Scholar]
  26. 26.
    Leng X, Pereiro J, Strle J, Dubuis G, Bollinger A et al. 2017. Insulator to metal transition in WO3 induced by electrolyte gating. npj Quant. Mater. 2:35
    [Google Scholar]
  27. 27.
    Schladt TD, Graf T, Aetukuri NB, Li M, Fantini A et al. 2013. Crystal-facet-dependent metallization in electrolyte-gated rutile TiO2 single crystals. ACS Nano 7:8074–81
    [Google Scholar]
  28. 28.
    Bruce PG, Saidi M 1992. A two-step model of intercalation. Solid State Ion. 51:187–90
    [Google Scholar]
  29. 29.
    Lück J, Latz A 2018. Modeling of the electrochemical double layer and its impact on intercalation reactions. Phys. Chem. Chem. Phys. 20:27804–21
    [Google Scholar]
  30. 30.
    Lu N, Zhang P, Zhang Q, Qiao R, He Q et al. 2017. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546:124–28
    [Google Scholar]
  31. 31.
    Cui B, Werner P, Ma T, Zhong X, Wang Z et al. 2018. Direct imaging of structural changes induced by ionic liquid gating leading to engineered three-dimensional meso-structures. Nat. Commun. 9:3055
    [Google Scholar]
  32. 32.
    Han H, Sharma A, Meyerheim HL, Yoon J, Deniz H et al. 2022. Control of oxygen vacancy ordering in brownmillerite thin films via ionic liquid gating. ACS Nano 16:6206–14
    [Google Scholar]
  33. 33.
    Zhang Q, He X, Shi J, Lu N, Li H et al. 2017. Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO2.5-σ. Nat. Commun. 8:104
    [Google Scholar]
  34. 34.
    Yu Y, Yang F, Lu XF, Yan YJ, Cho Y-H et al. 2015. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10:270–76
    [Google Scholar]
  35. 35.
    Wan CJ, Zhu LQ, Zhou JM, Shi Y, Wan Q 2013. Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors. Nanoscale 5:10194–99
    [Google Scholar]
  36. 36.
    van de Burgt Y, Lubberman E, Fuller EJ, Keene ST, Faria GC et al. 2017. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16:414–18
    [Google Scholar]
  37. 37.
    Zhu X, Li D, Liang X, Lu WD 2019. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18:141–48
    [Google Scholar]
  38. 38.
    Zhu J, Yang Y, Jia R, Liang Z, Zhu W et al. 2018. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30:1800195
    [Google Scholar]
  39. 39.
    Sharbati MT, Du Y, Torres J, Ardolino ND, Yun M, Xiong F 2018. Low‐power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. 30:1802353
    [Google Scholar]
  40. 40.
    Lee C, Lee J, Kim M, Woo J, Koo S-M et al. 2019. Two-terminal structured synaptic device using ionic electrochemical reaction mechanism for neuromorphic system. IEEE Electron Dev. Lett. 40:546–49
    [Google Scholar]
  41. 41.
    Ji H, Wei J, Natelson D 2012. Modulation of the electrical properties of VO2 nanobeams using an ionic liquid as a gating medium. Nano Lett. 12:2988–92
    [Google Scholar]
  42. 42.
    Leng X, Bollinger A, Božović I 2016. Purely electronic mechanism of electrolyte gating of indium tin oxide thin films. Sci. Rep. 6:31239
    [Google Scholar]
  43. 43.
    Jo M, Lee HJ, Oh C, Yoon H, Jo JY, Son J 2018. Gate‐induced massive and reversible phase transition of VO2 channels using solid‐state proton electrolytes. Adv. Electron. Mater. 28:1802003
    [Google Scholar]
  44. 44.
    Zhang H, Guo L, Wan Q 2013. Nanogranular Al2O3 proton conducting films for low-voltage oxide-based homojunction thin-film transistors. J. Mater. Chem. C 1:2781–86
    [Google Scholar]
  45. 45.
    Zhou X, Yan Y, Jiang M, Cui B, Pan F, Song C 2016. Role of oxygen ion migration in the electrical control of magnetism in Pt/Co/Ni/HfO2 films. J. Mater. Chem. C 120:1633–39
    [Google Scholar]
  46. 46.
    Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J et al. 2017. The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field. Nano Lett. 17:3006–12
    [Google Scholar]
  47. 47.
    Huang M, Hasan MU, Klyukin K, Zhang D, Lyu D et al. 2021. Voltage control of ferrimagnetic order and voltage-assisted writing of ferrimagnetic spin textures. Nat. Nanotechnol. 16:981–88
    [Google Scholar]
  48. 48.
    Zehner J, Wolf D, Hasan M, Huang M, Bono D et al. 2021. Magnetoionic control of perpendicular exchange bias. Phys. Rev. Lett. 5:L061401
    [Google Scholar]
  49. 49.
    Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK et al. 2008. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3:210–15
    [Google Scholar]
  50. 50.
    Panzer MJ, Frisbie CD 2006. High charge carrier densities and conductance maxima in single-crystal organic field-effect transistors with a polymer electrolyte gate dielectric. Appl. Phys. Lett. 88:203504
    [Google Scholar]
  51. 51.
    Xu H, Fathipour S, Kinder EW, Seabaugh AC, Fullerton-Shirey SK 2015. Reconfigurable ion gating of 2H-MoTe2 field-effect transistors using poly (ethylene oxide)-CsClO4 solid polymer electrolyte. ACS Nano 9:4900–10
    [Google Scholar]
  52. 52.
    Misra R, McCarthy M, Hebard AF 2007. Electric field gating with ionic liquids. Appl. Phys. Lett. 90:052905
    [Google Scholar]
  53. 53.
    Han H, Jacquet Q, Jiang Z, Sayed FN, Sharma A et al. 2022. Hidden phases and colossal insulator-metal transition in single-crystalline T-Nb2O5 thin films accessed by lithium intercalation. arXiv:2203.03232v1 [cond-mat.mtrl-sci]
  54. 54.
    Lee J, Panzer MJ, He Y, Lodge TP, Frisbie CD 2007. Ion gel gated polymer thin-film transistors. J. Am. Chem. Soc. 129:4532–33
    [Google Scholar]
  55. 55.
    Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N et al. 2008. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7:855–58
    [Google Scholar]
  56. 56.
    Ueno K, Nakamura S, Shimotani H, Yuan H, Kimura N et al. 2011. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotechnol. 6:408–12
    [Google Scholar]
  57. 57.
    Bollinger AT, Dubuis G, Yoon J, Pavuna D, Misewich J, Božović I 2011. Superconductor–insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472:458–60
    [Google Scholar]
  58. 58.
    Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S et al. 2012. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487:459–62
    [Google Scholar]
  59. 59.
    Yi D, Wang Y, vanʼt Erve OMJ, Xu L, Yuan H et al. 2020. Emergent electric field control of phase transformation in oxide superlattices. Nat. Commun. 11:902
    [Google Scholar]
  60. 60.
    Jeong J, Aetukuri NB, Passarello D, Conradson SD, Samant MG, Parkin SSP 2015. Giant reversible, facet-dependent, structural changes in a correlated-electron insulator induced by ionic liquid gating. PNAS 112:1013–18
    [Google Scholar]
  61. 61.
    Passarello D, Jeong J, Samant MG, Parkin SSP 2015. Depth-dependent giant lattice expansion of up to 5% in ionic liquid-gated 90nm thick VO2 (001)/Al2O3 () films. Appl. Phys. Lett. 107:201906
    [Google Scholar]
  62. 62.
    Altendorf SG, Jeong J, Passarello D, Aetukuri NB, Samant MG, Parkin SSP 2016. Facet‐independent electric‐field‐induced volume metallization of tungsten trioxide films. Adv. Mater. 28:5284–92
    [Google Scholar]
  63. 63.
    Passarello D, Altendorf SG, Jeong J, Rettner C, Arellano N et al. 2017. Evidence for ionic liquid gate-induced metallization of vanadium dioxide bars over micron length scales. Nano Lett. 17:2796–801
    [Google Scholar]
  64. 64.
    Zhang L, Zeng S, Yin X, Asmara TC, Yang P et al. 2017. The mechanism of electrolyte gating on high-Tc cuprates: the role of oxygen migration and electrostatics. ACS Nano 11:9950–56
    [Google Scholar]
  65. 65.
    Li Z, Shen S, Tian Z, Hwangbo K, Wang M et al. 2020. Reversible manipulation of the magnetic state in SrRuO3 through electric-field controlled proton evolution. Nat. Commun. 11:184
    [Google Scholar]
  66. 66.
    Wang M, Sui X, Wang Y, Juan YH, Lyu Y et al. 2019. Manipulate the electronic and magnetic states in NiCo2O4 films through electric‐field‐induced protonation at elevated temperature. Adv. Mater. 31:1900458
    [Google Scholar]
  67. 67.
    Saleem MS, Cui B, Song C, Sun Y, Gu Y et al. 2019. Electric field control of phase transition and tunable resistive switching in SrFeO2.5. ACS Appl. Mater. Inter. 11:6581–88
    [Google Scholar]
  68. 68.
    Song J, Chen Y, Chen X, Wang H, Khan T et al. 2019. Tuning the magnetic anisotropy of La2/3Sr1/3MnO3 by controlling the structure of SrCoOx in the corresponding bilayers using ionic-liquid gating. Phys. Rev. Appl. 12:054016
    [Google Scholar]
  69. 69.
    Song J, Chen Y, Chen X, Khan T, Han F et al. 2020. Electric tuning of magnetic anisotropy and exchange bias of La0.8Sr0.2CoO3/La0.67Sr0.33MnO3 bilayer films. Phys. Rev. Appl. 14:024062
    [Google Scholar]
  70. 70.
    Zhang J, Zhou G, Yan Z, Ji H, Li X et al. 2019. Interfacial ferromagnetic coupling and positive spontaneous exchange bias in SrFeO3–x/La0.7Sr0.3MnO3 bilayers. ACS Appl. Mater. Inter. 11:26460–66
    [Google Scholar]
  71. 71.
    ViolBarbosa C, Karel J, Kiss J, Gordan O-D, Altendorf S et al. 2016. Transparent conducting oxide induced by liquid electrolyte gating. PNAS 113:11148–51
    [Google Scholar]
  72. 72.
    Passarello D, Altendorf SG, Jeong J, Samant MG, Parkin SSP 2016. Metallization of epitaxial VO2 films by ionic liquid gating through initially insulating TiO2 layers. Nano Lett. 16:95475–5481
    [Google Scholar]
  73. 73.
    Hope MA, Griffith KJ, Cui B, Gao F, Dutton SE et al. 2018. The role of ionic liquid breakdown in the electrochemical metallization of VO2: an NMR study of gating mechanisms and VO2 reduction. J. Am. Chem. Soc. 140:16685–96
    [Google Scholar]
  74. 74.
    Yoon H, Choi M, Lim T-W, Kwon H, Ihm K et al. 2016. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films. Nat. Mater. 15:1113–19
    [Google Scholar]
  75. 75.
    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E et al. 2000. Electric-field control of ferromagnetism. Nature 408:944–46
    [Google Scholar]
  76. 76.
    Chiba D, Kawaguchi M, Fukami S, Ishiwata N, Shimamura K et al. 2012. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization. Nat. Commun. 3:888
    [Google Scholar]
  77. 77.
    Shimamura K, Chiba D, Ono S, Fukami S, Ishiwata N et al. 2012. Electrical control of Curie temperature in cobalt using an ionic liquid film. Appl. Phys. Lett. 100:122402
    [Google Scholar]
  78. 78.
    Ando F, Kakizakai H, Koyama T, Yamada K, Kawaguchi M et al. 2016. Modulation of the magnetic domain size induced by an electric field. Appl. Phys. Lett. 109:022401
    [Google Scholar]
  79. 79.
    Koyama T, Nakatani Y, Ieda J, Chiba D 2018. Electric field control of magnetic domain wall motion via modulation of the Dzyaloshinskii-Moriya interaction. Sci. Adv. 4:eaav0265
    [Google Scholar]
  80. 80.
    Hirai T, Koyama T, Obinata A, Hibino Y, Miwa K et al. 2016. Control of magnetic anisotropy in Pt/Co system using ionic liquid gating. Appl. Phys. Expr. 9:063007
    [Google Scholar]
  81. 81.
    Parkin SSP, Hayashi M, Thomas L 2008. Magnetic domain-wall racetrack memory. Science 320:190–4
    [Google Scholar]
  82. 82.
    Fukami S, Suzuki T, Nagahara K, Ohshima N, Ozaki Y et al. 2009. Low-current perpendicular domain wall motion cell for scalable high-speed MRAM. 2009 Symposium on VLSI Technology230–61. Piscataway, NJ: IEEE
    [Google Scholar]
  83. 83.
    Parkin S, Yang S-H 2015. Memory on the racetrack. Nat. Nanotechnol. 10:195–98
    [Google Scholar]
  84. 84.
    Bader S, Parkin S 2010. Spintronics. Annu. Rev. Condens. Matter Phys. 1:71–88
    [Google Scholar]
  85. 85.
    Tan AJ, Huang M, Avci CO, Büttner F, Mann M et al. 2019. Magneto-ionic control of magnetism using a solid-state proton pump. Nat. Mater. 18:35–41
    [Google Scholar]
  86. 86.
    Reichel L, Oswald S, Fähler S, Schultz L, Leistner K 2013. Electrochemically driven variation of magnetic properties in ultrathin CoPt films. J. Appl. Phys. 113:143904
    [Google Scholar]
  87. 87.
    Diez LH, Liu Y, Gilbert DA, Belmeguenai M, Vogel J et al. 2019. Nonvolatile ionic modification of the Dzyaloshinskii-Moriya interaction. Phys. Rev. Appl. 12:034005
    [Google Scholar]
  88. 88.
    Guan Y, Zhou X, Li F, Ma T, Yang S-H, Parkin SSP 2021. Ionitronic manipulation of current-induced domain wall motion in synthetic antiferromagnets. Nat. Commun. 12:5002
    [Google Scholar]
  89. 89.
    Yang Q, Wang L, Zhou Z, Wang L, Zhang Y et al. 2018. Ionic liquid gating control of RKKY interaction in FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2 multilayers. Nat. Commun. 9:991
    [Google Scholar]
  90. 90.
    Zehner J, Soldatov I, Schneider S, Heller R, Khojasteh NB et al. 2020. Voltage‐controlled deblocking of magnetization reversal in thin films by tunable domain wall interactions and pinning sites. Adv. Electron. Mater. 6:2000406
    [Google Scholar]
  91. 91.
    Yamada K, Suzuki M, Pradipto A-M, Koyama T, Kim S et al. 2018. Microscopic investigation into the electric field effect on proximity-induced magnetism in Pt. Phys. Rev. Lett. 120:157203
    [Google Scholar]
  92. 92.
    Fert A, Cros V, Sampaio J 2013. Skyrmions on the track. Nat. Nanotechnol. 8:152–56
    [Google Scholar]
  93. 93.
    Thiaville A, Rohart S, Jué É, Cros V, Fert A 2012. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100:57002
    [Google Scholar]
  94. 94.
    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8:839–44
    [Google Scholar]
  95. 95.
    Yang S-H, Ryu K-S, Parkin S 2015. Domain-wall velocities of up to 750 ms−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10:221–26
    [Google Scholar]
  96. 96.
    Srivastava T, Schott M, Juge R, Krizakova V, Belmeguenai M et al. 2018. Large-voltage tuning of Dzyaloshinskii–Moriya interactions: a route toward dynamic control of skyrmion chirality. Nano Lett. 18:4871–77
    [Google Scholar]
  97. 97.
    Bhattacharya D, Razavi SA, Wu H, Dai B, Wang KL, Atulasimha J 2020. Creation and annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy. Nat. Electron. 3:539–45
    [Google Scholar]
  98. 98.
    Yang Q, Cheng Y, Li Y, Zhou Z, Liang J et al. 2020. Voltage control of skyrmion bubbles for topological flexible spintronic devices. Adv. Electron. Mater. 6:2000246
    [Google Scholar]
  99. 99.
    Zhang Y, Dubuis G, Doyle C, Butler T, Granville S 2021. Nonvolatile and volatile skyrmion generation engineered by ionic liquid gating in ultrathin films. Phys. Rev. Appl. 16:014030
    [Google Scholar]
  100. 100.
    Qin P, Yan H, Fan B, Feng Z, Zhou X et al. 2022. Chemical potential switching of the anomalous Hall effect in an ultrathin noncollinear antiferromagnetic metal. Adv. Mater. 34:2200487
    [Google Scholar]
  101. 101.
    Parkin S, More N, Roche K 1990. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64:2304
    [Google Scholar]
  102. 102.
    Parkin SSP 1991. Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Phys. Rev. Lett. 67:3598
    [Google Scholar]
  103. 103.
    Duine R, Lee K-J, Parkin SS, Stiles MD 2018. Synthetic antiferromagnetic spintronics. Nat. Phys. 14:217–19
    [Google Scholar]
  104. 104.
    Néel L 1952. Antiferromagnetism and ferrimagnetism. Proc. Phys. Soc. A 65:869–85
    [Google Scholar]
  105. 105.
    Kim SK, Beach GS, Lee K-J, Ono T, Rasing T, Yang H 2022. Ferrimagnetic spintronics. Nat. Mater. 21:24–34
    [Google Scholar]
  106. 106.
    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018. Antiferromagnetic spintronics. Rev. Mod. Phys. 90:015005
    [Google Scholar]
  107. 107.
    Kim K-J, Kim SK, Hirata Y, Oh S-H, Tono T et al. 2017. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16:1187–92
    [Google Scholar]
  108. 108.
    Caretta L, Mann M, Büttner F, Ueda K, Pfau B et al. 2018. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13:1154–60
    [Google Scholar]
  109. 109.
    Bläsing R, Ma T, Yang S-H, Garg C, Dejene FK et al. 2018. Exchange coupling torque in ferrimagnetic Co/Gd bilayer maximized near angular momentum compensation temperature. Nat. Commun. 9:4984
    [Google Scholar]
  110. 110.
    Cai K, Zhu Z, Lee JM, Mishra R, Ren L et al. 2020. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat. Electron. 3:37–42
    [Google Scholar]
  111. 111.
    Wang Y, Li C, Zhou H, Wang J, Chai G, Jiang C 2021. Unusual anomalous Hall effect in the ferrimagnetic GdFeCo alloy. Appl. Phys. Lett. 118:071902
    [Google Scholar]
  112. 112.
    Parkin SSP, Jiang X, Kaiser C, Panchula A, Roche K, Samant M 2003. Magnetically engineered spintronic sensors and memory. Proc. IEEE 91:661–80
    [Google Scholar]
  113. 113.
    Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S et al. 2005. Exchange bias in nanostructures. Phys. Rep. 422:65–117
    [Google Scholar]
  114. 114.
    Zehner J, Huhnstock R, Oswald S, Wolff U, Soldatov I et al. 2019. Nonvolatile electric control of exchange bias by a redox transformation of the ferromagnetic layer. Adv. Electron. Mater. 5:1900296
    [Google Scholar]
  115. 115.
    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016. Antiferromagnetic spintronics. Nat. Nanotechnol. 11:231–41
    [Google Scholar]
  116. 116.
    Chen X, Zhou X, Cheng R, Song C, Zhang J et al. 2019. Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 18:931–35
    [Google Scholar]
  117. 117.
    Chiang CC, Huang SY, Qu D, Wu PH, Chien CL 2019. Absence of evidence of electrical switching of the antiferromagnetic Néel vector. Phys. Rev. Lett. 123:227203
    [Google Scholar]
  118. 118.
    Churikova A, Bono D, Neltner B, Wittmann A, Scipioni L et al. 2020. Non-magnetic origin of spin Hall magnetoresistance-like signals in Pt films and epitaxial NiO/Pt bilayers. Appl. Phys. Lett. 116:022410
    [Google Scholar]
  119. 119.
    Nakatsuji S, Kiyohara N, Higo T 2015. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527:212–15
    [Google Scholar]
  120. 120.
    Nayak AK, Fischer JE, Sun Y, Yan B, Karel J et al. 2016. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2:e1501870
    [Google Scholar]
  121. 121.
    Novoselov K, Mishchenko A, Carvalho A, Castro Neto AH 2016. 2D materials and van der Waals heterostructures. Science 353:aac9439
    [Google Scholar]
  122. 122.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. 2004. Electric field effect in atomically thin carbon films. Science 306:666–69
    [Google Scholar]
  123. 123.
    Xi X, Wang Z, Zhao W, Park J-H, Law KT et al. 2016. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12:139–43
    [Google Scholar]
  124. 124.
    Lu J, Zheliuk O, Leermakers I, Yuan NF, Zeitler U et al. 2015. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350:1353–57
    [Google Scholar]
  125. 125.
    Zhang K, Feng Y, Wang F, Yang Z, Wang J 2017. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5:11992–2022
    [Google Scholar]
  126. 126.
    Wu C-L, Yuan H, Li Y, Gong Y, Hwang HY, Cui Y 2018. Gate-induced metal–insulator transition in MoS2 by solid superionic conductor LaF3. Nano Lett. 18:2387–92
    [Google Scholar]
  127. 127.
    Deng Y, Yu Y, Song Y, Zhang J, Wang NZ et al. 2018. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563:94–99
    [Google Scholar]
  128. 128.
    Jiang S, Li L, Wang Z, Mak KF, Shan J 2018. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13:549–53
    [Google Scholar]
  129. 129.
    Shalnikov A 1938. Superconducting thin films. Nature 142:74
    [Google Scholar]
  130. 130.
    Zhang T, Cheng P, Li W-J, Sun Y-J, Wang G et al. 2010. Superconductivity in one-atomic-layer metal films grown on Si(111). Nat. Phys. 6:104–8
    [Google Scholar]
  131. 131.
    Lu J, Zheliuk O, Chen Q, Leermakers I, Hussey NE et al. 2018. Full superconducting dome of strong Ising protection in gated monolayer WS2. PNAS 115:3551–56
    [Google Scholar]
  132. 132.
    de la Barrera SC, Sinko MR, Gopalan DP, Sivadas N, Seyler KL et al. 2018. Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 9:1427
    [Google Scholar]
  133. 133.
    Shi W, Ye J, Zhang Y, Suzuki R, Yoshida M et al. 2015. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5:12534
    [Google Scholar]
  134. 134.
    Yoshida M, Iizuka T, Saito Y, Onga M, Suzuki R et al. 2016. Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals. Nano Lett. 16:2061–65
    [Google Scholar]
  135. 135.
    Hitz E, Wan J, Patel A, Xu Y, Meshi L et al. 2016. Electrochemical intercalation of lithium ions into NbSe2 nanosheets. ACS Appl. Mater. Inter. 8:11390–95
    [Google Scholar]
  136. 136.
    Song Y, Liang X, Guo J, Deng J, Gao G, Chen X 2019. Superconductivity in Li-intercalated 1T−SnSe2 driven by electric field gating. Phys. Rev. Mater. 3:054804
    [Google Scholar]
  137. 137.
    Ying T, Wang M, Wu X, Zhao Z, Zhang Z et al. 2018. Discrete superconducting phases in FeSe-derived superconductors. Phys. Rev. Lett. 121:207003
    [Google Scholar]
  138. 138.
    Nakagawa Y, Kasahara Y, Nomoto T, Arita R, Nojima T, Iwasa Y 2021. Gate-controlled BCS-BEC crossover in a two-dimensional superconductor. Science 372:190–95
    [Google Scholar]
  139. 139.
    Tang M, Huang J, Qin F, Zhai K, Ideue T et al. 2022. Continuous manipulation of magnetic anisotropy in a van der Waals ferromagnet via electrical gating. Nat. Electron. 6:28–36
    [Google Scholar]
  140. 140.
    Nakagawa Y, Saito Y, Nojima T, Inumaru K, Yamanaka S et al. 2018. Gate-controlled low carrier density superconductors: toward the two-dimensional BCS-BEC crossover. Phys. Rev. B 98:064512
    [Google Scholar]
  141. 141.
    Samarth N 2017. Magnetism in flatland. Nature 546:216–17
    [Google Scholar]
  142. 142.
    Mermin ND, Wagner H 1966. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17:1133
    [Google Scholar]
  143. 143.
    Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R et al. 2017. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546:270–73
    [Google Scholar]
  144. 144.
    Gong C, Li L, Li Z, Ji H, Stern A et al. 2017. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546:265–69
    [Google Scholar]
  145. 145.
    Bedoya-Pinto A, Ji J-R, Pandeya A, Gargiani P, Valvidares M et al. 2021. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 374:616–20
    [Google Scholar]
  146. 146.
    Gerstner W, Sprekeler H, Deco G 2012. Theory and simulation in neuroscience. Science 338:60–65
    [Google Scholar]
  147. 147.
    Deng X, Wang SQ, Liu YX, Zhong N, He YH et al. 2021. A flexible Mott synaptic transistor for nociceptor simulation and neuromorphic computing. Adv. Electron. Mater. 31:2101099
    [Google Scholar]
  148. 148.
    Li G, Xie D, Zhong H, Zhang Z, Fu X et al. 2022. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat. Commun. 13:1729
    [Google Scholar]
  149. 149.
    Yang CS, Shang DS, Liu N, Fuller EJ, Agrawal S et al. 2018. All‐solid‐state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Electron. Mater. 28:1804170
    [Google Scholar]
  150. 150.
    Sharbati MT, Du Y, Torres J, Ardolino ND, Yun M, Xiong F 2018. Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. 30:1802353
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080619-012219
Loading
/content/journals/10.1146/annurev-matsci-080619-012219
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error