1932

Abstract

Co base superalloys strengthened by coherent L1 ordered γ′ precipitate in a disordered face-centered cubic γ matrix represent a new opportunity for high-temperature alloy development. The emergence of alloys with low density and high specific yield strength at elevated temperatures has further energized the research and development efforts in the last 5 years. Initially stabilized by the addition of small amounts of Nb and Ta, these new generations of alloys with multiple alloying additions to form basic quaternary and ternary alloys have steadily expanded the property envelopes to raise hope for a modern class of superalloys with higher-temperature capabilities. This article reviews the work of a vibrant set of researchers across the globe whose findings are constantly unlocking the potential of these alloys. These developments have achieved high-temperature strength (at 870°C) >0.6 GPa, γ′ solvus temperature exceeding 1,100°C, and densities between 7.8 and 8.6 g/cm3.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080619-014459
2021-07-26
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080619-014459.html?itemId=/content/journals/10.1146/annurev-matsci-080619-014459&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lee CS. 1971. Precipitation-hardening characteristics of ternary cobalt-aluminum-X alloys. PhD thesis Univ. Ariz. Tucson, AZ:
    [Google Scholar]
  2. 2. 
    Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K. 2006. Cobalt-base high-temperature alloys. Science 312:577090–91
    [Google Scholar]
  3. 3. 
    Mughrabi H. 2014. The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—with special reference to the new γ′-hardened cobalt-base superalloys. Acta Mater 81:21–29
    [Google Scholar]
  4. 4. 
    Kobayashi S, Tsukamoto Y, Takasugi T, Chinen H, Omori T et al. 2009. Determination of phase equilibria in the Co-rich Co–Al–W ternary system with a diffusion-couple technique. Intermetallics 17:121085–89
    [Google Scholar]
  5. 5. 
    Feng G, Li H, Li SS, Sha JB. 2012. Effect of Mo additions on microstructure and tensile behavior of a Co–Al–W–Ta–B alloy at room temperature. Scr. Mater. 67:5499–502
    [Google Scholar]
  6. 6. 
    Chen M, Wang C-Y. 2009. First-principles investigation of the site preference and alloying effect of Mo, Ta and platinum group metals in γ′-Co3(Al, W). Scr. Mater. 60:8659–62
    [Google Scholar]
  7. 7. 
    Yan H-Y, Vorontsov VA, Dye D. 2014. Alloying effects in polycrystalline γ′ strengthened Co–Al–W base alloys. Intermetallics 48:44–53
    [Google Scholar]
  8. 8. 
    Yan H-Y, Coakley J, Vorontsov VA, Jones NG, Stone HJ, Dye D. 2014. Alloying and the micromechanics of Co–Al–W–X quaternary alloys. Mater. Sci. Eng. A 613:201–8
    [Google Scholar]
  9. 9. 
    Bauer A, Neumeier S, Pyczak F, Göken M. 2010. Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants. Scr. Mater. 63:121197–200
    [Google Scholar]
  10. 10. 
    Knop M, Mulvey P, Ismail F, Radecka A, Rahman KM et al. 2014. A new polycrystalline Co-Ni superalloy. JOM 66:122495–501
    [Google Scholar]
  11. 11. 
    Neumeier S, Freund LP, Göken M. 2015. Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance. Scr. Mater. 109:104–7
    [Google Scholar]
  12. 12. 
    Shi L, Yu JJ, Cui CY, Sun XF. 2015. Microstructural stability and tensile properties of a Ti-containing single-crystal Co–Ni–Al–W–base alloy. Mater. Sci. Eng. A 646:45–51
    [Google Scholar]
  13. 13. 
    Bocchini PJ, Sudbrack CK, Noebe RD, Dunand DC, Seidman DN. 2017. Microstructural and creep properties of boron- and zirconium-containing cobalt-based superalloys. Mater. Sci. Eng. A 682:260–69
    [Google Scholar]
  14. 14. 
    Makineni SK, Nithin B, Chattopadhyay K. 2015. A new tungsten-free γ–γ′ Co–Al–Mo–Nb-based superalloy. Scr. Mater. 98:36–39
    [Google Scholar]
  15. 15. 
    Makineni SK, Samanta A, Rojhirunsakool T, Alam T, Nithin B et al. 2015. A new class of high strength high temperature Cobalt based γ–γ′ Co–Mo–Al alloys stabilized with Ta addition. Acta Mater 97:29–40
    [Google Scholar]
  16. 16. 
    Makineni SK, Nithin B, Chattopadhyay K. 2015. Synthesis of a new tungsten-free γ–γ′ cobalt-based superalloy by tuning alloying additions. Acta Mater 85:85–94
    [Google Scholar]
  17. 17. 
    Makineni SK, Nithin B, Palanisamy D, Chattopadhyay K. 2016. Phase evolution and crystallography of precipitates during decomposition of new “tungsten-free” Co(Ni)–Mo–Al–Nb γ–γ′ superalloys at elevated temperatures. J. Mater. Sci. 51:177843–60
    [Google Scholar]
  18. 18. 
    Pandey P, Mukhopadhyay S, Srivastava C, Makineni SK, Chattopadhyay K. 2020. Development of new γ′-strengthened Co-based superalloys with low mass density, high solvus temperature and high temperature strength. Mater. Sci. Eng. A 790:139578
    [Google Scholar]
  19. 19. 
    Singh MP, Makineni SK, Chattopadhyay K. 2020. Achieving lower mass density with high strength in Nb stabilised γ/γ′ Co–Al–Mo–Nb base superalloy by the replacement of Mo with V. Mater. Sci. Eng. A 794:139826
    [Google Scholar]
  20. 20. 
    Yao Q, Shang S-L, Hu Y-J, Wang Y, Wang Y et al. 2016. First-principles investigation of phase stability, elastic and thermodynamic properties in L12 Co3(Al,Mo,Nb) phase. Intermetallics 78:1–7
    [Google Scholar]
  21. 21. 
    Tanaka K, Ohashi T, Kishida K, Inui H. 2007. Single-crystal elastic constants of Co3 (Al, W) with the L12 structure. Appl. Phys. Lett. 91:18181907
    [Google Scholar]
  22. 22. 
    Omori T, Oikawa K, Sato J, Ohnuma I, Kattner UR et al. 2013. Partition behavior of alloying elements and phase transformation temperatures in Co–Al–W–base quaternary systems. Intermetallics 32:274–83
    [Google Scholar]
  23. 23. 
    Chen Y, Wang C, Ruan J, Omori T, Kainuma R et al. 2019. High-strength Co–Al–V-base superalloys strengthened by γ′-Co3(Al,V) with high solvus temperature. Acta Mater 170:62–74
    [Google Scholar]
  24. 24. 
    Chen Y, Wang C, Ruan J, Yang S, Omori T et al. 2020. Development of low-density γ/γ′ Co–Al–Ta-based superalloys with high solvus temperature. Acta Mater 188:652–64
    [Google Scholar]
  25. 25. 
    Murray JL. 1982. The Co−Ti (cobalt−titanium) system. Bull. Alloy Phase Diagr. 3:174
    [Google Scholar]
  26. 26. 
    Bhowmik A, Neumeier S, Rhode S, Stone HJ. 2015. Allotropic transformation induced stacking faults and discontinuous coarsening in a γ-γ′ Co-base alloy. Intermetallics 59:95–101
    [Google Scholar]
  27. 27. 
    Blaise JM, Viatour P, Drapier JM 1970. On the stability and precipitation of the Co3Ti phase in Co-Ti alloys. Cobalt 49:192–95
    [Google Scholar]
  28. 28. 
    Viatour P, Drapier JM, Coutsouradis D 1973. Stability of the gamma prime-Co3Ti compound in simple and complex cobalt alloys. Cobalt 3:67–74
    [Google Scholar]
  29. 29. 
    Zenk CH, Povstugar I, Li R, Rinaldi F, Neumeier S et al. 2017. A novel type of Co–Ti–Cr-base γ/γ′ superalloys with low mass density. Acta Mater 135:244–51
    [Google Scholar]
  30. 30. 
    Im HJ, Makineni SK, Gault B, Stein F, Raabe D, Choi P-P. 2018. Elemental partitioning and site-occupancy in γ/γ′ forming Co-Ti-Mo and Co-Ti-Cr alloys. Scr. Mater. 154:159–62
    [Google Scholar]
  31. 31. 
    Im HJ, Lee S, Choi WS, Makineni SK, Raabe D et al. 2020. Effects of Mo on the mechanical behavior of γ/γ′-strengthened Co-Ti-based alloys. Acta Mater 197:69–80
    [Google Scholar]
  32. 32. 
    Ruan JJ, Wang CP, Zhao CC, Yang SY, Yang T, Liu XJ 2014. Experimental investigation of phase equilibria and microstructure in the Co-Ti-V ternary system. Intermetallics 49:121–31
    [Google Scholar]
  33. 33. 
    Yoo B, Im HJ, Seol J-B, Choi P-P. 2019. On the microstructural evolution and partitioning behavior of L12-structured γ′-based Co-Ti-W alloys upon Cr and Al alloying. Intermetallics 104:97–102
    [Google Scholar]
  34. 34. 
    Nyshadham C, Oses C, Hansen JE, Takeuchi I, Curtarolo S, Hart GL. 2017. A computational high-throughput search for new ternary superalloys. Acta Mater 122:438–47
    [Google Scholar]
  35. 35. 
    Reyes Tirado FL, Perrin Toinin J, Dunand DC 2018. γ+γ′ microstructures in the Co-Ta-V and Co-Nb-V ternary systems. Acta Mater 151:137–48
    [Google Scholar]
  36. 36. 
    Ruan J, Xu W, Yang T, Yu J, Yang S et al. 2020. Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γ′ region by machine learning and CALPHAD methods. Acta Mater 186:425–33
    [Google Scholar]
  37. 37. 
    Mukhopadhyay S, Pandey P, Baler N, Biswas K, Makineni SK, Chattopadhyay K. 2021. The role of Ti addition on the evolution and stability of γ/γ′ microstructure in a Co-30Ni-10Al-5Mo-2Ta alloy. Acta Mater 208:116736
    [Google Scholar]
  38. 38. 
    Pandey P, Sawant AK, Nithin B, Peng Z, Makineni SK et al. 2019. On the effect of Re addition on microstructural evolution of a CoNi-based superalloy. Acta Mater 168:37–51
    [Google Scholar]
  39. 39. 
    Nithin B, Samanta A, Makineni SK, Alam T, Pandey P et al. 2017. Effect of Cr addition on γ–γ′ cobalt-based Co–Mo–Al–Ta class of superalloys: a combined experimental and computational study. J. Mater. Sci. 52:1811036–47
    [Google Scholar]
  40. 40. 
    Pandey P, Makineni SK, Samanta A, Sharma A, Das SM et al. 2019. Elemental site occupancy in the L12 A3B ordered intermetallic phase in Co-based superalloys and its influence on the microstructure. Acta Mater 163:140–53
    [Google Scholar]
  41. 41. 
    Baler N, Pandey P, Singh MP, Makineni SK, Chattopadhyay K Effects of Ti and Cr additions in a Co-Ni-Al-Mo-Nb based superalloy. In Superalloys 2020 S Tin, M Hardy, J Clews, J Cormier, Q Feng et al.929–36 Cham, Switz.: Springer
    [Google Scholar]
  42. 42. 
    Li L, Wang C, Chen Y, Yang S, Yang M et al. 2019. Effect of Re on microstructure and mechanical properties of γ/γ′ Co-Ti-based superalloys. Intermetallics 115:106612
    [Google Scholar]
  43. 43. 
    Povstugar I, Zenk CH, Li R, Choi P-P, Neumeier S et al. 2016. Elemental partitioning, lattice misfit and creep behaviour of Cr containing γ′ strengthened Co base superalloys. Mater. Sci. Technol. 32:3220–25
    [Google Scholar]
  44. 44. 
    Povstugar I, Choi P-P, Neumeier S, Bauer A, Zenk CH et al. 2014. Elemental partitioning and mechanical properties of Ti- and Ta-containing Co–Al–W-base superalloys studied by atom probe tomography and nanoindentation. Acta Mater 78:78–85
    [Google Scholar]
  45. 45. 
    Shinagawa K, Omori T, Sato J, Oikawa K, Ohnuma I et al. 2008. Phase equilibria and microstructure on γ′ phase in Co-Ni-Al-W system. Mater. Trans. 49:61474–79
    [Google Scholar]
  46. 46. 
    Volz N, Zenk CH, Cherukuri R, Kalfhaus T, Weiser M et al. 2018. Thermophysical and mechanical properties of advanced single crystalline Co-base superalloys. Metall. Mater. Trans. A 49:94099–109
    [Google Scholar]
  47. 47. 
    Kolb M, Zenk CH, Kirzinger A, Povstugar I, Raabe D et al. 2017. Influence of rhenium on γ′-strengthened cobalt-base superalloys. J. Mater. Res. 32:132551–59
    [Google Scholar]
  48. 48. 
    Liu Q, Coakley J, Seidman DN, Dunand DC. 2016. Precipitate evolution and creep behavior of a W-free Co-based superalloy. Metall. Mater. Trans. A 47:126090–96
    [Google Scholar]
  49. 49. 
    Ruan JJ, Liu XJ, Yang SY, Xu WW, Omori T et al. 2018. Novel Co-Ti-V-base superalloys reinforced by L12-ordered γ′ phase. Intermetallics 92:126–32
    [Google Scholar]
  50. 50. 
    Zhuang X, Lu S, Li L, Feng Q. 2020. Microstructures and properties of a novel γ′-strengthened multi-component CoNi-based wrought superalloy designed by CALPHAD method. Mater. Sci. Eng. A 780:139219
    [Google Scholar]
  51. 51. 
    Suzuki A, Inui H, Pollock TM. 2015. L12-strengthened cobalt-base superalloys. Annu. Rev. Mater. Res. 45:345–68
    [Google Scholar]
  52. 52. 
    Calderon HA, Voorhees PW, Murray JL, Kostorz G. 1994. Ostwald ripening in concentrated alloys. Acta Metall. Mater. 42:3991–1000
    [Google Scholar]
  53. 53. 
    Sauza DJ, Bocchini PJ, Dunand DC, Seidman DN. 2016. Influence of ruthenium on microstructural evolution in a model Co–Al–W superalloy. Acta Mater 117:135–45
    [Google Scholar]
  54. 54. 
    Azzam A, Philippe T, Hauet A, Danoix F, Locq D et al. 2018. Kinetics pathway of precipitation in model Co-Al-W superalloy. Acta Mater 145:377–87
    [Google Scholar]
  55. 55. 
    Meher S, Nag S, Tiley J, Goel A, Banerjee R. 2013. Coarsening kinetics of γ′ precipitates in cobalt-base alloys. Acta Mater 61:114266–76
    [Google Scholar]
  56. 56. 
    Baler N, Pandey P, Palanisamy D, Makineni SK, Phanikumar G, Chattopadhyay K. 2020. On the effect of W addition on microstructural evolution and γ′ precipitate coarsening in a Co–30Ni–10Al–5Mo–2Ta–2Ti alloy. Materialia 10:100632
    [Google Scholar]
  57. 57. 
    Lass EA, Grist RD, Williams ME. 2016. Phase equilibria and microstructural evolution in ternary Co-Al-W between 750 and 1100°C. J. Phase Equilib. Diffus. 37:4387–401
    [Google Scholar]
  58. 58. 
    Hadjiapostolidou D, Shollock BA. 2008. Long term coarsening in René 80 Ni-base superalloy. Superalloys 2008 733–739
    [Google Scholar]
  59. 59. 
    Footner PK, Richards BP. 1982. Long—term growth of superalloy γ′ particles. J. Mater. Sci. 17:72141–53
    [Google Scholar]
  60. 60. 
    MacKay RA, Nathal MV. 1990. γ′ coarsening in high volume fraction nickel-base alloys. Acta Metall. Mater. 38:6993–1005
    [Google Scholar]
  61. 61. 
    MacKay RA, Ebert LJ. 1983. The development of directional coarsening of the γ′ precipitate in superalloy single crystals. Scr. Metall. 17:101217–22
    [Google Scholar]
  62. 62. 
    Miyazaki T, Imamura H, Kozakai T. 1982. The formation of “γ′ precipitate doublets” in Ni·Al alloys and their energetic stability. Mater. Sci. Eng. 54:19–15
    [Google Scholar]
  63. 63. 
    Qu S, Li Y, Wang C, Liu X, Qian K et al. 2020. Coarsening behavior of γ′ precipitates and compression deformation mechanism of a novel Co–V–Ta–Ti superalloy. Mater. Sci. Eng. A 787:139455
    [Google Scholar]
  64. 64. 
    Takasugi T, Hirakawa S, Izumi O, Ono S, Watanabe S. 1987. Plastic flow of Co3 Ti single crystals. Acta Metall 35:82015–26
    [Google Scholar]
  65. 65. 
    Liu Y, Takasugi T, Izumi O, Suenaga H. 1989. Mechanical properties of Co3Ti polycrystals alloyed with various additions. J. Mater. Sci. 24:124458–66
    [Google Scholar]
  66. 66. 
    Suzuki A, DeNolf GC, Pollock TM. 2007. Flow stress anomalies in γ/γ′ two-phase Co–Al–W-base alloys. Scr. Mater. 56:5385–88
    [Google Scholar]
  67. 67. 
    Suzuki A, Pollock TM. 2008. High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys. Acta Mater 56:61288–97
    [Google Scholar]
  68. 68. 
    Mishima Y, Ochiai S, Yodogawa M, Suzuki T. 1986. Mechanical properties of Ni3Al with ternary addition of transition metal elements. Trans. Jpn. Inst. Metals 27:141–50
    [Google Scholar]
  69. 69. 
    Okamoto NL, Oohashi T, Adachi H, Kishida K, Inui H, Veyssière P. 2011. Plastic deformation of polycrystals of Co3(Al,W) with the L12 structure. Philos. Mag. 91:283667–84
    [Google Scholar]
  70. 70. 
    Vamsi KV, Karthikeyan S. 2017. Yield anomaly in L12 Co3AlxW1–x vis-à-vis Ni3Al. Scr. Mater. 130:269–73
    [Google Scholar]
  71. 71. 
    Long FR, Baik SI, Chung DW, Xue F, Lass EA et al. 2020. Microstructure and creep performance of a multicomponent Co-based L12-ordered intermetallic alloy. Acta Mater 196:396–408
    [Google Scholar]
  72. 72. 
    Vitek V, Paidar V. 2008. Non-planar dislocation cores: a ubiquitous phenomenon affecting mechanical properties of crystalline materials. Dislocations Solids 14:439–514
    [Google Scholar]
  73. 73. 
    Kear BH, Wilsdorf HG. 1962. Dislocation configurations in plastically deformed polycrystalline Cu3Au alloys. Trans. Met. Soc. AIME 224:382
    [Google Scholar]
  74. 74. 
    Sharma A. 2019. An evaluation of the mechanical behavior of some new high temperature materials. PhD Thesis Indian Inst. Sci. Bangalore, India:
    [Google Scholar]
  75. 75. 
    Bauer A, Neumeier S, Pyczak F, Göken M. 2012. Creep strength and microstructure of polycrystalline γ′-strengthened cobalt-base superalloys. Superalloys 12:695–703
    [Google Scholar]
  76. 76. 
    Reyes Tirado FL, Taylor S, Dunand DC 2019. Effect of Al, Ti and Cr additions on the γ-γ′ microstructure of W-free Co-Ta-V-based superalloys. Acta Mater 172:44–54
    [Google Scholar]
  77. 77. 
    Bauer A, Neumeier S, Pyczak F, Singer RF, Göken M. 2012. Creep properties of different γ′-strengthened Co-base superalloys. Mater. Sci. Eng. A 550:333–41
    [Google Scholar]
  78. 78. 
    Reyes Tirado FL, Taylor SV, Dunand DC 2020. Low-density, W-free Co–Nb–V–Al-based superalloys with γ/γ′ microstructure. Mater. Sci. Eng. A 796:139977
    [Google Scholar]
  79. 79. 
    Ng DS, Chung D-W, Toinin JP, Seidman DN, Dunand DC, Lass EA. 2020. Effect of Cr additions on a γ-γ′ microstructure and creep behavior of a Co-based superalloy with low W content. Mater. Sci. Eng. A 778:139108
    [Google Scholar]
  80. 80. 
    Klein L, Bauer A, Neumeier S, Göken M, Virtanen S. 2011. High temperature oxidation of γ/γ′-strengthened Co-base superalloys. Corros. Sci. 53:52027–34
    [Google Scholar]
  81. 81. 
    Klein L, Killian MS, Virtanen S. 2013. The effect of nickel and silicon addition on some oxidation properties of novel Co-based high temperature alloys. Corros. Sci. 69:43–49
    [Google Scholar]
  82. 82. 
    Klein L, Shen Y, Killian MS, Virtanen S. 2011. Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ′-strengthened Co-base superalloys. Corros. Sci. 53:92713–20
    [Google Scholar]
  83. 83. 
    Weiser M, Galetz MC, Zschau H-E, Zenk CH, Neumeier S et al. 2019. Influence of Co to Ni ratio in γ′-strengthened model alloys on oxidation resistance and the efficacy of the halogen effect at 900°C. Corros. Sci. 156:84–95
    [Google Scholar]
  84. 84. 
    Weiser M, Eggeler YM, Spiecker E, Virtanen S. 2018. Early stages of scale formation during oxidation of γ/γ′ strengthened single crystal ternary Co-base superalloy at 900°. Corros. Sci. 135:78–86
    [Google Scholar]
  85. 85. 
    Stewart CA, Suzuki A, Rhein RK, Pollock TM, Levi CG. 2019. Oxidation behavior across composition space relevant to Co-based γ/γ′ alloys. Metall. Mater. Trans. A 50:115445–58
    [Google Scholar]
  86. 86. 
    Stewart CA, Murray SP, Suzuki A, Pollock TM, Levi CG. 2020. Accelerated discovery of oxidation resistant CoNi-base γ/γ′ alloys with high L12 solvus and low density. Mater. Des. 189:108445
    [Google Scholar]
  87. 87. 
    Forsik SAJ, Polar Rosas AO, Wang T, Colombo GA, Zhou N et al. 2018. High-temperature oxidation behavior of a novel Co-base superalloy. Metall. Mater. Trans. A 49:94058–69
    [Google Scholar]
  88. 88. 
    Weiser M, Virtanen S. 2019. Influence of W content on the oxidation behaviour of ternary γ′-strengthened Co-based model alloys between 800 and 900°C. Oxid. Met. 92:5541–60
    [Google Scholar]
  89. 89. 
    Moskal G, Tomaszewska A, Mikuszewski T, Maciag T, Godzierz M, Niemiec D. 2017. Oxidation performance of Co–Al–W and Co–Ni–Al–W new type γ–γ′ cobalt-based superalloys. Mater. Eng. 4:163–69
    [Google Scholar]
  90. 90. 
    Migas D, Moskal G, Niemiec D. 2018. Surface condition of new γ–γ′ Co-Al-Mo-Nb and Co-Al-W cobalt-based superalloys after oxidation at 800°C. J. Mater. Eng. Perform. 27:2447–56
    [Google Scholar]
  91. 91. 
    Moskal G, Migas D, Niemiec D, Tomaszewska A. 2019. Thermogravimetric investigations of novel γ–γ′ Co-Al-W and Co-Al-Mo-Nb cobalt-based superalloys. J. Eng. Mater. Technol. 141:4041008
    [Google Scholar]
  92. 92. 
    Das SM, Singh MP, Chattopadhyay K. 2019. Evolution of oxides and their microstructures at 800°C in a γ-γ’ stabilised Co-Ni-Al-Mo-Ta superalloy. Corros. Sci. 155:46–54
    [Google Scholar]
  93. 93. 
    Das SM, Singh MP, Chattopadhyay K. 2020. Effect of Cr addition on the evolution of protective alumina scales and the oxidation properties of a Ta stabilized γ′-strengthened Co-Ni-Al-Mo-Ta-Ti alloy. Corros. Sci. 172:108683
    [Google Scholar]
  94. 94. 
    Chen Y, Xue F, Wang C, Li X, Deng Q et al. 2019. Effect of Cr on the microstructure and oxidation properties of Co-Al-W superalloys studied by in situ environmental TEM. Corros. Sci. 161:108179
    [Google Scholar]
  95. 95. 
    Bantounas I, Gwalani B, Alam T, Banerjee R, Dye D. 2019. Elemental partitioning, mechanical and oxidation behaviour of two high-γ′ W-free γ/γ′ polycrystalline Co/Ni superalloys. Scr. Mater. 163:44–50
    [Google Scholar]
  96. 96. 
    Nithin B, Chattopadhyay K, Phanikumar G. 2018. Characterization of the hot deformation behavior and microstructure evolution of a new γ-γ′ strengthened cobalt-based superalloy. Metall. Mater. Trans. A 49:104895–905
    [Google Scholar]
  97. 97. 
    Baler N, Pandey P, Chattopadhyay K, Phanikumar G. 2020. Influence of thermomechanical processing parameters on microstructural evolution of a gamma-prime strengthened cobalt based superalloy during high temperature deformation. Mater. Sci. Eng. A 791:13949
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080619-014459
Loading
/content/journals/10.1146/annurev-matsci-080619-014459
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error