1932

Abstract

Structural materials have lagged behind other classes in the use of combinatorial and high-throughput (CHT) methods for rapid screening and alloy development. The dual complexities of composition and microstructure are responsible for this, along with the need to produce bulk-like, defect-free materials libraries. This review evaluates recent progress in CHT evaluations for structural materials. High-throughput computations can augment or replace experiments and accelerate data analysis. New synthesis methods, including additive manufacturing, can rapidly produce composition gradients or arrays of discrete alloys-on-demand in bulk form, and new experimental methods have been validated for nearly all essential structural materials properties. The remaining gaps are CHT measurement of bulk tensile strength, ductility, and melting temperature and production of microstructural libraries. A search strategy designed forstructural materials gains efficiency by performing two layers of evaluations before addressing microstructure, and this review closes with a future vision of the autonomous, closed-loop CHT exploration of structural materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080619-022100
2021-07-26
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080619-022100.html?itemId=/content/journals/10.1146/annurev-matsci-080619-022100&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Gocha A. 2018. Smart materials make smartphones. Am. Ceram. Soc. Bull. 97:11–23
    [Google Scholar]
  2. 2. 
    Boettcher A, Haase G, Thun R. 1955. Structural investigation of multicomponent systems by kinematic electron diffraction. Z. Metallkd. 46:386–400
    [Google Scholar]
  3. 3. 
    Kennedy K, Stefansky T, Davy G, Zackay VF, Parker ER. 1965. Rapid method for determining ternary-alloy phase diagrams. J. Appl. Phys. 36:3808–10
    [Google Scholar]
  4. 4. 
    Hanak JJ. 1970. The “multiple-sample concept” in materials research: synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5:964–71
    [Google Scholar]
  5. 5. 
    Hanak JJ. 1971. Compositional determination of rf Co-sputtered multicomponent systems. J. Vac. Sci. Technol. 8:172–75
    [Google Scholar]
  6. 6. 
    Xiang X-D, Sun X, Briceño G, Lou Y, Wang K-A et al. 1995. A combinatorial approach to materials discovery. Science 268:1738–40
    [Google Scholar]
  7. 7. 
    Rajan K. 2008. Combinatorial materials sciences: experimental strategies for accelerated knowledge discovery. Annu. Rev. Mater. Res. 38:299–322
    [Google Scholar]
  8. 8. 
    Potyrailo R, Rajan K, Stoewe K, Takeuchi I, Chisholm B, Lam H. 2011. Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb. Sci. 13:579–633
    [Google Scholar]
  9. 9. 
    Green M, Takeuchi I, Hattrick-Simpers JR. 2013. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113:231101
    [Google Scholar]
  10. 10. 
    Green ML, Choi CL, Hattrick-Simpers JR, Joshi AM, Takeuchi I et al. 2017. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 4:011105
    [Google Scholar]
  11. 11. 
    Baker I. 2018. Fifty Materials That Make the World Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  12. 12. 
    Natl. Res. Counc. Comm. Integr. Comput. Mater. Eng 2008. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security Washington, DC: Natl. Acad. Press
    [Google Scholar]
  13. 13. 
    Natl. Sci. Technol. Counc 2011. Materials Genome Initiative for Global Competitiveness Washington, DC: Executive Off. Pres.
    [Google Scholar]
  14. 14. 
    Newbury DE, Ritchie NWM. 2013. Elemental mapping of microstructures by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS): extraordinary advances with the silicon drift detector (SDD). J. Anal. At. Spectrom. 28:973–88
    [Google Scholar]
  15. 15. 
    Zhao J-C. 2006. Combinatorial approaches as effective tools in the study of phase diagrams and composition–structure–property relationships. Prog. Mat. Sci. 51:557–631
    [Google Scholar]
  16. 16. 
    Gregoire JM, Van Campen DG, Miller CE, Jones RJR, Surama SK, Mehta A. 2014. High-throughput synchrotron X-ray diffraction for combinatorial phase mapping. J. Synchrotron Radiat. 21:1262–68
    [Google Scholar]
  17. 17. 
    Flemming RL. 2007. Micro X-ray diffraction (μXRD): a versatile technique for characterization of Earth and planetary materials. Can. J. Earth Sci. 44:1333–46
    [Google Scholar]
  18. 18. 
    Long CJ, Bunker D, Li X, Karen VL, Takeuchi I. 2009. Rapid identification of structural phases in combinatorial thin-film libraries using x-ray diffraction and non-negative matrix factorization. Rev. Sci. Instrum. 80:103902
    [Google Scholar]
  19. 19. 
    Ren F, Pandolfi R, Van Campen D, Hexemer A, Mehta A. 2017. On-the-fly data assessment for high-throughput X-ray diffraction measurements. ACS Comb. Sci. 19:377–85
    [Google Scholar]
  20. 20. 
    Kube SA, Sohn S, Uhl D, Datye A, Mehta A, Schroers J. 2019. Phase selection motifs in high entropy alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC. Acta Mater. 166:677–86
    [Google Scholar]
  21. 21. 
    Eschen K, Garcia-Barriocanal J, Abel J. 2020. In-situ strain- and temperature-control X-ray micro-diffraction analysis of nickel–titanium knitted architectures. Materialia 11:100684
    [Google Scholar]
  22. 22. 
    Xue J, Zhang L, Zou L, Liao Y, Li J et al. 2008. High-resolution X-ray microdiffraction analysis of natural teeth. J. Synchrotron Radiat. 15:235–38
    [Google Scholar]
  23. 23. 
    Kaufmann K, Zhu C, Rosengarten AS, Vecchio KS. 2020. Deep neural network enabled space group identification in EBSD. Microsc. Microanal. 26:447–57
    [Google Scholar]
  24. 24. 
    Chen D, Kuo J-C, Wu W-T. 2011. Effect of microscopic parameters on EBSD spatial resolution. Ultramicroscopy 111:1488–94
    [Google Scholar]
  25. 25. 
    Kaufmann K, Zhu C, Rosengarten AS, Maryanovsky D, Wang H, Vecchio KS. 2020. Phase mapping in EBSD using convolutional neural networks. Microsc. Microanal. 26:458–68
    [Google Scholar]
  26. 26. 
    Ward L, Michel K, Wolverton C. 2017. Automated crystal structure solution from powder diffraction data: validation of the first-principles-assisted structure solution method. Phys. Rev. Mater. 1:063802
    [Google Scholar]
  27. 27. 
    Oviedo F, Ren Z, Sun S, Settens C, Liu Z et al. 2019. Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. NPJ Comput. Mater. 5:60
    [Google Scholar]
  28. 28. 
    Lee J-W, Park WB, Lee JH, Singh SP, Sohn K-S. 2020. A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns. Nat. Commun. 11:86
    [Google Scholar]
  29. 29. 
    Meredig B, Wolverton C. 2013. A hybrid computational. experimental approach for automated crystal structure solution. Nat. Mater. 12:123–27
    [Google Scholar]
  30. 30. 
    Suram SK, Xue Y, Bai J, Le Bras R, Rappazzo B et al. 2017. Automated phase mapping with AgileFD and its application to light absorber discovery in the V. Mn. Nb oxide system. ACS Comb. Sci. 19:37–46
    [Google Scholar]
  31. 31. 
    Baumes LA, Moliner M, Corma A. 2009. Design of a full-profile-matching solution for high-throughput analysis of multiphase samples through powder X-ray diffraction. Chem. Eur. J. 15:4258–69
    [Google Scholar]
  32. 32. 
    Chowdhury A, Kautz E, Yener B, Lewis D. 2016. Image driven machine learning methods for microstructure recognition. Comput. Mater. Sci. 123:176–87
    [Google Scholar]
  33. 33. 
    DeCost BL, Francis T, Holm EA. 2017. Exploring the microstructure manifold: image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater. 133:30–40
    [Google Scholar]
  34. 34. 
    DeCost BL, Holm EA. 2015. A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 110:126–33
    [Google Scholar]
  35. 35. 
    Torquato S. 2002. Random Heterogeneous Materials: Microstructure and Macroscopic Properties New York: Springer-Verlag
    [Google Scholar]
  36. 36. 
    Kalidindi SR, Niezgoda SR, Salem AA. 2011. Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63:34–41
    [Google Scholar]
  37. 37. 
    Azimi SM, Britz D, Engstler M, Fritz M, Mücklich F. 2018. Advanced steel microstructural classification by deep learning methods. Sci. Rep. 8:2128
    [Google Scholar]
  38. 38. 
    Gwalani B, Soni V, Waseem OA, Mantri SA, Banerjee R. 2019. Laser additive manufacturing of compositionally graded AlCrFeMoVx (x  =  0 to 1) high-entropy alloy system. Opt. Laser Technol. 113:330–37
    [Google Scholar]
  39. 39. 
    Li M, Flores KM. 2020. Laser processing as a high-throughput method to investigate microstructure-processing-property relationships in multiprincipal element alloys. J. Alloys Cmpds. 825:154025
    [Google Scholar]
  40. 40. 
    Li M, Gazquex J, Borisevich A, Mishra R, Flores KM. 2018. Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method. Intermetallics 95:110–18
    [Google Scholar]
  41. 41. 
    Moorehead M, Bertsch K, Niezgoda M, Parkin C, Elbakhshwan M et al. 2020. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing. Mater. Des. 187:108358
    [Google Scholar]
  42. 42. 
    Hass DD, Dharmasena K, Wadley HNG. 2002. An electron beam method for creating combinatorial libraries: application to next generation thermal barrier coatings systems. Rep., Def. Tech. Inf. Cent., Fort Belvoir, VA. https://apps.dtic.mil/sti/citations/ADA466071
  43. 43. 
    Yu Z, Dharmasena KP, Hass DD, Wadley HNG. 2006. Vapor deposition of platinum alloyed nickel aluminide coatings. Surf. Coat. Technol. 201:2326–34
    [Google Scholar]
  44. 44. 
    Shukla S, Wang T, Frank M, Agrawal P, Sinha S et al. 2020. Friction stir gradient alloying: a novel solid-state high throughput screening technique for high entropy alloys. Mater. Today Commun. 23:100869
    [Google Scholar]
  45. 45. 
    Zhao J-C. 2005. The diffusion-multiple approach to designing alloys. Annu. Rev. Mater. Res. 35:51–73
    [Google Scholar]
  46. 46. 
    Zhao J-C, Zheng X, Cahill DG. 2005. High-throughput diffusion multiples. Mater. Today 8:28–37
    [Google Scholar]
  47. 47. 
    Zhao J-C. 2020. High-throughput and systematic study of phase transformations and metastability using dual-anneal diffusion multiples. Metall. Mater. Trans. A 51:5006–22
    [Google Scholar]
  48. 48. 
    Cao S, Zhao J-C. 2015. Application of dual-anneal diffusion multiples to the effective study of phase diagrams and phase transformations in the Fe–Cr–Ni system. Acta Mater. 88:196–206
    [Google Scholar]
  49. 49. 
    Cao S, Zhao J-C. 2016. Determination of the Fe-Cr-Mo phase diagram at intermediate temperatures using dual-anneal diffusion multiples. J. Phase Equilib. Diffus. 37:25–38
    [Google Scholar]
  50. 50. 
    Kaufman L. 2001. Computational thermodynamics and materials design. Calphad 25:141–61
    [Google Scholar]
  51. 51. 
    Saunders N, Miodownik AP. 1998. CALPHAD Calculation of Phase Diagrams: A Comprehensive Guide Oxford, UK: Pergamon/Elsevier Sci.
    [Google Scholar]
  52. 52. 
    van de Walle A, Asta M, Ceder G. 2002. The alloy theoretic automated toolkit: a user guide. Calphad 26:539–53
    [Google Scholar]
  53. 53. 
    Bigdeli S, Zhu L-F, Glensk A, Grabowski B, Lindahl B et al. 2019. An insight into using DFT data for Calphad modeling of solid phases in the third generation of Calphad databases, a case study for Al. Calphad 65:79–85
    [Google Scholar]
  54. 54. 
    Zunger A, Wei S, Ferreira LG, Bernard JE. 1990. Special quasirandom structures. Phys. Rev. Lett. 65:353–56
    [Google Scholar]
  55. 55. 
    Hart GLW, Forcade RW. 2008. Algorithm for generating derivative structures. Phys. Rev. B 77:224115
    [Google Scholar]
  56. 56. 
    Lederer Y, Toher C, Vecchio KS, Curtarolo S. 2018. The search for high entropy alloys: a high-throughput ab-initio approach. Acta Mater. 159:364–83
    [Google Scholar]
  57. 57. 
    Martan J, Cibulka O, Semmar N. 2006. Nanosecond pulse laser melting investigation by IR radiometry and reflection-based methods. Appl. Surf. Sci. 253:1170–77
    [Google Scholar]
  58. 58. 
    Ding S, Gregoire J, Vlassak JJ, Schroers J. 2012. Solidification of Au-Cu-Si alloys investigated by a combinatorial approach. J. Appl. Phys. 111:114901
    [Google Scholar]
  59. 59. 
    Mei J, Davenport JW. 1992. Free-energy calculations and the melting point of Al. Phys. Rev. B 46:21–25
    [Google Scholar]
  60. 60. 
    Morris JR, Wang CZ, Ho KM, Chan CT. 1994. Melting line of aluminum from simulations of coexisting phases. Phys. Rev. B 49:3109–15
    [Google Scholar]
  61. 61. 
    Hong Q-J, van de Walle A. 2016. A user guide for SLUSCHI: solid and liquid in ultra small coexistence with hovering interfaces. Calphad 52:88–97
    [Google Scholar]
  62. 62. 
    Zhao P, Zhao J-C, Weaver R. 2013. Dynamic surface acoustic response to a thermal expansion source on an anisotropic half space. J. Acoust. Soc. Am. 133:2634–40
    [Google Scholar]
  63. 63. 
    Du X, Zhao J-C. 2017. Facile measurement of single-crystal elastic constants from polycrystalline samples. NPJ Comput. Mater. 3:17
    [Google Scholar]
  64. 64. 
    Hintsala ED, Hangen U, Stauffer DD. 2018. High-throughput nanoindentation for statistical and spatial property determination. JOM 70:494–503
    [Google Scholar]
  65. 65. 
    Karimzadeh A, Koloor SSR, Ayatollahi MR, Bushroa AR, Yahya MY 2019. Assessment of nano-indentation method in mechanical characterization of heterogeneous nanocomposite materials using experimental and computational approaches. Sci. Rep. 9:15763
    [Google Scholar]
  66. 66. 
    Vignesh B, Oliver WC, Kumar GS, Sudharshan Phani P 2019. Critical assessment of high speed nanoindentation mapping technique and data deconvolution on thermal barrier coatings. Mater. Des. 181:108084
    [Google Scholar]
  67. 67. 
    Galetto M, Maculotti G, Genta G, Barbato G, Levi R. 2019. Instrumented indentation test in the nano-range: performances comparison of testing machines calibration methods. Nanomanuf. Metrol. 2:91–99
    [Google Scholar]
  68. 68. 
    Pathak S, Kalidindi SR. 2015. Spherical nanoindentation stress. strain curves. Mater. Sci. Eng. R 91:1–36
    [Google Scholar]
  69. 69. 
    Parvinian S, Yabansu YC, Khosravani A, Garmestani H, Kalidindi SR. 2020. High-throughput exploration of the process space in 18% Ni (350) maraging steels via spherical indentation stress–strain protocols and Gaussian process models. Integr. Mater. Manuf. Innov. 9:199–212
    [Google Scholar]
  70. 70. 
    Weaver JS, Khosravani A, Castillo A, Kalidindi SR. 2016. High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples. Integr. Mater. Manuf. Innov. 5:192–211
    [Google Scholar]
  71. 71. 
    Sudharshan Phani P, Oliver WC. 2019. A critical assessment of the effect of indentation spacing on the measurement of hardness and modulus using instrumented indentation testing. Mater. Des. 164:107563
    [Google Scholar]
  72. 72. 
    de Jong M, Chen W, Angsten T, Jain A, Notestine R et al. 2015. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2:150009
    [Google Scholar]
  73. 73. 
    Liu Z. 2020. ElasTool: an automated toolkit for elastic constants calculation. arXiv:2002.06535 [physics.com-ph]
  74. 74. 
    de Jong M, Chen W, Notestine R, Persson K, Ceder G et al. 2016. A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci. Rep. 6:34256
    [Google Scholar]
  75. 75. 
    Huxtable S, Cahill DG, Fauconnier V, White JO, Zhao J-C. 2004. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater. 3:298–301
    [Google Scholar]
  76. 76. 
    Zhao J-C, Zheng X, Cahill DG. 2012. Thermal conductivity mapping of the Ni–Al system and the beta-NiAl phase in the Ni–Al–Cr system. Scr. Mater. 66:935–38
    [Google Scholar]
  77. 77. 
    Zheng X, Cahill DG, Weaver R, Zhao J-C. 2008. Micron-scale measurements of the coefficient of thermal expansion by time-domain probe beam deflection. J. Appl. Phys. 104:073509
    [Google Scholar]
  78. 78. 
    Toher C, Plata J, Levy O, Jong M, Asta M et al. 2014. High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model. Phys. Rev. B90:174107
    [Google Scholar]
  79. 79. 
    Nath P, Usanmaz D, Hicks D, Oses C, Fornari M et al. 2019. AFLOW-QHA3P: robust and automated method to compute thermodynamic properties of solids. Phys. Rev. Mater. 3:073801
    [Google Scholar]
  80. 80. 
    König D, Eberling C, Kieschnick M, Virtanen S, Ludwig A. 2015. High-throughput investigation of the oxidation and phase constitution of thin-film Ni. Al. Cr materials libraries. Adv. Eng. Mater. 17:1365–73
    [Google Scholar]
  81. 81. 
    Adharapurapu RR, Zhu J, Dheeradhada VS, Lipkin DM, Pollock TM. 2014. A combinatorial investigation of palladium and platinum additions to β-NiAl overlay coatings. Acta Mater. 77:379–93
    [Google Scholar]
  82. 82. 
    Stewart CA, Suzuki A, Pollock TM, Levi CG. 2018. Rapid assessment of oxidation behavior in Co-based γ/γ′ alloys. Oxid. Met. 90:485–98
    [Google Scholar]
  83. 83. 
    Stewart CA, Suzuki A, Rhein RK, Pollock TM, Levi CG. 2019. Oxidation behavior across composition space relevant to Co-based γ/γ′ alloys. Metall. Mater. Trans. A 50:5445–58
    [Google Scholar]
  84. 84. 
    Bunn JK, Fang RL, Albing MR, Mehta A, Kramer MJ et al. 2015. A high-throughput investigation of Fe. Cr. Al as a novel high-temperature coating for nuclear cladding materials. Nanotechnology 26:274003
    [Google Scholar]
  85. 85. 
    Payne MA, Miller JB, Gellman AJ. 2016. High-throughput screening across quaternary alloy composition space: oxidation of (AlxFeyNi1–xy)0.8Cr0.2. ACS Comb. Sci. 18:559–68
    [Google Scholar]
  86. 86. 
    Payne MA, Miller JB, Oliveros ME, Perez G, Gouvea CP et al. 2016. Assessment of a high-throughput methodology for the study of alloy oxidation using AlxFeyNi1–xy composition gradient thin films. ACS Comb. Sci. 18:425–36
    [Google Scholar]
  87. 87. 
    Metting CJ, Bunn JK, Underwood E, Smoak S, Hattrick-Simpers J. 2013. Combinatorial approach to turbine bond coat discovery. ACS Comb. Sci. 15:419–24
    [Google Scholar]
  88. 88. 
    Payne MA, Miller JB, Gellman AJ. 2015. High-throughput characterization of early oxidation across AlxFeyNi1−xy composition space. Corros. Sci. 91:46–57
    [Google Scholar]
  89. 89. 
    Wilke M, Teichert G, Gemma R, Pundt A, Kirchheim R et al. 2011. Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films. Thin Solid Films 520:1660–67
    [Google Scholar]
  90. 90. 
    Muster TH, Trinchi A, Markley TA, Lau D, Martin P et al. 2011. A review of high throughput and combinatorial electrochemistry. Electrochim. Acta 56:9679–99
    [Google Scholar]
  91. 91. 
    Taylor SR. 2011. The investigation of corrosion phenomena with high throughput methods: a review. Corros. Rev. 29:135–51
    [Google Scholar]
  92. 92. 
    Whitfield MJ, Bono D, Wei L, Van Vliet KJ. 2014. High-throughput corrosion quantification in varied microenvironments. Corros. Sci. 88:481–86
    [Google Scholar]
  93. 93. 
    White PA, Smith GB, Harvey TG, Corrigan PA, Glenn MA et al. 2012. A new high-throughput method for corrosion testing. Corros. Sci. 58:327–31
    [Google Scholar]
  94. 94. 
    Liu J, Liu N, Sun M, Li J, Sohn S, Schroers J. 2019. Fast screening of corrosion trends in metallic glasses. ACS Comb. Sci. 21:666–74
    [Google Scholar]
  95. 95. 
    Jargelius-Pettersson RFA. 1998. Application of the pitting resistance equivalent concept to some highly alloyed austenitic stainless steels. Corrosion 54:162–68
    [Google Scholar]
  96. 96. 
    Taylor CD, Lu P, Saal J, Frankel GS, Scully JR. 2018. Integrated computational materials engineering of corrosion resistant alloys. NPJ Mater. Degrad. 2:6
    [Google Scholar]
  97. 97. 
    Chang Y-J, Jui C-Y, Lee W-J, Yeh A-C. 2019. Prediction of the composition and hardness of high-entropy alloys by machine learning. JOM 71:3433–42
    [Google Scholar]
  98. 98. 
    Coury FG, Wilson P, Clarke KD, Kaufman MJ, Clarke AJ. 2019. High-throughput solid solution strengthening characterization in high entropy alloys. Acta Mater. 167:1–11
    [Google Scholar]
  99. 99. 
    Hemker KJ, Sharpe WN. 2007. Microscale characterization of mechanical properties. Annu. Rev. Mater. Res. 37:93–126
    [Google Scholar]
  100. 100. 
    Gianola DS, Eberl C. 2009. Micro- and nanoscale tensile testing of materials. JOM 61:24
    [Google Scholar]
  101. 101. 
    Dobi D, Junghans E. 1999. Determination of the tensile properties of specimens with small dimensions. KZLTET 33:451–57
    [Google Scholar]
  102. 102. 
    Shade PA, Kim S-L, Wheeler R, Uchic MD. 2012. Stencil mask methodology for the parallelized production of microscale mechanical test samples. Rev. Sci. Instrum. 83:053903
    [Google Scholar]
  103. 103. 
    Heckman NM, Ivanoff TA, Roach AM, Jared BH, Tung DJ et al. 2020. Automated high-throughput tensile testing reveals stochastic process parameter sensitivity. Mat. Sci. Eng. A 772:138632
    [Google Scholar]
  104. 104. 
    Miracle DB, Majumdar B, Wertz K, Gorsse S. 2017. New strategies and tests to accelerate discovery and development of multi-principal element structural alloys. Scr. Mater. 127:195–200
    [Google Scholar]
  105. 105. 
    García TE, Rodríguez C, Belzunce FJ, Suárez C. 2014. Estimation of the mechanical properties of metallic materials by means of the small punch test. J. Alloys Cmpds. 582:708–17
    [Google Scholar]
  106. 106. 
    Leclerc N, Khosravani A, Hashemi S, Miracle DB, Kalidindia SR. 2021. Correlation of measured load-displacement curves in small punch tests with tensile stress-strain curves. Acta Mater. 204:116501
    [Google Scholar]
  107. 107. 
    Hornbuckle BC, Murdoch HA, Roberts AJ, Kecskes LJ, Tschopp MA et al. 2017. Property mapping of friction stir welded Al-2139 T8 plate using site specific shear punch testing. Mat. Sci. Eng. A 682:192–201
    [Google Scholar]
  108. 108. 
    Springer H, Raabe D. 2012. Rapid alloy prototyping: compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels. Acta Mater. 60:4950–59
    [Google Scholar]
  109. 109. 
    Kirklin S, Saal JE, Hegde VI, Wolverton C. 2016. High-throughput computational search for strengthening precipitates in alloys. Acta Mater. 102:125–35
    [Google Scholar]
  110. 110. 
    Nyshadham C, Oses C, Hansen JE, Takeuchi I, Curtarolo S, Hart GLW. 2017. A computational high-throughput search for new ternary superalloys. Acta Mater. 122:438–47
    [Google Scholar]
  111. 111. 
    Labusch R. 1970. A statistical theory of solid solution hardening. Phys. Status Solidi B 41:659–69
    [Google Scholar]
  112. 112. 
    Toda-Caraballo I. 2017. A general formulation for solid solution hardening effect in multicomponent alloys. Scr. Mater. 127:113–17
    [Google Scholar]
  113. 113. 
    Toda-Caraballo I, Rivera-Díaz-del-Castillo PEJ. 2015. Modelling solid solution hardening in high entropy alloys. Acta Mater. 85:14–23
    [Google Scholar]
  114. 114. 
    Menou E, Tancret F, Toda-Caraballo I, Ramstein G, Castany P et al. 2018. Computational design of light and strong high entropy alloys (HEA): obtainment of an extremely high specific solid solution hardening. Scr. Mater. 156:120–23
    [Google Scholar]
  115. 115. 
    Rao SI, Antillon E, Woodward C, Akdim B, Parthasarathy TA, Senkov ON. 2019. Solution hardening in body-centered cubic quaternary alloys interpreted using Suzuki's kink-solute interaction model. Scr. Mater. 165:103–6
    [Google Scholar]
  116. 116. 
    Tu P, Zheng Y, Zhuang C, Zeng X, Zhu H. 2019. A high-throughput computation framework for generalized stacking fault energies of pure metals. Comput. Mater. Sci. 159:357–64
    [Google Scholar]
  117. 117. 
    Kivy MB, Zaeem MA 2017. Generalized stacking fault energies, ductilities, and twinnabilities of CoCrFeNi-based face-centered cubic high entropy alloys. Scr. Mater 139:83–6
    [Google Scholar]
  118. 118. 
    Jalali SIA, Kumar P, Jayaram V. 2020. Microstructural equivalence between bending and uniaxial creep. Scr. Mater. 186:99–103
    [Google Scholar]
  119. 119. 
    Jalali SIA, Kumar P, Jayaram V. 2020. Customized high-temperature bending with DIC for high-throughput determination of creep parameters: technique, instrumentation, and optimization. JOM 72:4522–38
    [Google Scholar]
  120. 120. 
    Jalali SIA, Jayaram V, Kumar P. 2021. Creep micromechanics in meso-length scale samples. Acta Mater. 205:116535
    [Google Scholar]
  121. 121. 
    Dobeš F, Milička K. 2009. Application of creep small punch testing in assessment of creep lifetime. Mat. Sci. Eng. A 510–511 440–43
    [Google Scholar]
  122. 122. 
    Lee J, Wall JJ, Rogers JR, Rathz TJ, Choo H et al. 2014. Non-contact measurements of creep properties of niobium at 1985°C. Meas. Sci. Technol. 26:015901
    [Google Scholar]
  123. 123. 
    Alegre JM, Cuesta II, Barbachano HL. 2015. Determination of the fracture properties of metallic materials using pre-cracked small punch tests. Fatigue Fract. Eng. Mater. Struct. 38:104–12
    [Google Scholar]
  124. 124. 
    Venkatraman K, Jayaram V. 2020. Crack velocity measurements through continuous stiffness monitoring of cyclically loaded notched micro-beams of thin graded Pt–Ni-Al bond coats. Int. J. Fract 227:15–37
    [Google Scholar]
  125. 125. 
    ASTM Int 2010. Standard Test Methods for Determining Hardenability of Steel, ASTM A255–10 West Conshohocken, PA: ASTM Int http://www.astm.org/Standards/A255.htm
    [Google Scholar]
  126. 126. 
    Semiatin SL 2004. Evolution of microstructure during hot working. Handbook of Workability and Process Design GE Dieter, HA Kuhn, SL Semiatin 35–44 Materials Park, OH: ASM Int.
    [Google Scholar]
  127. 127. 
    Miracle DB, Miller JD, Senkov ON, Woodward C, Uchic MD, Tiley J. 2014. Exploration and development of high entropy alloys for structural applications. Entropy 16:494–525
    [Google Scholar]
  128. 128. 
    Zambaldi C, Yang Y, Bieler TR, Raabe D. 2012. Orientation informed nanoindentation of α-titanium: indentation pileup in hexagonal metals deforming by prismatic slip. J. Mater. Res. 27:356–67
    [Google Scholar]
  129. 129. 
    Chakraborty A, Eisenlohr P. 2017. Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations. Eur. J. Mech. A Solids 66:114–24
    [Google Scholar]
  130. 130. 
    Chakraborty A, Zhang C, Balachandran S, Bieler TR, Eisenlohr P. 2020. Assessment of surface and bulk-dominated methodologies to measure critical resolved shear stresses in hexagonal materials. Acta Mater. 184:241–53
    [Google Scholar]
  131. 131. 
    Li Z, Ludwig A, Savan A, Springer H, Raabe D. 2018. Combinatorial metallurgical synthesis and processing of high-entropy alloys. J. Mater. Res. 33:3156–69
    [Google Scholar]
  132. 132. 
    Zhao JC. 2001. A combinatorial approach for efficient mapping of phase diagrams and properties. J. Mater. Res. 16:1565–78
    [Google Scholar]
  133. 133. 
    Zhao JC. 2001. A combinatorial approach for structural materials. Adv. Eng. Mat. 3:143–47
    [Google Scholar]
  134. 134. 
    Campbell CE, Boettinger WJ, Kattner UR. 2002. Development of a diffusion mobility database for Ni-base superalloys. Acta Mater. 50:775–92
    [Google Scholar]
  135. 135. 
    Campbell CE, Zhao JC, Henry MF. 2004. Comparison of experimental and simulated multicomponent Ni-base superalloy diffusion couples. J. Phase Equilib. Diffus. 25:6–15
    [Google Scholar]
  136. 136. 
    Zhao JC, Jackson MR, Peluso LA, Brewer LN. 2002. A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus. JOM 54:42–45
    [Google Scholar]
  137. 137. 
    Lewandowski JJ, Seifi M. 2016. Metal additive manufacturing: a review of mechanical properties. Annu. Rev. Mater. Res. 46:151–86
    [Google Scholar]
  138. 138. 
    Joseph J, Imran M, Hodgson PD, Barnett MR, Fabijanic DM. 2020. Towards the large-scale production and strength prediction of near-eutectic AlxCoCrFeNi2.1 alloys by additive manufacturing. Manuf. Lett. 25:16–20
    [Google Scholar]
  139. 139. 
    Luo S, Zhao C, Su Y, Liu Q, Wang Z. 2020. Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: formability, heterogeneous microstructures and deformation mechanisms. Addit. Manuf. 31:100925
    [Google Scholar]
  140. 140. 
    Dippo OF, Kaufmann KR, Vecchio KS 2021. High-throughput rapid experimental alloy development (HT-READ). arXiv:2102.06180 [cond-mat.mtrl-sci]
  141. 141. 
    Sistla HR, Newkirk JW, Liou FF 2015. Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2−x (x = 0.3, 1) high entropy alloys. Mater. Des. 81:113–21
    [Google Scholar]
  142. 142. 
    Xiang S, Luan H, Wu J, Yao KF, Li J et al. 2019. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique. J. Alloys Cmpds. 773:387–92
    [Google Scholar]
  143. 143. 
    Dowling L, Kennedy J, O'Shaughnessy S, Trimble D 2020. A review of critical repeatability and reproducibility issues in powder bed fusion. Mater. Des. 186:108346
    [Google Scholar]
  144. 144. 
    Senkov ON, Miller JD, Miracle DB, Woodward C. 2015. Accelerated exploration of multi-principal element alloys for structural applications. Calphad 50:32–48
    [Google Scholar]
  145. 145. 
    Boyce BL, Uchic MD. 2019. Progress toward autonomous experimental systems for alloy development. MRS Bull. 44:273–80
    [Google Scholar]
  146. 146. 
    Nikolaev P, Hooper D, Webber F, Rao R, Decker K et al. 2016. Autonomy in materials research: a case study in carbon nanotube growth. NPJ Comput. Mater. 2:16031
    [Google Scholar]
  147. 147. 
    Gongora AE, Xu B, Perry W, Okoye C, Riley P et al. 2020. A Bayesian experimental autonomous researcher for mechanical design. Sci. Adv. 6:eaaz1708
    [Google Scholar]
  148. 148. 
    Maruyama B. 2017. Scientists pick AI for lab partner. SIGNAL Magazine Sept. 1. https://www.afcea.org/content/scientists-pick-ai-lab-partner
    [Google Scholar]
  149. 149. 
    Sahoo KC, Goyal S, Ganesan V, Vanaja J, Reddy GV et al. 2019. Analysis of creep deformation and damage behaviour of 304HCu austenitic stainless steel. Mater. High Temp. 36:388–403
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080619-022100
Loading
/content/journals/10.1146/annurev-matsci-080619-022100
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error