1932

Abstract

Polymers that simultaneously transport electrons and ions are paramount to drive the technological advances necessary for next-generation electrochemical devices, including energy storage devices and bioelectronics. However, efforts to describe the motion of ions or electrons separately within polymeric systems become inaccurate when both species are present. Herein, we highlight the basic transport equations necessary to rationalize mixed transport and the multiscale material properties that influence their transport coefficients. Potential figures of merit that enable a suitable performance benchmark in mixed conducting systems independent of end application are discussed. Practical design and implementation of mixed conducting polymers require an understanding of the evolving nature of structure and transport with ionic and electronic carrier density to capture the dynamic disorder inherent in polymeric materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080619-110405
2021-07-26
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080619-110405.html?itemId=/content/journals/10.1146/annurev-matsci-080619-110405&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Onorato JW, Luscombe CK. 2019. Morphological effects on polymeric mixed ionic/electronic conductors. Mol. Syst. Des. Eng. 4:2310–24
    [Google Scholar]
  2. 2. 
    Paulsen BD, Tybrandt K, Stavrinidou E, Rivnay J. 2020. Organic mixed ionic-electronic conductors. Nat. Mater. 19:113–26
    [Google Scholar]
  3. 3. 
    Inal S, Rivnay J, Suiu A-O, Malliaras GG, McCulloch I. 2018. Conjugated polymers in bioelectronics. Acc. Chem. Res. 51:61368–76
    [Google Scholar]
  4. 4. 
    Miyamoto T, Shibayama K. 1973. Free-volume model for ionic conductivity in polymers. J. Appl. Phys. 44:125372–76
    [Google Scholar]
  5. 5. 
    Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N et al. 2013. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12:111038–44
    [Google Scholar]
  6. 6. 
    Chang WB, Fang H, Liu J, Evans CM, Russ B et al. 2016. Electrochemical effects in thermoelectric polymers. ACS Macro Lett 5:4455–59
    [Google Scholar]
  7. 7. 
    Patel SN, Javier AE, Balsara NP. 2013. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes. ACS Nano 7:76056–68
    [Google Scholar]
  8. 8. 
    Dong BX, Liu Z, Misra M, Strzalka J, Niklas J et al. 2019. Structure control of a π-conjugated oligothiophene-based liquid crystal for enhanced mixed ion/electron transport characteristics. ACS Nano 13:77665–75
    [Google Scholar]
  9. 9. 
    Stavrinidou E, Winther-Jensen O, Shekibi BS, Armel V, Rivnay J et al. 2014. Engineering hydrophilic conducting composites with enhanced ion mobility. Phys. Chem. Chem. Phys. 16:62275–79
    [Google Scholar]
  10. 10. 
    Lai C-H, Ashby DS, Lin TC, Lau J, Dawson A et al. 2018. Application of poly(3-hexylthiophene-2,5-diyl) as a protective coating for high rate cathode materials. Chem. Mater. 30:82589–99
    [Google Scholar]
  11. 11. 
    Das P, Zayat B, Wei Q, Salamat CZ, Magdău I-B et al. 2020. Dihexyl-substituted poly(3,4-propylenedioxythiophene) as a dual ionic and electronic conductive cathode binder for lithium-ion batteries. Chem. Mater. 32:219176–89
    [Google Scholar]
  12. 12. 
    Evans CM, Bridges CR, Sanoja GE, Bartels J, Segalman RA. 2016. Role of tethered ion placement on polymerized ionic liquid structure and conductivity: pendant versus backbone charge placement. ACS Macro Lett 5:8925–30
    [Google Scholar]
  13. 13. 
    Kang K, Watanabe S, Broch K, Sepe A, Brown A et al. 2016. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15:8896–902
    [Google Scholar]
  14. 14. 
    Arkhipov VI, Heremans P, Emelianova EV, Bässler H. 2005. Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors. Phys. Rev. B 71:4045214
    [Google Scholar]
  15. 15. 
    Wang S, Ha M, Manno M, Frisbie CD, Leighton C. 2012. Hopping transport and the Hall effect near the insulator-metal transition in electrochemically gated poly(3-hexylthiophene) transistors. Nat. Commun. 3:11210
    [Google Scholar]
  16. 16. 
    Hallinan DT, Balsara NP. 2013. Polymer electrolytes. Annu. Rev. Mater. Res. 43:503–25
    [Google Scholar]
  17. 17. 
    Albinsson I, Mellander B-E, Stevens JR. 1992. Ionic conductivity in poly(propylene glycol) complexed with lithium and sodium triflate. J. Chem. Phys. 96:1681–90
    [Google Scholar]
  18. 18. 
    Newman J, Thomas-Alyea KE. 2004. Electrochemical Systems Hoboken, NJ: Wiley-Interscience. , 3rd ed..
    [Google Scholar]
  19. 19. 
    Volkov AV, Wijeratne K, Mitraka E, Ail U, Zhao D et al. 2017. Understanding the capacitance of PEDOT:PSS. Adv. Funct. Mater. 27:281700329
    [Google Scholar]
  20. 20. 
    Buck RP. 1989. General voltage-step responses and impedances of mixed-conductor films and diodes: metal-contact cells with mobile anions or cations. J. Phys. Chem. 93:166212–19
    [Google Scholar]
  21. 21. 
    Buck RP. 1988. Electron hopping in one dimension: mixed conductor membranes. J. Phys. Chem. 92:144196–200
    [Google Scholar]
  22. 22. 
    Nahir TM, Buck RP. 1993. Transport processes in membranes containing neutral ion carriers, positive ion complexes, negative mobile sites, and ion pairs. J. Phys. Chem. 97:4712363–72
    [Google Scholar]
  23. 23. 
    Rawlings D, Thomas EM, Segalman RA, Chabinyc ML. 2019. Controlling the doping mechanism in poly(3-hexylthiophene) thin-film transistors with polymeric ionic liquid dielectrics. Chem. Mater. 31:218820–29
    [Google Scholar]
  24. 24. 
    Mills T, Kaake LG, Zhu X-Y. 2009. Polaron and ion diffusion in a poly(3-hexylthiophene) thin-film transistor gated with polymer electrolyte dielectric. Appl. Phys. A 95:1291–96
    [Google Scholar]
  25. 25. 
    Kaneto K, Agawa H, Yoshino K. 1987. Cycle life, stability, and characteristics of color switching cells utilizing polythiophene films. J. Appl. Phys. 61:31197–205
    [Google Scholar]
  26. 26. 
    Bischak CG, Flagg LQ, Yan K, Rehman T, Davies DW et al. 2020. A reversible structural phase transition by electrochemically-driven ion injection into a conjugated polymer. J. Am. Chem. Soc. 142:167434–42
    [Google Scholar]
  27. 27. 
    Bocharova V, Sokolov AP. 2020. Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity. Macromolecules 53:114141–57
    [Google Scholar]
  28. 28. 
    Wang Y, Fan F, Agapov AL, Yu X, Hong K et al. 2014. Design of superionic polymers—new insights from Walden plot analysis. Solid State Ionics 262:782–84
    [Google Scholar]
  29. 29. 
    Cohen MH, Turnbull D. 1959. Molecular transport in liquids and glasses. J. Chem. Phys. 31:51164–69
    [Google Scholar]
  30. 30. 
    Turnbull D, Cohen MH. 1970. On the free-volume model of the liquid-glass transition. J. Chem. Phys. 52:63038–41
    [Google Scholar]
  31. 31. 
    Ratner MA, Nitzan A. 1989. Conductivity in polymer ionics. Dynamic disorder and correlation. Faraday Discuss. Chem. Soc. 88:19–42
    [Google Scholar]
  32. 32. 
    Boden N, Leng SA, Ward IM. 1991. Ionic conductivity and diffusivity in polyethylene oxode/electrolyte solutions as models for polymer electrolytes. Solid State Ionics 45:3261–70
    [Google Scholar]
  33. 33. 
    Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM. 2018. A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Devices 3:11–17
    [Google Scholar]
  34. 34. 
    Chung SH, Such K, Wieczorek W, Stevens JR. 1994. An analysis of ionic conductivity in polymer electrolytes. J. Polym. Sci. B Polym. Phys. 32:162733–41
    [Google Scholar]
  35. 35. 
    Choo Y, Halat DM, Villaluenga I, Timachova K, Balsara NP. 2020. Diffusion and migration in polymer electrolytes. Prog. Polym. Sci. 103:101220
    [Google Scholar]
  36. 36. 
    Meyer WH. 1998. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10:6439–48
    [Google Scholar]
  37. 37. 
    Mao G, Saboungi M-L, Price DL, Armand M, Mezei F, Pouget S 2002. α-Relaxation in PEO−LiTFSI polymer electrolytes. Macromolecules 35:2415–19
    [Google Scholar]
  38. 38. 
    Loo WS, Mongcopa KI, Gribble DA, Faraone AA, Balsara NP. 2019. Investigating the effect of added salt on the chain dimensions of poly(ethylene oxide) through small-angle neutron scattering. Macromolecules 52:228724–32
    [Google Scholar]
  39. 39. 
    Mongcopa KIS, Tyagi M, Mailoa JP, Samsonidze G, Kozinsky B et al. 2018. Relationship between segmental dynamics measured by quasi-elastic neutron scattering and conductivity in polymer electrolytes. ACS Macro Lett 7:4504–8
    [Google Scholar]
  40. 40. 
    Hall LM, Seitz ME, Winey KI, Opper KL, Wagener KB et al. 2012. Ionic aggregate structure in ionomer melts: effect of molecular architecture on aggregates and the ionomer peak. J. Am. Chem. Soc. 134:1574–87
    [Google Scholar]
  41. 41. 
    Yan L, Rank C, Mecking S, Winey KI. 2020. Gyroid and other ordered morphologies in single-ion conducting polymers and their impact on ion conductivity. J. Am. Chem. Soc. 142:2857–66
    [Google Scholar]
  42. 42. 
    Yan L, Bustillo KC, Panova O, Minor AM, Winey KI. 2018. Solution-grown crystals of precise acid- and ion-containing polyethylenes. Polymer 135:111–19
    [Google Scholar]
  43. 43. 
    Young W-S, Epps TH. 2009. Salt doping in PEO-containing block copolymers: counterion and concentration effects. Macromolecules 42:72672–78
    [Google Scholar]
  44. 44. 
    Singh M, Odusanya O, Wilmes GM, Eitouni HB, Gomez ED et al. 2007. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 40:134578–85
    [Google Scholar]
  45. 45. 
    Xie S, Meyer DJ, Wang E, Bates FS, Lodge TP. 2019. Structure and properties of bicontinuous microemulsions from salt-doped ternary polymer blends. Macromolecules 52:249693–702
    [Google Scholar]
  46. 46. 
    Knychała P, Banaszak M. 2014. Simulations on a swollen gyroid nanostructure in thin films relevant to systems of ionic block copolymers. Eur. Phys. J. E 37:767
    [Google Scholar]
  47. 47. 
    Park MJ, Balsara NP. 2008. Phase behavior of symmetric sulfonated block copolymers. Macromolecules 41:103678–87
    [Google Scholar]
  48. 48. 
    Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L. 2007. Charge transport in organic semiconductors. Chem. Rev. 107:4926–52
    [Google Scholar]
  49. 49. 
    Jacobs IE, Moulé AJ. 2017. Controlling molecular doping in organic semiconductors. Adv. Mater. 29:421703063
    [Google Scholar]
  50. 50. 
    Baranovskii SD. 2014. Theoretical description of charge transport in disordered organic semiconductors. Phys. Status Solidi B 251:3487–525
    [Google Scholar]
  51. 51. 
    Thomas EM, Popere BC, Fang H, Chabinyc ML, Segalman RA. 2018. Role of disorder induced by doping on the thermoelectric properties of semiconducting polymers. Chem. Mater. 30:92965–72
    [Google Scholar]
  52. 52. 
    Zuo G, Abdalla H, Kemerink M. 2016. Impact of doping on the density of states and the mobility in organic semiconductors. Phys. Rev. B 93:23235203
    [Google Scholar]
  53. 53. 
    Yee PY, Scholes DT, Schwartz BJ, Tolbert SH. 2019. Dopant-induced ordering of amorphous regions in regiorandom P3HT. J. Phys. Chem. Lett. 10:174929–34
    [Google Scholar]
  54. 54. 
    Duong DT, Toney MF, Salleo A. 2012. Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. Phys. Rev. B 86:20205205
    [Google Scholar]
  55. 55. 
    Patel SN, Glaudell AM, Peterson KA, Thomas EM, O'Hara KA et al. 2017. Morphology controls the thermoelectric power factor of a doped semiconducting polymer. Sci. Adv. 3:6e1700434
    [Google Scholar]
  56. 56. 
    Thomas EM, Brady MA, Nakayama H, Popere BC, Segalman RA, Chabinyc ML. 2018. X-ray scattering reveals ion-induced microstructural changes during electrochemical gating of poly(3-hexylthiophene). Adv. Funct. Mater. 28:441803687
    [Google Scholar]
  57. 57. 
    Liu W, Müller L, Ma S, Barlow S, Marder SR et al. 2018. Origin of the π-π spacing change upon doping of semiconducting polymers. J. Phys. Chem. C 122:4927983–90
    [Google Scholar]
  58. 58. 
    Thelen JL, Wu S-L, Javier AE, Srinivasan V, Balsara NP, Patel SN. 2015. Relationship between mobility and lattice strain in electrochemically doped poly(3-hexylthiophene). ACS Macro Lett 4:121386–91
    [Google Scholar]
  59. 59. 
    Kroon R, Kiefer D, Stegerer D, Yu L, Sommer M, Müller C. 2017. Polar side chains enhance processability, electrical conductivity, and thermal stability of a molecularly p-doped polythiophene. Adv. Mater. 29:241700930
    [Google Scholar]
  60. 60. 
    Liu J, Qiu L, Alessandri R, Qiu X, Portale G et al. 2018. Enhancing molecular n-type doping of donor-acceptor copolymers by tailoring side chains. Adv. Mater. 30:71704630
    [Google Scholar]
  61. 61. 
    Aubry TJ, Axtell JC, Basile VM, Winchell KJ, Lindemuth JR et al. 2019. Dodecaborane-based dopants designed to shield anion electrostatics lead to increased carrier mobility in a doped conjugated polymer. Adv. Mater. 31:111805647
    [Google Scholar]
  62. 62. 
    Giovannitti A, Maria IP, Hanifi D, Donahue MJ, Bryant D et al. 2018. The role of the side chain on the performance of n-type conjugated polymers in aqueous electrolytes. Chem. Mater. 30:92945–53
    [Google Scholar]
  63. 63. 
    Hynynen J, Kiefer D, Yu L, Kroon R, Munir R et al. 2017. Enhanced electrical conductivity of molecularly p-doped poly(3-hexylthiophene) through understanding the correlation with solid-state order. Macromolecules 50:208140–48
    [Google Scholar]
  64. 64. 
    Lim E, Glaudell AM, Miller R, Chabinyc ML. 2019. The role of ordering on the thermoelectric properties of blends of regioregular and regiorandom poly(3-hexylthiophene). Adv. Electron. Mater. 5:111800915
    [Google Scholar]
  65. 65. 
    Collins BA, Cochran JE, Yan H, Gann E, Hub C et al. 2012. Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11:6536–43
    [Google Scholar]
  66. 66. 
    Patel SN, Glaudell AM, Kiefer D, Chabinyc ML. 2016. Increasing the thermoelectric power factor of a semiconducting polymer by doping from the vapor phase. ACS Macro Lett 5:3268–72
    [Google Scholar]
  67. 67. 
    Gu K, Snyder CR, Onorato J, Luscombe CK, Bosse AW, Loo Y-L. 2018. Assessing the Huang-Brown description of tie chains for charge transport in conjugated polymers. ACS Macro Lett 7:111333–38
    [Google Scholar]
  68. 68. 
    Himmelberger S, Vandewal K, Fei Z, Heeney M, Salleo A. 2014. Role of molecular weight distribution on charge transport in semiconducting polymers. Macromolecules 47:207151–57
    [Google Scholar]
  69. 69. 
    Mindemark J, Lacey MJ, Bowden T, Brandell D. 2018. Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81:114–43
    [Google Scholar]
  70. 70. 
    MacFarlane DR, Forsyth M, Izgorodina EI, Abbott AP, Annat G, Fraser K. 2009. On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11:254962–67
    [Google Scholar]
  71. 71. 
    Hayashi A, Noi K, Sakuda A, Tatsumisago M. 2012. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3:1856
    [Google Scholar]
  72. 72. 
    Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H et al. 1977. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39:171098–101
    [Google Scholar]
  73. 73. 
    Vijayakumar V, Zhong Y, Untilova V, Bahri M, Herrmann L et al. 2019. Bringing conducting polymers to high order: toward conductivities beyond 105 S cm−1 and thermoelectric power factors of 2 mW m−1 K−2. Adv. Energy Mater. 9:241900266
    [Google Scholar]
  74. 74. 
    Pingel P, Neher D. 2013. Comprehensive picture of ρ-type doping of P3HT with the molecular acceptor F4TCNQ. Phys. Rev. B 87:11115209
    [Google Scholar]
  75. 75. 
    Jamnik J, Maier J. 2001. Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys. Chem. Chem. Phys. 3:91668–78
    [Google Scholar]
  76. 76. 
    Kim Y, Han M, Kim J, Kim E 2018. Electrochromic capacitive windows based on all conjugated polymers for a dual function smart window. Energy Environ. Sci. 11:82124–33
    [Google Scholar]
  77. 77. 
    Simon DT, Gabrielsson EO, Tybrandt K, Berggren M. 2016. Organic bioelectronics: bridging the signaling gap between biology and technology. Chem. Rev 116:2113009–41
    [Google Scholar]
  78. 78. 
    Zhao D, Fabiano S, Berggren M, Crispin X. 2017. Ionic thermoelectric gating organic transistors. Nat. Commun. 8:114214
    [Google Scholar]
  79. 79. 
    Moser M, Hidalgo TC, Surgailis J, Gladisch J, Ghosh S et al. 2020. Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability. Adv. Mater. 32:372002748
    [Google Scholar]
  80. 80. 
    Gladisch J, Stavrinidou E, Ghosh S, Giovannitti A, Moser M et al. 2019. Reversible electronic solid–gel switching of a conjugated polymer. Adv. Sci. 7:21901144
    [Google Scholar]
  81. 81. 
    Friedlein JT, Donahue MJ, Shaheen SE, Malliaras GG, McLeod RR. 2016. Microsecond response in organic electrochemical transistors: exceeding the ionic speed limit. Adv. Mater. 28:388398–404
    [Google Scholar]
  82. 82. 
    Berggren M, Malliaras GG. 2019. How conducting polymer electrodes operate. Science 364:6437233–34
    [Google Scholar]
  83. 83. 
    Ma Y, Doyle M, Fuller TF, Doeff MM, Jonghe LCD, Newman J. 1995. The measurement of a complete set of transport properties for a concentrated solid polymer electrolyte solution. J. Electrochem. Soc. 142:61859–68
    [Google Scholar]
  84. 84. 
    Schauser NS, Seshadri R, Segalman RA. 2019. Multivalent ion conduction in solid polymer systems. Mol. Syst. Des. Eng. 4:2263–79
    [Google Scholar]
  85. 85. 
    Klett M, Giesecke M, Nyman A, Hallberg F, Lindström RW et al. 2012. Quantifying mass transport during polarization in a Li ion battery electrolyte by in situ 7Li NMR imaging. J. Am. Chem. Soc. 134:3614654–57
    [Google Scholar]
  86. 86. 
    Choi J-H, Xie W, Gu Y, Frisbie CD, Lodge TP. 2015. Single ion conducting, polymerized ionic liquid triblock copolymer films: high capacitance electrolyte gates for n-type transistors. ACS Appl. Mater. Interfaces 7:137294–302
    [Google Scholar]
  87. 87. 
    Patel SN, Javier AE, Stone GM, Mullin SA, Balsara NP. 2012. Simultaneous conduction of electronic charge and lithium ions in block copolymers. ACS Nano 6:21589–600
    [Google Scholar]
  88. 88. 
    Christie AM, Lilley SJ, Staunton E, Andreev YG, Bruce PG. 2005. Increasing the conductivity of crystalline polymer electrolytes. Nature 433:702150–53
    [Google Scholar]
  89. 89. 
    Inal S, Rivnay J, Leleux P, Ferro M, Ramuz M et al. 2014. A high transconductance accumulation mode electrochemical transistor. Adv. Mater. 26:447450–55
    [Google Scholar]
  90. 90. 
    Beckingham BS, Ho V, Segalman RA. 2014. Formation of a rigid amorphous fraction in poly(3-(2′-ethyl)hexylthiophene). ACS Macro Lett 3:7684–88
    [Google Scholar]
  91. 91. 
    Thomas EM, Peterson KA, Balzer AH, Rawlings D, Stingelin N et al. 2020. Effects of counter-ion size on delocalization of carriers and stability of doped semiconducting polymers. Adv. Electron. Mater. 6:122000595
    [Google Scholar]
  92. 92. 
    Kiefer D, Kroon R, Hofmann AI, Sun H, Liu X et al. 2019. Double doping of conjugated polymers with monomer molecular dopants. Nat. Mater. 18:2149–55
    [Google Scholar]
  93. 93. 
    Mazaheripour A, Thomas EM, Segalman RA, Chabinyc ML. 2019. Nonaggregating doped polymers based on poly(3,4-propylenedioxythiophene). Macromolecules 52:52203–13
    [Google Scholar]
  94. 94. 
    O'Connor B, Kline RJ, Conrad BR, Richter LJ, Gundlach D et al. 2011. Anisotropic structure and charge transport in highly strain-aligned regioregular poly(3-hexylthiophene). Adv. Funct. Mater. 21:193697–705
    [Google Scholar]
  95. 95. 
    Ashizawa M, Zheng Y, Tran H, Bao Z 2019. Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Prog. Polym. Sci. 100:101181
    [Google Scholar]
  96. 96. 
    Kelly T, Ghadi BM, Berg S, Ardebili H. 2016. In situ study of strain-dependent ion conductivity of stretchable polyethylene oxide electrolyte. Sci. Rep. 6:20128
    [Google Scholar]
  97. 97. 
    Reynolds VG, Oh S, Xie R, Chabinyc ML. 2020. Model for the electro-mechanical behavior of elastic organic transistors. J. Mater. Chem. C 8:279276–85
    [Google Scholar]
  98. 98. 
    Wirix MJM, Bomans PHH, Friedrich H, Sommerdijk NAJM, de With G. 2014. Three-dimensional structure of P3HT assemblies in organic solvents revealed by cryo-TEM. Nano Lett 14:42033–38
    [Google Scholar]
  99. 99. 
    Khodagholy D, Rivnay J, Sessolo M, Gurfinkel M, Leleux P et al. 2013. High transconductance organic electrochemical transistors. Nat. Commun. 4:12133
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080619-110405
Loading
/content/journals/10.1146/annurev-matsci-080619-110405
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error