1932

Abstract

Hybrid halide perovskite semiconductors exhibit complex, dynamical disorder while also harboring properties ideal for optoelectronic applications that include photovoltaics. However, these materials are structurally and compositionally distinct from traditional compound semiconductors composed of tetrahedrally coordinated elements with an average valence electron count of silicon. The additional dynamic degrees of freedom of hybrid halide perovskites underlie many of their potentially transformative physical properties. Neutron scattering and spectroscopy studies of the atomic dynamics of these materials have yielded significant insights into their functional properties. Specifically, inelastic neutron scattering has been used to elucidate the phonon band structure, and quasi-elastic neutron scattering has revealed the nature of the uncorrelated dynamics pertaining to molecular reorientations. Understanding the dynamics of these complex semiconductors has elucidated the temperature-dependent phase stability and origins of defect-tolerant electronic transport from the highly polarizable dielectric response. Furthermore, the dynamic degrees of freedom of the hybrid perovskites provide additional opportunities for application engineering and innovation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-012808
2021-07-26
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080819-012808.html?itemId=/content/journals/10.1146/annurev-matsci-080819-012808&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kim JY, Lee JW, Jung HS, Shin H, Park NG. 2020. High-efficiency perovskite solar cells. Chem. Rev. 120:7867–918
    [Google Scholar]
  2. 2. 
    Stranks SD, Snaith HJ. 2015. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10:391–402
    [Google Scholar]
  3. 3. 
    Xu Q, Wei H, Wei W, Chuirazzi W, DeSantis D et al. 2017. Detection of charged particles with a methylammonium lead tribromide perovskite single crystal. Nucl. Instrum. Methods A 848:106–8
    [Google Scholar]
  4. 4. 
    Nazarenko O, Yakunin S, Morad V, Cherniukh I, Kovalenko MV. 2017. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater. 9:e373
    [Google Scholar]
  5. 5. 
    Smith MD, Crace EJ, Jaffe A, Karunadasa HI. 2018. The diversity of layered halide perovskites. Annu. Rev. Mater. Res. 48:111–36
    [Google Scholar]
  6. 6. 
    Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32:751–67
    [Google Scholar]
  7. 7. 
    Staveley LAK. 1962. Phase transitions in plastic crystals. Annu. Rev. Phys. Chem. 13:351–68
    [Google Scholar]
  8. 8. 
    Kieslich G, Sun S, Cheetham T. 2015. An extended tolerance factor approach for organic-inorganic perovskites. Chem. Sci. 6:3430–33
    [Google Scholar]
  9. 9. 
    Megaw HD. 1973. Crystal Structure: A Working Approach Philadelphia: Saunders
    [Google Scholar]
  10. 10. 
    Mitzi DB. 2001. Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc. Dalton Trans. 2001:1–12
    [Google Scholar]
  11. 11. 
    Woodward PM. 1997. Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Crystallogr. B 53:44–66
    [Google Scholar]
  12. 12. 
    Ghosh D, Welch E, Neukirch AJ, Zakhidov A, Tretiak S. 2020. Polarons in halide perovskites: a perspective. J. Phys. Chem. Lett. 9:327186
    [Google Scholar]
  13. 13. 
    Even J, Pedesseau L, Katan C. 2014. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 118:11566–72
    [Google Scholar]
  14. 14. 
    Neukirch AJ, Nie W, Blancon JC, Appavoo K, Tsai H et al. 2016. Polaron stabilization by cooperative lattice distortion and cation rotations in hybrid perovskite materials. Nano Lett. 16:3809–16
    [Google Scholar]
  15. 15. 
    Herz LM. 2017. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2:1539–48
    [Google Scholar]
  16. 16. 
    Even J, Paofai S, Bourges P, Létoublon A, Cordier S et al. 2016. Carrier scattering processes and low energy phonon spectroscopy in hybrid perovskite crystals. Proc. SPIE 9743:97430M
    [Google Scholar]
  17. 17. 
    Wright AD, Verdi C, Milot RL, Eperon GE, Pérez-Osorio MA et al. 2016. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7:11755
    [Google Scholar]
  18. 18. 
    Miyata K, Atallah TL, Zhu XY. 2017. Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3:e1701469
    [Google Scholar]
  19. 19. 
    Yang Y, Ostrowski DP, France RM, Zhu K, van de Lagemaat J et al. 2015. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics 10:53–59
    [Google Scholar]
  20. 20. 
    Pötz W. 1987. Hot-phonon effects in bulk GaAs. Phys. Rev. B 36:5016–19
    [Google Scholar]
  21. 21. 
    Kim M, Im J, Freeman AJ, Ihm J, Jin H 2014. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. PNAS 111:6900–4
    [Google Scholar]
  22. 22. 
    Ceratti DR, Rakita Y, Cremonesi L, Tenne R, Kalchenko V et al. 2018. Self-healing inside APbBr3 halide perovskite crystals. Adv. Mater. 30:1706273
    [Google Scholar]
  23. 23. 
    Eames C, Frost JM, Barnes PRF, O'Regan BC, Walsh A, Islam MS 2015. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6:7497
    [Google Scholar]
  24. 24. 
    Kim GY, Senocrate A, Yang TY, Gregori G, Grätzel M, Maier J. 2018. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17:445–49
    [Google Scholar]
  25. 25. 
    Senocrate A, Moudrakovski I, Kim GY, Yang TY, Gregori G et al. 2017. The nature of ion conduction in methylammonium lead iodide: a multimethod approach. Angew. Chem. Int. Ed. 56:7755–59
    [Google Scholar]
  26. 26. 
    Wang R, Mujahid M, Duan Y, Wang Z, Xue J, Yang Y. 2019. A review of perovskites' solar cell stability. Adv. Funct. Mater. 29:1808843
    [Google Scholar]
  27. 27. 
    Zhou L, Katan C, Nie W, Tsai H, Pedesseau L et al. 2019. Cation alloying delocalizes polarons in lead-halide perovskites. J. Phys. Chem. Lett. 10:3516–24
    [Google Scholar]
  28. 28. 
    Deretzis I, Smecca E, Mannino G, La Magna A, Miyasaka T, Alberti A 2018. Stability and degradation in hybrid perovskites: Is the glass half-empty or half-full?. J. Phys. Chem. Lett. 9:3000–7
    [Google Scholar]
  29. 29. 
    Nagabhushana GP, Shivaramaiah R, Navrotsky A 2016. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. PNAS 113:7717–21
    [Google Scholar]
  30. 30. 
    Lai M, Obliger A, Lu D, Kley CS, Bischak CG et al. 2018. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. PNAS 115:11929–34
    [Google Scholar]
  31. 31. 
    Zhang Z, Roy PN, Li H, Avdeev M, Nazar LF. 2019. Coupled cation–anion dynamics enhances cation mobility in room-temperature superionic solid-state electrolytes. J. Am. Chem. Soc. 141:19360–72
    [Google Scholar]
  32. 32. 
    Sun Y, Wang Y, Liang X, Xia Y, Peng L et al. 2019. Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4. J. Am. Chem. Soc. 141:5640–44
    [Google Scholar]
  33. 33. 
    Smith MD, Jaffe A, Dohner ER, Lindenberg AM, Karunadasa HI. 2017. Structural origins of broadband emission from layered Pb-Br hybrid perovskites. Chem. Sci. 8:4497–504
    [Google Scholar]
  34. 34. 
    Gong X, Voznyy O, Jain A, Liu W, Sabatini R et al. 2018. Electron–phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17:550–56
    [Google Scholar]
  35. 35. 
    Steirer KX, Schulz P, Teeter G, Stevanovic V, Yang M et al. 2016. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1:360–66
    [Google Scholar]
  36. 36. 
    Brandt RE, Stevanović V, Ginley DS, Buonassisi T. 2015. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5:265–75
    [Google Scholar]
  37. 37. 
    Sears VF. 1992. Neutron scattering lengths and cross sections. Neutron News 3:26–37
    [Google Scholar]
  38. 38. 
    Létoublon A, Paofai S, Rufflé B, Bourges P, Hehlen B et al. 2016. Elastic constants, optical phonons, and molecular relaxations in the high temperature plastic phase of the CH3NH3PbBr3 hybrid perovskite. J. Phys. Chem. Lett. 7:3776–84
    [Google Scholar]
  39. 39. 
    Bakulin AA, Selig O, Bakker HJ, Rezus YL, Müller C et al. 2015. Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6:3663–69
    [Google Scholar]
  40. 40. 
    Bée M. 1988. Quasielastic Neutron Scattering Boca Raton, FL: CRC. , 1st ed..
    [Google Scholar]
  41. 41. 
    Anusca I, Balčiūnas S, Gemeiner P, Svirskas V, Sanlialp M et al. 2017. Dielectric response: answer to many questions in the methylammonium lead halide solar cell absorbers. Adv. Energy Mater. 7:1700600
    [Google Scholar]
  42. 42. 
    Sendner M, Nayak PK, Egger DA, Beck S, Müller C et al. 2016. Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater. Horiz. 3:613–20
    [Google Scholar]
  43. 43. 
    Ellison WJ. 2007. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C. J. Phys. Chem. Ref. Data 36:1–18
    [Google Scholar]
  44. 44. 
    Luspin Y, Servoin JL, Gervais F. 1980. Soft mode spectroscopy in barium titanate. J. Phys. C 13:3761–73
    [Google Scholar]
  45. 45. 
    Pelant I, Valenta J. 2012. Luminescence Spectroscopy of Semiconductors Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  46. 46. 
    Megaw HD. 1952. Origin of ferroelectricity in barium titanate and other perovskite-type crystals. Acta Crystallogr. 5:739–49
    [Google Scholar]
  47. 47. 
    Swainson IP, Stock C, Parker SF, Van Eijck L, Russina M, Taylor JW. 2015. From soft harmonic phonons to fast relaxational dynamics in CH3NH3PbBr3. Phys. Rev. B 92:100303
    [Google Scholar]
  48. 48. 
    Beecher AN, Semonin OE, Skelton JM, Frost JM, Terban MW et al. 2016. Direct observation of dynamic symmetry breaking above room temperature in methylammonium lead iodide perovskite. ACS Energy Lett. 1:880–87
    [Google Scholar]
  49. 49. 
    Weadock NJ, Gehring PM, Gold-Parker A, Smith IC, Karunadasa HI, Toney MF. 2020. Test of the dynamic-domain and critical scattering hypotheses in cubic methylammonium lead triiodide. Phys. Rev. Lett. 125:075701
    [Google Scholar]
  50. 50. 
    Katan C, Mohite AD, Even J. 2018. Entropy in halide perovskites. Nat. Mater. 17:377–79
    [Google Scholar]
  51. 51. 
    Onoda-Yamamuro N, Matsuo T, Suga H. 1990. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J. Phys. Chem. Solids 51:1383–95
    [Google Scholar]
  52. 52. 
    Onoda-Yamamuro N, Matsuo T, Suga H. 1991. Thermal, electric, and dielectric properties of CH3NH3SnBr3 at low temperatures. J. Chem. Thermodyn. 23:987–99
    [Google Scholar]
  53. 53. 
    Onoda-Yamamuro N, Matsuo T, Suga H. 1992. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53:935–39
    [Google Scholar]
  54. 54. 
    Onoda-Yamamuro N, Yamamuro O, Matsuo T, Suga H, Oikawa K et al. 1995. Neutron-diffraction study of CD3ND3SnBr3: semiconductor–insulator transition with orientational ordering. Physica B 213/214:411–13
    [Google Scholar]
  55. 55. 
    Cardona M, Peter YY. 2005. Fundamentals of Semiconductors Berlin: Springer
    [Google Scholar]
  56. 56. 
    Walsh A, Payne DJ, Egdell RG, Watson GW. 2011. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40:4455–63
    [Google Scholar]
  57. 57. 
    Fabini DH, Seshadri R, Kanatzidis MG. 2020. The underappreciated lone pair in halide perovskites underpins their unusual properties. MRS Bull. 45:467–77
    [Google Scholar]
  58. 58. 
    Remsing RC, Klein ML. 2020. A new perspective on lone pair dynamics in halide perovskites. APL Mater. 8:050902
    [Google Scholar]
  59. 59. 
    Loidl A. 1989. Orientational glasses. Annu. Rev. Phys. Chem. 40:29–60
    [Google Scholar]
  60. 60. 
    Höchli U, Knorr K, Loidl A. 1990. Orientational glasses. Adv. Phys. 39:405–615
    [Google Scholar]
  61. 61. 
    Yaffe O, Guo Y, Tan LZ, Egger DA, Hull T et al. 2017. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118:136001
    [Google Scholar]
  62. 62. 
    Wu X, Tan LZ, Shen X, Hu T, Miyata K et al. 2017. Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites. Sci. Adv. 3:e1602388
    [Google Scholar]
  63. 63. 
    Park M, Neukirch AJ, Reyes-Lillo SE, Lai M, Ellis SR et al. 2018. Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nat. Commun. 9:2525
    [Google Scholar]
  64. 64. 
    Zhu H, Trinh MT, Wang J, Fu Y, Joshi PP et al. 2017. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 29:1603072
    [Google Scholar]
  65. 65. 
    Even J, Carignano M, Katan C. 2016. Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites. Nanoscale 8:6222–36
    [Google Scholar]
  66. 66. 
    Thouin F, Valverde-Chávez DA, Quarti C, Cortecchia D, Bargigia I et al. 2019. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 18:349–56
    [Google Scholar]
  67. 67. 
    Wolf C, Cho H, Kim YH, Lee TW. 2017. Polaronic charge carrier–lattice interactions in lead halide perovskites. ChemSusChem 10:3705–11
    [Google Scholar]
  68. 68. 
    Frost JM, Whalley LD, Walsh A. 2017. Slow cooling of hot polarons in halide perovskite solar cells. ACS Energy Lett. 2:2647–52
    [Google Scholar]
  69. 69. 
    Miyata K, Meggiolaro D, Trinh MT, Joshi PP, Mosconi E et al. 2017. Large polarons in lead halide perovskites. Sci. Adv. 3:e1701217
    [Google Scholar]
  70. 70. 
    Zhu H, Miyata K, Fu Y, Wang J, Joshi PP et al. 2016. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353:1409–13
    [Google Scholar]
  71. 71. 
    Yang J, Wen X, Xia H, Sheng R, Ma Q et al. 2017. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun. 8:14120
    [Google Scholar]
  72. 72. 
    Monahan DM, Guo L, Lin J, Dou L, Yang P, Fleming GR. 2017. Room-temperature coherent optical phonon in 2D electronic spectra of CH3NH3PbI3 perovskite as a possible cooling bottleneck. J. Phys. Chem. Lett. 8:3211–15
    [Google Scholar]
  73. 73. 
    Chen T, Foley BJ, Ipek B, Tyagi M, Copley JRD et al. 2015. Rotational dynamics of organic cations in the CH3NH3PbI3 perovskite. Phys. Chem. Chem. Phys. 17:31278–86
    [Google Scholar]
  74. 74. 
    Bernard GM, Wasylishen RE, Ratcliffe CI, Terskikh V, Wu Q et al. 2018. Methylammonium cation dynamics in methylammonium lead halide perovskites: a solid-state NMR perspective. J. Phys. Chem. A 122:1560–73
    [Google Scholar]
  75. 75. 
    Fabini DH, Siaw TA, Stoumpos CC, Laurita G, Olds D et al. 2017. Universal dynamics of molecular reorientation in hybrid lead iodide perovskites. J. Am. Chem. Soc. 139:16875–84
    [Google Scholar]
  76. 76. 
    Mozur EM, Trowbridge JC, Maughan AE, Gorman MJ, Brown CM et al. 2019. Dynamical phase transitions and cation orientation–dependent photoconductivity in CH(NH2)2PbBr3. ACS Mater. Lett. 1:260–64
    [Google Scholar]
  77. 77. 
    Mozur EM, Maughan AE, Cheng Y, Huq A, Jalarvo N et al. 2017. Orientational glass formation in substituted hybrid perovskites. Chem. Mater. 29:10168–77
    [Google Scholar]
  78. 78. 
    Mozur EM, Hope MA, Trowbridge JC, Halat DM, Daemen LL et al. 2020. Cesium substitution disrupts concerted cation dynamics in formamidinium hybrid perovskites. Chem. Mater. 32:6266–77
    [Google Scholar]
  79. 79. 
    Selig O, Sadhanala A, Müller C, Lovrincic R, Chen Z et al. 2017. Organic cation rotation and immobilisation in pure and mixed methylammonium lead-halide perovskites. J. Am. Chem. Soc. 139:4068–74
    [Google Scholar]
  80. 80. 
    Li J, Bouchard M, Reiss P, Aldakov D, Pouget S et al. 2018. Activation energy of organic cation rotation in CH3NH3PbI3 and CD3NH3PbI3: quasi-elastic neutron scattering measurements and first-principles analysis including nuclear quantum effects. J. Phys. Chem. Lett. 9:3969–77
    [Google Scholar]
  81. 81. 
    Kanno S, Imamura Y, Saeki A, Hada M. 2017. Rotational energy barriers and relaxation times of the organic cation in cubic methylammonium lead/tin halide perovskites from first principles. J. Phys. Chem. C 121:14051–59
    [Google Scholar]
  82. 82. 
    Xu Q, Eguchi T, Nakayama H, Nakamura N, Kishita M. 1991. Molecular motions and phase transitions in solid CH3NH3PbX3 (X = Cl, Br, I) as studied by NMR and NQR. Z. Naturforsch. A 46:240–46
    [Google Scholar]
  83. 83. 
    Furukawa Y, Nakamura D. 1989. Cationic dynamics in the crystalline phases of (CH3NH3)PbX3 (X: Cl, Br) as studied by proton magnetic resonance techniques. Z. Naturforsch. A 44:1122–26
    [Google Scholar]
  84. 84. 
    Knop O, Wasylishen RE, White MA, Cameron TS, Van Oort MJM. 1990. Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Can. J. Chem. 68:412–22
    [Google Scholar]
  85. 85. 
    Li B, Long R, Xia Y, Mi Q 2018. All-inorganic perovskite CsSnBr3 as a thermally stable, free-carrier semiconductor. Angew. Chem. Int. Ed. 57:13154–58
    [Google Scholar]
  86. 86. 
    Marronnier A, Roma G, Carignano MA, Bonnassieux Y, Katan C et al. 2019. Influence of disorder and anharmonic fluctuations on the dynamical Rashba effect in purely inorganic lead-halide perovskites. J. Phys. Chem. C 123:291–98
    [Google Scholar]
  87. 87. 
    Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, Even J. 2015. Rashba and Dresselhaus effects in hybrid organic–inorganic perovskites: from basics to devices. ACS Nano 9:11557–67
    [Google Scholar]
  88. 88. 
    Mosconi E, Etienne T, De Angelis F. 2017. Rashba band splitting in organohalide lead perovskites: bulk and surface effects. J. Phys. Chem. Lett. 8:2247–52
    [Google Scholar]
  89. 89. 
    Wang J, Zhang C, Liu H, McLaughlin R, Zhai Y et al. 2019. Spin-optoelectronic devices based on hybrid organic–inorganic trihalide perovskites. Nat. Commun. 10:129
    [Google Scholar]
  90. 90. 
    Glinka YD, Cai R, Li J, Lin X, Xu B et al. 2019. Distinguishing between dynamical and static Rashba effects in hybrid perovskite nanocrystals using transient absorption spectroscopy. arXiv:1909.03605 [physics]
  91. 91. 
    Wu B, Yuan H, Xu Q, Steele JA, Giovanni D et al. 2019. Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites. Nat. Commun. 10:484
    [Google Scholar]
  92. 92. 
    Niesner D, Hauck M, Shrestha S, Levchuk I, Matt GJ et al. 2018. Structural fluctuations cause spin-split states in tetragonal (CH3NH3)PbI3 as evidenced by the circular photogalvanic effect. PNAS 115:9509–14
    [Google Scholar]
  93. 93. 
    Etienne T, Mosconi E, De Angelis F. 2016. Dynamical origin of the Rashba effect in organohalide lead perovskites: a key to suppressed carrier recombination in perovskite solar cells?. J. Phys. Chem. Lett. 7:1638–45
    [Google Scholar]
  94. 94. 
    Motta C, El Mellouhi F, Kais S, Tabet N, Alharbi F, Sanvito S. 2015. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat. Commun. 6:7026
    [Google Scholar]
  95. 95. 
    Ryu H, Park DY, McCall K, Byun HR, Lee Y et al. 2020. Static Rashba effect by surface reconstruction and photon recycling of the dynamic Rashba gap in halide perovskite single crystals. J. Am. Chem. Soc. 142:21059–67
    [Google Scholar]
  96. 96. 
    Frost JM, Walsh A. 2016. What is moving in hybrid halide perovskite solar cells?. Acc. Chem. Res. 49:528–35
    [Google Scholar]
  97. 97. 
    Shikoh AS, Polyakov AY, Smirnov NB, Shchemerov IV, Saranin DS et al. 2020. Ion dynamics in single and multi-cation perovskite. ECS J. Solid State Sci. Technol. 9:065015
    [Google Scholar]
  98. 98. 
    Slotcavage DJ, Karunadasa HI, McGehee MD. 2016. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1:1199–205
    [Google Scholar]
  99. 99. 
    Rakita Y, Lubomirsky I, Cahen D. 2019. When defects become ‘dynamic.’ Halide perovskites: a new window on materials?. Mater. Horiz. 6:1297–305
    [Google Scholar]
  100. 100. 
    Chen Y, Tan S, Li N, Huang B, Niu X et al. 2020. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics. Joule 4:1961–76
    [Google Scholar]
  101. 101. 
    Christians JA, Schulz P, Tinkham JS, Schloemer TH, Harvey SP et al. 2018. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nat. Energy 3:68–74
    [Google Scholar]
  102. 102. 
    Svane KL, Forse AC, Grey CP, Kieslich G, Cheetham AK et al. 2017. How strong is the hydrogen bond in hybrid perovskites?. J. Phys. Chem. Lett. 8:6154–59
    [Google Scholar]
  103. 103. 
    Dastidar S, Egger DA, Tan LZ, Cromer SB, Dillon AD et al. 2016. High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 16:3563–70
    [Google Scholar]
  104. 104. 
    Chen T, Foley BJ, Park C, Brown CM, Harriger LW et al. 2016. Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2:e1601650
    [Google Scholar]
  105. 105. 
    Poglitsch A, Weber D. 1987. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87:6373–78
    [Google Scholar]
  106. 106. 
    Laurita G, Fabini DH, Stoumpos CC, Kanatzidis MG, Seshadri R. 2017. Chemical tuning of dynamic cation off-centering in the cubic phases of hybrid tin and lead halide perovskites. Chem. Sci. 8:5628–35
    [Google Scholar]
  107. 107. 
    Songvilay M, Wang Z, Sakai VG, Guidi T, Bari M et al. 2019. Decoupled molecular and inorganic framework dynamics in CH3NH3PbCl3. Phys. Rev. Mater. 3:125406
    [Google Scholar]
  108. 108. 
    Brivio F, Frost JM, Skelton JM, Jackson AJ, Weber OJ et al. 2015. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B 92:144308
    [Google Scholar]
  109. 109. 
    Leguy AMA, Goñi AR, Frost JM, Skelton J, Brivio F et al. 2016. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 18:27051–66
    [Google Scholar]
  110. 110. 
    Maughan AE, Ganose AM, Candia AM, Granger JT, Scanlon DO, Neilson JR. 2018. Anharmonicity and octahedral tilting in hybrid vacancy-ordered double perovskites. Chem. Mater. 30:472–83
    [Google Scholar]
  111. 111. 
    Whalley LD, Frost JM, Jung YK, Walsh A. 2017. Perspective: theory and simulation of hybrid halide perovskites. J. Chem. Phys. 146:220901
    [Google Scholar]
  112. 112. 
    Govinda S, Kore BP, Bokdam M, Mahale P, Kumar A et al. 2017. Behavior of methylammonium dipoles in MAPbX3 (X = Br and I). J. Phys. Chem. Lett. 8:4113–21
    [Google Scholar]
  113. 113. 
    Govinda S, Kore BP, Swain D, Hossain A, De C et al. 2018. Critical comparison of FAPbX3 and MAPbX3 (X = Br and Cl): How do they differ?. J. Phys. Chem. C 122:13758–66
    [Google Scholar]
  114. 114. 
    Hutter EM, Gélvez-Rueda MC, Osherov A, Bulović V, Grozema FC et al. 2017. Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 16:115–20
    [Google Scholar]
  115. 115. 
    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang JTW et al. 2015. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11:582–87
    [Google Scholar]
  116. 116. 
    Fabini DH, Stoumpos CC, Laurita G, Kaltzoglou A, Kontos AG et al. 2016. Reentrant structural and optical properties and large positive thermal expansion in perovskite formamidinium lead iodide. Angew. Chem. Int. Ed. 55:15392–96
    [Google Scholar]
  117. 117. 
    Keshavarz M, Ottesen M, Wiedmann S, Wharmby M, Küchler R et al. 2019. Tracking structural phase transitions in lead-halide perovskites by means of thermal expansion. Adv. Mater. 31:1900521
    [Google Scholar]
  118. 118. 
    Schueller EC, Laurita G, Fabini DH, Stoumpos CC, Kanatzidis MG, Seshadri R. 2018. Crystal structure evolution and notable thermal expansion in hybrid perovskites formamidinium tin iodide and formamidinium lead bromide. Inorg. Chem. 57:695–701
    [Google Scholar]
  119. 119. 
    Carignano MA, Saeed Y, Aravindh SA, Roqan IS, Even J, Katan C. 2016. A close examination of the structure and dynamics of HC(NH2)2PbI3 by MD simulations and group theory. Phys. Chem. Chem. Phys. 18:27109–18
    [Google Scholar]
  120. 120. 
    Chen T, Chen WL, Foley BJ, Lee J, Ruff JPC et al. 2017. Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites. PNAS 114:7519–24
    [Google Scholar]
  121. 121. 
    Grannan ER, Randeria M, Sethna JP. 1990. Low-temperature properties of a model glass. I. Elastic dipole model. Phys. Rev. B 41:7784–99
    [Google Scholar]
  122. 122. 
    Kubicki D, Prochowicz D, Hofstetter A, Pechy P, Zakeeruddin SM et al. 2017. Cation dynamics in mixed-cation (MA)x(FA)1 − xPbI3 hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139:10055–61
    [Google Scholar]
  123. 123. 
    Kanno S, Imamura Y, Hada M. 2017. Theoretical study on rotational controllability of organic cations in organic–inorganic hybrid perovskites: hydrogen bonds and halogen substitution. J. Phys. Chem. C 121:26188–95
    [Google Scholar]
  124. 124. 
    Yang W, Igbari F, Lou Y, Wang Z, Liao L 2020. Tin halide perovskites: progress and challenges. Adv. Energy Mater. 10:1902584
    [Google Scholar]
  125. 125. 
    Ganose AM, Savory CN, Scanlon DO. 2017. Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. Chem. Commun. 53:20–44
    [Google Scholar]
  126. 126. 
    Stoumpos CC, Frazer L, Clark DJ, Kim YS, Rhim SH et al. 2015. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137:6804–19
    [Google Scholar]
  127. 127. 
    Yamada K, Kuranaga Y, Ueda K, Goto S, Okuda T, Furukawa Y. 1998. Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3). Bull. Chem. Soc. Jpn. 71:127–34
    [Google Scholar]
  128. 128. 
    Yamada K, Mikawa K, Okuda T, Knight KS. 2002. Static and dynamic structures of CD3ND3GeCl3 studied by TOF high resolution neutron powder diffraction and solid state NMR. J. Chem. Soc. Dalton Trans. 2002:2112–18
    [Google Scholar]
  129. 129. 
    Herz LM. 2018. How lattice dynamics moderate the electronic properties of metal-halide perovskites. J. Phys. Chem. Lett. 9:6853–63
    [Google Scholar]
  130. 130. 
    Guedes-Sobrinho D, Guilhon I, Marques M, Teles LK. 2019. Thermodynamic stability and structural insights for CH3NH3Pb1−xSixI3, CH3NH3Pb1−xGexI3, and CH3NH3Pb1−xSnxI3 hybrid perovskite alloys: a statistical approach from first principles calculations. Sci. Rep. 9:11061
    [Google Scholar]
  131. 131. 
    Swainson I, Chi L, Her JH, Cranswick L, Stephens P et al. 2010. Orientational ordering, tilting and lone-pair activity in the perovskite methylammonium tin bromide, CH3NH3SnBr3. Acta Crystallogr. B 66:422–29
    [Google Scholar]
  132. 132. 
    Rosales BA, Wei L, Vela J. 2019. Synthesis and mixing of complex halide perovskites by solvent-free solid-state methods. J. Solid State Chem. 271:206–15
    [Google Scholar]
  133. 133. 
    Liu F, Wang F, Hansen KR, Zhu XY. 2019. Bimodal bandgaps in mixed cesium methylammonium lead bromide perovskite single crystals. J. Phys. Chem. C 123:14865–70
    [Google Scholar]
  134. 134. 
    Askar AM, Bernard GM, Wiltshire B, Shankar K, Michaelis VK. 2017. Multinuclear magnetic resonance tracking of hydro, thermal, and hydrothermal decomposition of CH3NH3PbI3. J. Phys. Chem. C 121:1013–24
    [Google Scholar]
  135. 135. 
    Senocrate A, Kim GY, Grätzel M, Maier J. 2019. Thermochemical stability of hybrid halide perovskites. ACS Energy Lett. 4:2859–70
    [Google Scholar]
  136. 136. 
    Aziz A, Aristidou N, Bu X, Westbrook RJE, Haque SA, Islam MS. 2020. Understanding the enhanced stability of bromide substitution in lead iodide perovskites. Chem. Mater. 32:400–9
    [Google Scholar]
  137. 137. 
    Cordero F, Craciun F, Trequattrini F, Generosi A, Paci B et al. 2019. Stability of cubic FAPbI3 from X-ray diffraction, anelastic, and dielectric measurements. J. Phys. Chem. Lett. 10:2463–69
    [Google Scholar]
  138. 138. 
    Schelhas LT, Li Z, Christians JA, Goyal A, Kairys P et al. 2019. Insights into operational stability and processing of halide perovskite active layers. Energy Environ. Sci. 12:1341–48
    [Google Scholar]
  139. 139. 
    Poorkazem K, Kelly TL. 2018. Compositional engineering to improve the stability of lead halide perovskites: a comparative study of cationic and anionic dopants. ACS Appl. Energy Mater. 1:181–90
    [Google Scholar]
  140. 140. 
    Chen L, Tan YY, Chen ZX, Wang T, Hu S et al. 2019. Toward long-term stability: single-crystal alloys of cesium-containing mixed cation and mixed halide perovskite. J. Am. Chem. Soc. 141:1665–71
    [Google Scholar]
  141. 141. 
    Leppert L, Reyes-Lillo SE, Neaton JB 2016. Electric field– and strain-induced Rashba effect in hybrid halide perovskites. J. Phys. Chem. Lett. 7:3683–89
    [Google Scholar]
  142. 142. 
    Rodova M, Brozek J, Knizek K, Nitsch K. 2003. Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim. 71:667–73
    [Google Scholar]
  143. 143. 
    Young J, Rondinelli JM. 2016. Octahedral rotation preferences in perovskite iodides and bromides. J. Phys. Chem. Lett. 7:918–22
    [Google Scholar]
  144. 144. 
    Lee JH, Bristowe NC, Bristowe PD, Cheetham AK. 2015. Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3. Chem. Commun. 51:6434–37
    [Google Scholar]
  145. 145. 
    Franz A, Többens DM, Schorr S. 2016. Interaction between cation orientation, octahedra tilting and hydrogen bonding in methylammonium lead triiodide. Cryst. Res. Technol. 51:534–40
    [Google Scholar]
  146. 146. 
    Yin T, Fang Y, Fan X, Zhang B, Kuo JL et al. 2017. Hydrogen-bonding evolution during the polymorphic transformations in CH3NH3PbBr3: experiment and theory. Chem. Mater. 29:5974–81
    [Google Scholar]
  147. 147. 
    Li N, Luo Y, Chen Z, Niu X, Zhang X et al. 2020. Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors. Joule 4:1743–58
    [Google Scholar]
  148. 148. 
    Correa-Baena JP, Luo Y, Brenner TM, Snaider J, Sun S et al. 2019. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 363:627–31
    [Google Scholar]
  149. 149. 
    Hutter EM, Muscarella LA, Wittmann F, Versluis J, McGovern L et al. 2020. Thermodynamic stabilization of mixed-halide perovskites against phase segregation. Cell Rep. Phys. Sci. 1:100120
    [Google Scholar]
  150. 150. 
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. 2012. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–47
    [Google Scholar]
  151. 151. 
    López CA, Álvarez-Galván MC, Martínez-Huerta MV, Fernández-Díaz MT, Alonso JA. 2019. Dynamic disorder restriction of methylammonium (MA) groups in chloride-doped MAPbBr3 hybrid perovskites: a neutron powder diffraction study. Chem. Eur. J. 25:4496–500
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-012808
Loading
/content/journals/10.1146/annurev-matsci-080819-012808
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error