1932

Abstract

Cultural heritage materials, ranging from archaeological objects and sites to fine arts collections, are often characterized through their life cycle. In this review, the fundamentals and tools of materials science are used to explore such life cycles—first, via the origins of the materials and methods used to produce objects of function and artistry, and in some cases, examples of exceptional durability. The findings provide a window on our cultural heritage. Further, they inspire the design of sustainable materials for future generations. Also explored in this review are alteration phenomena over intervals as long as millennia or as brief as decades. Understanding the chemical processes that give rise to corrosion, passivation, or other degradation in chemical and physical properties can provide the foundation for conservation treatments. Finally, examples of characterization techniques that have been invented or enhanced to afford studies of cultural heritage materials, often nondestructively, are highlighted.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-013103
2021-07-26
2024-07-20
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080819-013103.html?itemId=/content/journals/10.1146/annurev-matsci-080819-013103&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sass SL. 1998. The Substance of Civilization: Materials and Human History from the Stone Age to the Age of Silicon New York: Arcade Publ. , 1st ed..
    [Google Scholar]
  2. 2. 
    Gosden C. 1994. Social Being and Time Oxford, UK/Cambridge, MA: Blackwell
    [Google Scholar]
  3. 3. 
    Jones A. 2004. Archaeometry and materiality: materials-based analysis in theory and practice. Archaeometry 46:3327–38
    [Google Scholar]
  4. 4. 
    Lemonnier P. 1986. The study of material culture today: toward an anthropology of technical systems. J. Anthropol. Archaeol. 5:2147–86
    [Google Scholar]
  5. 5. 
    De Ceuster S, Degryse P. 2020. A ‘match–no match’ numerical and graphical kernel density approach to interpreting lead isotope signatures of ancient artefacts. Archaeometry 62:107–16
    [Google Scholar]
  6. 6. 
    Stemp WJ. 2014. A review of quantification of lithic use-wear using laser profilometry: a method based on metrology and fractal analysis. J. Archaeol. Sci. 48:15–25
    [Google Scholar]
  7. 7. 
    Ingo GM, Riccucci C, Guida G, Albini M, Giuliani C, Di Carlo G. 2019. Rebuilding of the burial environment from the chemical biography of archeological copper-based artifacts. ACS Omega 4:611103–11
    [Google Scholar]
  8. 8. 
    Olson GB. 1997. Computational design of hierarchically structured materials. Science 277:53301237–42
    [Google Scholar]
  9. 9. 
    Bertrand L, Gervais C, Masic A, Robbiola L. 2018. Paleo-inspired systems: durability, sustainability, and remarkable properties. Angew. Chem. Int. Ed. 57:257288–95
    [Google Scholar]
  10. 10. 
    Scott DA. 1991. Metallography and Microstructure of Ancient and Historic Metals Marina del Rey, CA: Getty Conserv. Inst.
    [Google Scholar]
  11. 11. 
    Bude RO, Bigelow EMR 2020. Nano-CT evaluation of totally corroded coins: a demonstration study to determine if detail might still be discernible despite the lack of internal, non-corroded, metal. Archaeometry 62:1195–201
    [Google Scholar]
  12. 12. 
    Li J, Guériau P, Bellato M, King A, Robbiola L et al. 2019. Synchrotron-based phase mapping in corroded metals: insights from early copper-base artifacts. Anal. Chem. 91:31815–25
    [Google Scholar]
  13. 13. 
    Casadio F, Van Duyne RP. 2013. Molecular analysis for art, archaeometry and conservation. Analyst 138:247276–78
    [Google Scholar]
  14. 14. 
    Thoury M, Mille B, Séverin-Fabiani T, Robbiola L, Réfrégiers M et al. 2016. High spatial dynamics-photoluminescence imaging reveals the metallurgy of the earliest lost-wax cast object. Nat. Commun. 7:113356
    [Google Scholar]
  15. 15. 
    Chabrier R. 2016. The mystery of the amulet. Vimeo video, 6:58. https://vimeo.com/191614973
  16. 16. 
    Walton M, Trentelman K, Cummings M, Poretti G, Maish J et al. 2013. Material evidence for multiple firings of ancient Athenian red-figure pottery. J. Am. Ceram. Soc. 96:72031–35
    [Google Scholar]
  17. 17. 
    Bray PJ, Pollard AM. 2012. A new interpretative approach to the chemistry of copper-alloy objects: source, recycling and technology. Antiquity 86:333853–67
    [Google Scholar]
  18. 18. 
    Speakman RJ, Glascock MD. 2007. Acknowledging fifty years of neutron activation analysis in archaeology. Archaeometry 49:2179–83
    [Google Scholar]
  19. 19. 
    Van Malderen SJM, Van Acker T, Vanhaecke F. 2020. Sub-micrometer nanosecond LA-ICP-MS imaging at pixel acquisition rates above 250 Hz via a low-dispersion setup. Anal. Chem. 92:85756–64
    [Google Scholar]
  20. 20. 
    Shortland AJ, Kirk S, Eremin K, Degryse P, Walton M. 2018. The analysis of Late Bronze Age glass from Nuzi and the question of the origin of glass-making. Archaeometry 60:4764–83
    [Google Scholar]
  21. 21. 
    Walton MS, Shortland A, Kirk S, Degryse P. 2009. Evidence for the trade of Mesopotamian and Egyptian glass to Mycenaean Greece. J. Archaeol. Sci. 36:71496–503
    [Google Scholar]
  22. 22. 
    Varberg J, Gratuze B, Kaul F. 2015. Between Egypt, Mesopotamia and Scandinavia: Late Bronze Age glass beads found in Denmark. J. Archaeol. Sci. 54:168–81
    [Google Scholar]
  23. 23. 
    Rehren T, Freestone IC. 2015. Ancient glass: from kaleidoscope to crystal ball. J. Archaeol. Sci. 56:233–41
    [Google Scholar]
  24. 24. 
    Wedepohl KH, Baumann A. 2000. The use of marine molluskan shells for roman glass and local raw glass production in the Eifel area (Western Germany). Naturwissenschaften 87:3129–32
    [Google Scholar]
  25. 25. 
    Degryse P, Schneider J. 2008. Pliny the Elder and Sr-Nd isotopes: tracing the provenance of raw materials for Roman glass production. J. Archaeol. Sci. 35:71993–2000
    [Google Scholar]
  26. 26. 
    Barfod GH, Freestone IC, Lesher CE, Lichtenberger A, Raja R. 2020. ‘Alexandrian’ glass confirmed by hafnium isotopes. Sci. Rep. 10:111322
    [Google Scholar]
  27. 27. 
    Baron S, Tămaş CG, Le Carlier C 2014. How mineralogy and geochemistry can improve the significance of Pb isotopes in metal provenance studies. Archaeometry 56:4665–80
    [Google Scholar]
  28. 28. 
    Pernicka E 2014. Provenance determination of archaeological metal objects. Archaeometallurgy in Global Perspective BW Roberts, CP Thornton 239–68 New York: Springer
    [Google Scholar]
  29. 29. 
    Jansen M, Hauptmann A, Klein S, Seitz H-M. 2018. The potential of stable Cu isotopes for the identification of Bronze Age ore mineral sources from Cyprus and Faynan: results from Uluburun and Khirbat Hamra Ifdan. Archaeol. Anthropol. Sci. 10:61485–502
    [Google Scholar]
  30. 30. 
    Berger D, Figueiredo E, Brügmann G, Pernicka E. 2018. Tin isotope fractionation during experimental cassiterite smelting and its implication for tracing the tin sources of prehistoric metal artefacts. J. Archaeol. Sci. 92:73–86
    [Google Scholar]
  31. 31. 
    Milot J, Poitrasson F, Baron S, Coustures M-P. 2016. Iron isotopes as a potential tool for ancient iron metals tracing. J. Archaeol. Sci. 76:9–20
    [Google Scholar]
  32. 32. 
    Baron S, Tămaş CG, Rivoal M, Cauuet B, Télouk P, Albarède F. 2019. Geochemistry of gold ores mined during Celtic times from the North-Western French Massif Central. Sci. Rep. 9:117816
    [Google Scholar]
  33. 33. 
    Gambardella AA, Cotte M, de Nolf W, Schnetz K, Erdmann R et al. 2020. Sulfur K-edge micro- and full-field XANES identify marker for preparation method of ultramarine pigment from lapis lazuli in historical paints. Sci. Adv. 6:18eaay8782
    [Google Scholar]
  34. 34. 
    Ganio M, Pouyet ES, Webb SM, Schmidt Patterson CM, Walton MS. 2018. From lapis lazuli to ultramarine blue: investigating Cennino Cennini's recipe using sulfur K-edge XANES. Pure Appl. Chem. 90:3463–75
    [Google Scholar]
  35. 35. 
    Schmidt CM, Walton MS, Trentelman K. 2009. Characterization of lapis lazuli pigments using a multitechnique analytical approach: implications for identification and geological provenancing. Anal. Chem. 81:208513–18
    [Google Scholar]
  36. 36. 
    Tite MS, Shortland AJ. 2003. Production technology for copper- and cobalt-blue vitreous materials from the New Kingdom Site of Amarna—a reappraisal. Archaeometry 45:2285–312
    [Google Scholar]
  37. 37. 
    Giannini R, Freestone IC, Shortland AJ. 2017. European cobalt sources identified in the production of Chinese famille rose porcelain. J. Archaeol. Sci. 80:27–36
    [Google Scholar]
  38. 38. 
    Berrie BH. 2015. Mining for color: new blues, yellows, and translucent paint. Early Sci. Med. 20:4–6308–34
    [Google Scholar]
  39. 39. 
    Martinón-Torres M, Rehren T, Freestone IC. 2006. Mullite and the mystery of Hessian wares. Nature 444:7118437–38
    [Google Scholar]
  40. 40. 
    Lehne J, Preston F. 2018. Making concrete change, innovation in low-carbon cement and concrete Chatham House Rep., R. Inst. Int. Aff London:
    [Google Scholar]
  41. 41. 
    Oleson JP, Bottalico L, Brandon C, Cucitore R, Gotti E, Hohlfelder RL. 2006. Reproducing a Roman maritime structure with Vitruvian pozzolanic concrete. J. Rom. Archaeol. 19:129–52
    [Google Scholar]
  42. 42. 
    Snellings R, Mertens G, Elsen J 2012. Supplementary cementitious materials. Rev. Mineral. Geochem. 74:1211–78
    [Google Scholar]
  43. 43. 
    Maragh JM, Weaver JC, Masic A. 2019. Large-scale micron-order 3D surface correlative chemical imaging of ancient Roman concrete. PLOS ONE 14:2e0210710
    [Google Scholar]
  44. 44. 
    Degryse P, Elsen J, Waelkens M. 2002. Study of ancient mortars from Sagalassos (Turkey) in view of their conservation. Cem. Concr. Res. 32:91457–63
    [Google Scholar]
  45. 45. 
    Jackson MD, Landis EN, Brune PF, Vitti M, Chen H et al. 2014. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar. PNAS 111:5218484–89
    [Google Scholar]
  46. 46. 
    Elsen J. 2006. Microscopy of historic mortars—a review. Cem. Concr. Res. 36:81416–24
    [Google Scholar]
  47. 47. 
    Cizer Ö, Van Balen K, Elsen J, Van Gemert D. 2012. Real-time investigation of reaction rate and mineral phase modifications of lime carbonation. Constr. Build. Mater. 35:741–51
    [Google Scholar]
  48. 48. 
    Jackson MD, Chae SR, Mulcahy SR, Meral C, Taylor R et al. 2013. Unlocking the secrets of Al-tobermorite in Roman seawater concrete. Am. Mineral. 98:101669–87
    [Google Scholar]
  49. 49. 
    Jackson MD, Mulcahy SR, Chen H, Li Y, Li Q et al. 2017. Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. Am. Mineral. 102:1435–50
    [Google Scholar]
  50. 50. 
    MacFarlane J, Vanorio T, Monteiro PJM. 2020. The importance of the ultra-alkaline volcanic nature of the raw materials to the ductility of roman marine concrete. arXiv:2001.10974 [physics.geo-ph]
  51. 51. 
    Malacrino CG. 2010. Constructing the Ancient World: Architectural Techniques of the Greeks and Romans transl. J Hyams Los Angeles: Getty Publ.
    [Google Scholar]
  52. 52. 
    Moropoulou A, Bakolas A, Anagnostopoulou S. 2005. Composite materials in ancient structures. Cem. Concr. Compos. 27:295–300
    [Google Scholar]
  53. 53. 
    Nežerka V, Němeček J, Slížková Z, Tesárek P. 2015. Investigation of crushed brick-matrix interface in lime-based ancient mortar by microscopy and nanoindentation. Cem. Concr. Compos. 55:122–28
    [Google Scholar]
  54. 54. 
    Lee L, Quirke S 2000. Painting materials. Ancient Egyptian Materials and Technology P Nicholson, I Shaw 475–94 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  55. 55. 
    Nicola M, Seymour LM, Aceto M, Priola E, Gobetto R, Masic A. 2019. Late production of Egyptian blue: synthesis from brass and its characteristics. Archaeol. Anthropol. Sci. 11:105377–92
    [Google Scholar]
  56. 56. 
    Gaetani MC, Santamaria U, Seccaroni C. 2004. The use of Egyptian blue and lapis lazuli in the Middle Ages - the wall paintings of the San Saba Church in Rome. Stud. Conserv. 49:113–22
    [Google Scholar]
  57. 57. 
    Pradell T, Salvado N, Hatton GD, Tite MS. 2006. Physical processes involved in production of the ancient pigment, Egyptian blue. J. Am. Ceram. Soc. 89:41426–31
    [Google Scholar]
  58. 58. 
    Pozza G, Ajò D, Chiari G, De Zuane F, Favaro M. 2000. Photoluminescence of the inorganic pigments Egyptian blue, Han blue and Han purple. J. Cult. Heritage 1:4393–98
    [Google Scholar]
  59. 59. 
    Accorsi G, Verri G, Bolognesi M, Armaroli N, Clementi C et al. 2009. The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue). Chem. Commun. 23:3392–94
    [Google Scholar]
  60. 60. 
    Errington B, Lawson G, Lewis SW, Smith GD. 2016. Micronised Egyptian blue pigment: a novel near-infrared luminescent fingerprint dusting powder. Dyes Pigments 132:310–15
    [Google Scholar]
  61. 61. 
    Johnson-McDaniel D, Barrett CA, Sharafi A, Salguero TT. 2013. Nanoscience of an ancient pigment. J. Am. Chem. Soc. 135:51677–79
    [Google Scholar]
  62. 62. 
    Selvaggio G, Chizhik A, Nißler R, Kuhlemann I, Meyer D et al. 2020. Exfoliated near infrared fluorescent silicate nanosheets for (bio)photonics. Nat. Commun. 11:11495
    [Google Scholar]
  63. 63. 
    Jose-Yacaman M, Rendon L, Arenas J, Serra Puche MC 1996. Maya blue paint: an ancient nanostructured material. Science 273:5272223–25
    [Google Scholar]
  64. 64. 
    Chiari G, Giustetto R, Ricchiardi G. 2003. Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction. Eur. J. Mineral. 15:121–33
    [Google Scholar]
  65. 65. 
    Chiari G, Giustetto R, Druzik J, Doehne E, Ricchiardi G. 2008. Pre-columbian nanotechnology: Reconciling the mysteries of the maya blue pigment. Appl. Phys. A 90:13–7
    [Google Scholar]
  66. 66. 
    Sánchez del Río M, Boccaleri E, Milanesio M, Croce G, van Beek W et al. 2009. A combined synchrotron powder diffraction and vibrational study of the thermal treatment of palygorskite-indigo to produce Maya blue. J. Mater. Sci. 44:205524–36
    [Google Scholar]
  67. 67. 
    Ouellet-Plamondon C, Aranda P, Favier AE, Habert G, Van Damme H, Ruiz-Hitzky E. 2015. The Maya blue nanostructured material concept applied to colouring geopolymers. R. Soc. Chem. Adv. 5:98834–41
    [Google Scholar]
  68. 68. 
    Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G. 2010. Hybrid materials based on clays for environmental and biomedical applications. J. Mater. Chem. 20:429306–21
    [Google Scholar]
  69. 69. 
    Doménech-Carbó A, Valle-Algarra FM, Doménech-Carbó MT, Osete-Cortina L, Domine ME. 2013. ‘Maya chemistry’ of organic-inorganic hybrid materials: isomerization, cyclicization and redox tuning of organic dyes attached to porous silicates. RSC Adv. 3:4320099–105
    [Google Scholar]
  70. 70. 
    Zhang Y, Zhang J, Wang A. 2016. From Maya blue to biomimetic pigments: durable biomimetic pigments with self-cleaning property. J. Mater. Chem. A 4:3901–7
    [Google Scholar]
  71. 71. 
    Giustetto R, Vitillo JG, Corazzari I, Turci F. 2014. Evolution and reversibility of host/guest interactions with temperature changes in a methyl red@palygorskite polyfunctional hybrid nanocomposite. J. Phys. Chem. C 118:3319322–37
    [Google Scholar]
  72. 72. 
    Rémazeilles C, Langlet-Marzloff V, Creus J, Lotte G, Deshayes C et al. 2020. Remarkable corrosion resumption of archaeological bronzes, induced by the oxidation of ternary Cu-Sn-S phases in atmosphere, after long-term burial with sulfides. Corros. Sci. 175:108865
    [Google Scholar]
  73. 73. 
    Robbiola L, Blengino J-M, Fiaud C. 1998. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys. Corros. Sci. 40:122083–111
    [Google Scholar]
  74. 74. 
    Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P, Robbiola L. 2007. Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochim. Acta 52:277760–69
    [Google Scholar]
  75. 75. 
    Robbiola L, Tran TTM, Dubot P, Majerus O, Rahmouni K. 2008. Characterisation of anodic layers on Cu–10Sn bronze (RDE) in aerated NaCl solution. Corros. Sci. 50:82205–15
    [Google Scholar]
  76. 76. 
    Muller J, Laïk B, Guillot I. 2013. α-CuSn bronzes in sulphate medium: influence of the tin content on corrosion processes. Corros. Sci. 77:46–51
    [Google Scholar]
  77. 77. 
    Masi G, Esvan J, Josse C, Chiavari C, Bernardi E et al. 2017. Characterization of typical patinas simulating bronze corrosion in outdoor conditions. Mater. Chem. Phys. 200:308–21
    [Google Scholar]
  78. 78. 
    Robbiola L, Portier R. 2006. A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. J. Cult. Heritage 7:11–12
    [Google Scholar]
  79. 79. 
    Masi G, Josse C, Esvan J, Chiavari C, Bernardi E et al. 2019. Evaluation of the protectiveness of an organosilane coating on patinated Cu-Si-Mn bronze for contemporary art. Prog. Org. Coat. 127:286–99
    [Google Scholar]
  80. 80. 
    Rabin I, Hahn O. 2013. Characterization of the Dead Sea Scrolls by advanced analytical techniques. Anal. Methods 5:184648
    [Google Scholar]
  81. 81. 
    Schuetz R, Maragh JM, Weaver JC, Rabin I, Masic A. 2019. The Temple Scroll: reconstructing an ancient manufacturing practice. Sci. Adv. 5:9eaaw7494
    [Google Scholar]
  82. 82. 
    Schütz R, Bertinetti L, Rabin I, Fratzl P, Masic A. 2013. Quantifying degradation of collagen in ancient manuscripts: the case of the Dead Sea Temple Scroll. Analyst 138:195594–99
    [Google Scholar]
  83. 83. 
    Latour G, Robinet L, Dazzi A, Portier F, Deniset-Besseau A, Schanne-Klein M-C. 2016. Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments. Sci. Rep. 6:126344
    [Google Scholar]
  84. 84. 
    Walsh-Korb Z, Avérous L 2019. Recent developments in the conservation of materials properties of historical wood. Prog. Mater. Sci. 102:167–221
    [Google Scholar]
  85. 85. 
    Krzemień L, Łukomski M, Bratasz Ł, Kozłowski R, Mecklenburg MF. 2016. Mechanism of craquelure pattern formation on panel paintings. Stud. Conserv. 61:6324–30
    [Google Scholar]
  86. 86. 
    Kupczak A, Jędrychowski M, Bratasz Ł, Łukomski M, Kozłowski R. 2019. Processing relative humidity data using discrete Fourier transform to control strain in art objects. Strain 55:2e12311
    [Google Scholar]
  87. 87. 
    Franzoni E, Sassoni E, Scherer GW, Naidu S. 2013. Artificial weathering of stone by heating. J. Cult. Heritage 14:3e85–93
    [Google Scholar]
  88. 88. 
    Sassoni E, Graziani G, Franzoni E, Scherer GW. 2018. New method for controllable accelerated aging of marble: use for testing of consolidants. J. Am. Ceram. Soc. 101:94146–57
    [Google Scholar]
  89. 89. 
    Tsui N, Flatt RJ, Scherer GW. 2003. Crystallization damage by sodium sulfate. J. Cult. Heritage 4:2109–15
    [Google Scholar]
  90. 90. 
    Cotte M, Checroun E, De Nolf W, Taniguchi Y, De Viguerie L et al. 2017. Lead soaps in paintings: friends or foes?. Stud. Conserv. 62:12–23
    [Google Scholar]
  91. 91. 
    Keune K, Boon JJ. 2007. Analytical imaging studies of cross-sections of paintings affected by lead soap aggregate formation. Stud. Conserv. 52:3161–76
    [Google Scholar]
  92. 92. 
    Erhardt D, Tumosa CS, Mecklenburg MF. 2005. Long-term chemical and physical processes in oil paint films. Stud. Conserv. 50:2143–50
    [Google Scholar]
  93. 93. 
    Oakley LH, Casadio F, Shull KR, Broadbelt LJ. 2018. Modeling the evolution of crosslinked and extractable material in an oil-based paint model system. Angew. Chem. Int. Ed. 57:257413–17
    [Google Scholar]
  94. 94. 
    Mecklenburg MF, Tumosa CS 1991. Mechanical behavior of paintings subjected to changes in temperature and relative humidity. Art in Transit: Studies in the Transport of Paintings MF Mecklenburg 173–216 Washington, DC: Natl. Gallery Art
    [Google Scholar]
  95. 95. 
    Sauvage L, Wei W, Martinez M. 2018. When conservation meets engineering: predicting the damaging effects of vibrations on pastel paintings. Stud. Conserv 63:Suppl.1418–20
    [Google Scholar]
  96. 96. 
    Madden O, Cobb KC, Spencer AM. 2014. Raman spectroscopic characterization of laminated glass and transparent sheet plastics to amplify a history of early aviation ‘glass.’. J. Ram. Spectrosc. 45:11–121215–24
    [Google Scholar]
  97. 97. 
    Smith MJ, Kirk S, Tate J, Cox D 2014. Material characterization and preservation guidance for a collection of prosthetic limbs developed since 1960. Stud. Conserv. 59:4256–67
    [Google Scholar]
  98. 98. 
    Rocha-Santos T, Duarte AC. 2015. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends Anal. Chem. 65:47–53
    [Google Scholar]
  99. 99. 
    Picollo M, Bartolozzi G, Cucci C, Galeotti M, Marchiafava V, Pizzo B. 2014. Comparative study of Fourier transform infrared spectroscopy in transmission, attenuated total reflection, and total reflection modes for the analysis of plastics in the cultural heritage field. Appl. Spectrosc. 68:4389–96
    [Google Scholar]
  100. 100. 
    Saviello D, Toniolo L, Goidanich S, Casadio F. 2016. Non-invasive identification of plastic materials in museum collections with portable FTIR reflectance spectroscopy: reference database and practical applications. Microchem. J. 124:868–77
    [Google Scholar]
  101. 101. 
    Šuštar V, Kolar J, Lusa L, Learner T, Schilling M et al. 2014. Identification of historical polymers using near-infrared spectroscopy. Polym. Degrad. Stab. 107:341–47
    [Google Scholar]
  102. 102. 
    Paris C, Coupry C. 2005. Fourier transform Raman spectroscopic study of the first cellulose-based artificial materials in heritage. J. Ram. Spectrosc. 36:177–82
    [Google Scholar]
  103. 103. 
    Giachet MT, Schilling M, McCormick K, Mazurek J, Richardson E et al. 2014. Assessment of the composition and condition of animation cels made from cellulose acetate. Polym. Degrad. Stab. 107:223–30
    [Google Scholar]
  104. 104. 
    van Oosten T 2011. PUR Facts: Conservation of Polyurethane Amsterdam: Amst. Univ. Press
    [Google Scholar]
  105. 105. 
    Shashoua YR. 2003. Effect of indoor climate on the rate and degradation mechanism of plasticized poly (vinyl chloride). Polym. Degrad. Stab. 81:129–36
    [Google Scholar]
  106. 106. 
    Quye A, Littlejohn D, Pethrick RA, Stewart RA. 2011. Investigation of inherent degradation in cellulose nitrate museum artefacts. Polym. Degrad. Stab. 96:71369–76
    [Google Scholar]
  107. 107. 
    Carter EA, Swarbrick B, Harrison TM, Ronai L. 2020. Rapid identification of cellulose nitrate and cellulose acetate film in historic photograph collections. Heritage Sci 8:151
    [Google Scholar]
  108. 108. 
    Puls J, Wilson SA, Hölter D. 2011. Degradation of cellulose acetate-based materials: a review. J. Polym. Environ. 19:1152–65
    [Google Scholar]
  109. 109. 
    Sutherland K, Schwarzinger C, Price BA. 2012. The application of pyrolysis gas chromatography mass spectrometry for the identification of degraded early plastics in a sculpture by Naum Gabo. J. Anal. Appl. Pyrolysis 94:202–8
    [Google Scholar]
  110. 110. 
    Salvant J, Sutherland K, Barten J, Stringari C, Casadio F, Walton M 2016. Two László Moholy-Nagy paintings on Trolit: insights into the condition of an early cellulose nitrate plastic. e-PS 13:15–22
    [Google Scholar]
  111. 111. 
    Martin JL, Nicholson B, Gabo N 1937. Circle: International Survey of Constructive Art London: Faber and Faber
    [Google Scholar]
  112. 112. 
    Pellizzi E, Lattuati-Derieux A, Lavédrine B, Cheradame H. 2014. Degradation of polyurethane ester foam artifacts: chemical properties, mechanical properties and comparison between accelerated and natural degradation. Polym. Degrad. Stab. 107:255–61
    [Google Scholar]
  113. 113. 
    Pellizzi E, Lattuati-Derieux A, d'Espinose de Lacaillerie J-B, Lavédrine B, Cheradame H. 2016. Consolidation of artificially degraded polyurethane ester foam with aminoalkylalkoxysilanes. Polym. Degrad. Stab. 129:106–13
    [Google Scholar]
  114. 114. 
    Toniolo L, Casadio F, Cariati F. 2001. A key factor in modern protection of historic buildings: the assessment of penetration of water-repellent polymers into porous stone-materials. Ann. Chim. 91:11–12823–32
    [Google Scholar]
  115. 115. 
    van Aubel C, de Groot S, van Keulen H, Snijders E. 2019. Digging into the past of nature carpets. The evaluation of treatments on artworks by Piero Gilardi made from polyurethane ether foam. J. Cult. Heritage 35:271–78
    [Google Scholar]
  116. 116. 
    Curran K, Možir A, Underhill M, Gibson LT, Fearn T, Strlič M. 2014. Cross-infection effect of polymers of historic and heritage significance on the degradation of a cellulose reference test material. Polym. Degrad. Stab. 107:294–306
    [Google Scholar]
  117. 117. 
    Adelstein PZ, Reilly JM, Nishimura DW, Erbland CJ. 1995. Stability of cellulose ester base photographic film: part III—measurement of film degradation. SMPTE J 104:5281–91
    [Google Scholar]
  118. 118. 
    Thiébaut B, Lattuati-Derieux A, Hocevar M, Vilmont L-B. 2007. Application of headspace SPME-GC-MS in characterisation of odorous volatile organic compounds emitted from magnetic tape coatings based on poly(urethane-ester) after natural and artificial ageing. Polym. Testing 26:2243–56
    [Google Scholar]
  119. 119. 
    Ray TR, Choi J, Bandodkar AJ, Krishnan S, Gutruf P et al. 2019. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119:85461–533
    [Google Scholar]
  120. 120. 
    Shashoua Y. 2016. Mesocycles in conserving plastics. Stud. Conserv. 61:Suppl. 2208–13
    [Google Scholar]
  121. 121. 
    Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. 2019. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 58:150–62
    [Google Scholar]
  122. 122. 
    Saviello D, Pouyet E, Toniolo L, Cotte M, Nevin A 2014. Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile-butadiene-styrene model samples and historical objects. Anal. Chim. Acta 843:59–72
    [Google Scholar]
  123. 123. 
    Saviello D, Andena L, Gastaldi D, Toniolo L, Goidanich S. 2018. Multi-analytical approach for the morphological, molecular, and mechanical characterization after photo-oxidation of polymers used in artworks. J. Appl. Polymer Sci. 135:1746194
    [Google Scholar]
  124. 124. 
    Pastorelli G, Trafela T, Taday PF, Portieri A, Lowe D et al. 2012. Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging. Anal. Bioanal. Chem. 403:51405–14
    [Google Scholar]
  125. 125. 
    Comelli D, Toja F, D'Andrea C, Toniolo L, Valentini G et al. 2014. Advanced non-invasive fluorescence spectroscopy and imaging for mapping photo-oxidative degradation in acrylonitrile-butadiene-styrene: a study of model samples and of an object from the 1960s. Polym. Degrad. Stab. 107:356–65
    [Google Scholar]
  126. 126. 
    Gómez M, Reggio D, Lazzari M. 2019. Detection of degradation markers from polymer surfaces by a novel SERS-based strategy. Talanta 191:156–61
    [Google Scholar]
  127. 127. 
    Laganà A, van Oosten T. 2011. Back to transparency, back to life: research into the restoration of broken transparent unsaturated polyester and poly(methyl methacrylate) works of art. ICOM-Committee for Conservation 16th Triennial Meeting, Lisbon, Portugal, 19–23 September 2011 Critério Artes Gráficas; ICOM Comm. Conserv. https://www.icom-cc-publications-online.org/1260/Back-to-transparency-returning-to-life-Research-and-development-of-a-restoration-method-for-transparent-artworks-made-of-Unsaturated-Polyester-UP-and-Polymethylmethacrylate-PMMA-resins
    [Google Scholar]
  128. 128. 
    Bartoletti A, Maor T, Chelazzi D, Bonelli N, Baglioni P et al. 2020. Facilitating the conservation treatment of Eva Hesse's Addendum through practice-based research, including a comparative evaluation of novel cleaning systems. Heritage Sci. 8:135
    [Google Scholar]
  129. 129. 
    van de Braak K, Snijders E, de Groot S, van Keulen H, Krumperman N 2017. The effect of materials and production processes used in selective laser sintering on the durability and appearance of rapid-prototyped art objects. ICOM-CC 18th Triennial Conference Preprints, Copenhagen, 4–8 September 2017 J Bridgland, article 0912 Paris: Intl. Counc. Mus. https://www.icom-cc-publications-online.org/1739/The-effect-of-materials-and-production-processes-used-in-selective-laser-sintering-on-the-durability-and-appearance-of-rapid-prototyped-art-objects
    [Google Scholar]
  130. 130. 
    Shugar AN, Mass JL. 2017. Handheld XRF for Art and Archaeology Leuven, Belgium: Leuven Univ. Press
    [Google Scholar]
  131. 131. 
    Woll AR, Mass J, Bisulca C, Huang R, Bilderback DH et al. 2006. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source. Appl. Phys. A 83:2235–38
    [Google Scholar]
  132. 132. 
    Dik J, Janssens K, Van Der Snickt G, van der Loeff L, Rickers K, Cotte M. 2008. Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal. Chem. 80:166436–42
    [Google Scholar]
  133. 133. 
    Turner NK, Patterson CS, MacLennan DK, Trentelman K. 2019. Visualizing underdrawings in medieval manuscript illuminations with macro-X-ray fluorescence scanning. X-Ray Spectrom 48:4251–61
    [Google Scholar]
  134. 134. 
    Fischer C, Kakoulli I. 2006. Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Stud. Conserv. 51:Suppl. 13–16
    [Google Scholar]
  135. 135. 
    Delaney JK, Walmsley E, Berrie BH, Fletcher CF. 2005. Multispectral imaging of paintings in the infrared to detect and map blue pigments. Scientific Examination of Art: Modern Techniques in Conservation and Analysis120–36 Washington, DC: Natl. Acad. Sci.
    [Google Scholar]
  136. 136. 
    Pouyet E, Rohani N, Katsaggelos AK, Cossairt O, Walton M. 2018. Innovative data reduction and visualization strategy for hyperspectral imaging datasets using t-SNE approach. Pure Appl. Chem. 90:3493–506
    [Google Scholar]
  137. 137. 
    Melit Devassy B, George S 2020. Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE. Forensic Sci. Int. 311:110194
    [Google Scholar]
  138. 138. 
    Doménech-Carbó A, Doménech-Carbó MT. 2018. Electroanalytical techniques in archaeological and art conservation. Pure Appl. Chem. 90:3447–61
    [Google Scholar]
  139. 139. 
    Doménech-Carbó A, Scholz F. 2019. Electrochemical age determinations of metallic specimens—utilization of the corrosion clock. Acc. Chem. Res. 52:2400–406
    [Google Scholar]
  140. 140. 
    Domenech-Carbo MT, Di Turo F, Montoya N, Catalli F, Domenech-Carbo A, De Vito C. 2018. FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes. Sci. Rep. 8:110676
    [Google Scholar]
  141. 141. 
    Cano E, Lafuente D, Bastidas DM. 2010. Use of EIS for the evaluation of the protective properties of coatings for metallic cultural heritage: a review. J. Solid State Electrochem. 14:3381–91
    [Google Scholar]
  142. 142. 
    Cano E, Crespo A, Lafuente D, Ramirez Barat B 2014. A novel gel polymer electrolyte cell for in-situ application of corrosion electrochemical techniques. Electrochem. Commun. 41:16–19
    [Google Scholar]
  143. 143. 
    Cano E, Ramírez Barat B 2018. Electrochemical techniques for in situ corrosion evaluation of cultural heritage. Advanced Characterization Techniques, Diagnostic Tools and Evaluation Methods in Heritage Science DM Bastidas, E Cano 21–32 Cham, Switz: Springer Intl. Publ.
    [Google Scholar]
  144. 144. 
    Letardi P, Salvadori B, Galeotti M, Cagnini A, Porcinai S et al. 2016. An in situ multi-analytical approach in the restoration of bronze artefacts. Microchem. J. 125:151–58
    [Google Scholar]
  145. 145. 
    Prosek T, Kouril M, Dubus M, Taube M, Hubert V et al. 2013. Real-time monitoring of indoor air corrosivity in cultural heritage institutions with metallic electrical resistance sensors. Stud. Conserv. 58:2117–28
    [Google Scholar]
  146. 146. 
    Goidanich S, Gulotta D, Brambilla L, Beltrami R, Fermo P, Toniolo L. 2014. Setup of galvanic sensors for the monitoring of gilded bronzes. Sensors 14:47066–83
    [Google Scholar]
  147. 147. 
    Petiti C, Toniolo L, Gulotta D, Mariani B, Goidanich S. 2020. Effects of cleaning procedures on the long-term corrosion behavior of bronze artifacts of the cultural heritage in outdoor environment. Environ. Sci. Pollut. Res. 27:1213081–94
    [Google Scholar]
  148. 148. 
    Oliver WC, Pharr GM. 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7:61564–83
    [Google Scholar]
  149. 149. 
    Salvant J, Barthel E, Menu M. 2011. Nanoindentation and the micromechanics of Van Gogh oil paints. Appl. Phys. A 104:2509–15
    [Google Scholar]
  150. 150. 
    Sturdy LF, Wright MS, Yee A, Casadio F, Faber KT, Shull KR. 2020. Effects of zinc oxide filler on the curing and mechanical response of alkyd coatings. Polymer 191:122222
    [Google Scholar]
  151. 151. 
    Fujisawa N, Łukomski M. 2019. Nanoindentation near the edge of a viscoelastic solid with a rough surface. Mater. Des. 184:108174
    [Google Scholar]
  152. 152. 
    Tiennot M, Paardekam E, Iannuzzi D, Hermens E. 2020. Mapping the mechanical properties of paintings via nanoindentation: a new approach for cultural heritage studies. Sci. Rep. 10:17924
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-013103
Loading
/content/journals/10.1146/annurev-matsci-080819-013103
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error