1932

Abstract

Shock loading takes materials from ambient conditions to extreme conditions of temperature and nonhydrostatic stress on picosecond timescales. In molecular materials the fast loading results in temporary nonequilibrium conditions with overheated low-frequency modes and relatively cold, high-frequency, intramolecular modes; coupling the shock front with the material's microstructure and defects results in energy localization in hot spots. These processes can conspire to lead to a material response not observed under quasi-static loads. This review focuses on chemical reactions induced by dynamical loading, the understanding of which requires bringing together materials science, shock physics, and condensed matter chemistry. Recent progress in experiments and simulations holds the key to the answer of long-standing grand challenges with implications for the initiation of detonation and life on Earth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-120123
2021-07-26
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080819-120123.html?itemId=/content/journals/10.1146/annurev-matsci-080819-120123&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Levitas VI, Ravelo R 2012. Virtual melting as a new mechanism of stress relaxation under high strain rate loading. PNAS 109:13204–7
    [Google Scholar]
  2. 2. 
    De Carli PS, Milton DJ. 1965. Stishovite: synthesis by shock wave. Science 147:144–45
    [Google Scholar]
  3. 3. 
    Wood MA, Cherukara MJ, Kober EM, Strachan A. 2015. Ultrafast chemistry under nonequilibrium conditions and the shock to deflagration transition at the nanoscale. J. Phys. Chem. C 119:22008–15
    [Google Scholar]
  4. 4. 
    Campbell A, Davis W, Ramsay J, Travis J 1961. Shock initiation of solid explosives. Phys. Fluids 4:511–21
    [Google Scholar]
  5. 5. 
    Fickett W, Davis WC. 2000. Detonation: Theory and Experiment Mineola, NY: Dover
    [Google Scholar]
  6. 6. 
    Miller SL. 1953. A production of amino acids under possible primitive earth conditions. Science 117:528–29
    [Google Scholar]
  7. 7. 
    Bar-Nun A, Bar-Nun N, Bauer S, Sagan C. 1970. Shock synthesis of amino acids in simulated primitive environments. Science 168:470–72
    [Google Scholar]
  8. 8. 
    Barak I, Bar-Nun A. 1975. The mechanisms of amino acids synthesis by high temperature shock-waves. Orig. Life 6:483–506
    [Google Scholar]
  9. 9. 
    Berens PH, Mackay DH, White GM, Wilson KR. 1983. Thermodynamics and quantum corrections from molecular dynamics for liquid water. J. Chem. Phys. 79:2375–89
    [Google Scholar]
  10. 10. 
    Germann TC, Holian BL, Lomdahl PS, Ravelo R. 2000. Orientation dependence in molecular dynamics simulations of shocked single crystals. Phys. Rev. Lett. 84:5351–54
    [Google Scholar]
  11. 11. 
    Dick RD. 1970. Shock wave compression of benzene, carbon disulfide, carbon tetrachloride, and liquid nitrogen. J. Chem. Phys. 52:6021–32
    [Google Scholar]
  12. 12. 
    Dattelbaum DM, Sheffield SA, Coe JD. 2017. Shock-driven chemistry and reactive wave dynamics in liquid benzene. AIP Conf. Proc. 1793:040020
    [Google Scholar]
  13. 13. 
    Banlusan K, Strachan A. 2016. Shockwave energy dissipation in metal–organic framework MOF-5. J. Phys. Chem. C 120:12463–71
    [Google Scholar]
  14. 14. 
    Antillon E, Banlusan K, Strachan A. 2014. Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure-induced endothermic chemical reactions. Model. Simul. Mater. Sci. Eng. 22:025027
    [Google Scholar]
  15. 15. 
    Antillon E, Strachan A. 2015. Mesoscale simulations of shockwave energy dissipation via chemical reactions. J. Chem. Phys. 142:084108
    [Google Scholar]
  16. 16. 
    Strachan A, Holian BL. 2005. Energy exchange between mesoparticles and their internal degrees of freedom. Phys. Rev. Lett. 94:014301
    [Google Scholar]
  17. 17. 
    Lin KH, Holian BL, Germann TC, Strachan A. 2014. Mesodynamics with implicit degrees of freedom. J. Chem. Phys. 141:064107
    [Google Scholar]
  18. 18. 
    Bdzil JB, Stewart DS. 2007. The dynamics of detonation in explosive systems. Annu. Rev. Fluid Mech. 39:263–92
    [Google Scholar]
  19. 19. 
    Zaug JM, Austin RA, Armstrong MR, Crowhurst JC, Goldman N et al. 2018. Ultrafast dynamic response of single-crystal β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine). J. Appl. Phys. 123:205902
    [Google Scholar]
  20. 20. 
    Marshall M, Fernandez-Pañella A, Myers T, Eggert J, Erskine D et al. 2020. Shock hugoniot measurements of single-crystal 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) compressed to 83 GPa. J. Appl. Phys. 127:185901
    [Google Scholar]
  21. 21. 
    Sewell TD, Menikoff R. 2004. Complete equation of state for β-HMX and implications for initiation. AIP Conf. Proc. 706:157–62
    [Google Scholar]
  22. 22. 
    Kroonblawd MP, Sewell TD, Maillet JB. 2016. Characteristics of energy exchange between inter- and intramolecular degrees of freedom in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) with implications for coarse-grained simulations of shock waves in polyatomic molecular crystals. J. Chem. Phys. 144:064501
    [Google Scholar]
  23. 23. 
    Bassett WP, Johnson BP, Neelakantan NK, Suslick KS, Dlott DD. 2017. Shock initiation of explosives: high temperature hot spots explained. Appl. Phys. Lett. 111:061902
    [Google Scholar]
  24. 24. 
    Dlott DD, Fayer MD. 1990. Shocked molecular solids: vibrational up pumping, defect hot spot formation, and the onset of chemistry. J. Chem. Phys. 92:3798–812
    [Google Scholar]
  25. 25. 
    Dlott DD. 1999. Ultrafast spectroscopy of shock waves in molecular materials. Annu. Rev. Phys. Chem. 50:251–78
    [Google Scholar]
  26. 26. 
    Moore DS, McGrane SD, Funk DJ. 2007. Ultrashort laser shock dynamics. Shock Wave Science and Technology Reference Library, Vol. 2: Solids I Y Horie 47–104 Berlin: Springer
    [Google Scholar]
  27. 27. 
    Dlott DD. 2011. New developments in the physical chemistry of shock compression. Annu. Rev. Phys. Chem. 62:575–97
    [Google Scholar]
  28. 28. 
    Swift DC, Niemczura JG, Paisley DL, Johnson RP, Luo SN, Tierney TE IV 2005. Laser-launched flyer plates for shock physics experiments. Rev. Sci. Instrum. 76:093907
    [Google Scholar]
  29. 29. 
    Veysset D, Maznev AA, Pezeril T, Kooi S, Nelson KA. 2016. Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer. Sci. Rep. 6:24
    [Google Scholar]
  30. 30. 
    Lysne P, Hardesty D. 1973. Fundamental equation of state of liquid nitromethane to 100 kbar. J. Chem. Phys. 59:6512–23
    [Google Scholar]
  31. 31. 
    Hardesty D. 1976. An investigation of the shock initiation of liquid nitromethane. Combust. Flame 27:229–51
    [Google Scholar]
  32. 32. 
    Bhowmick M, Nissen EJ, Dlott DD. 2018. Detonation on a tabletop: nitromethane with high time and space resolution. J. Appl. Phys. 124:075901
    [Google Scholar]
  33. 33. 
    Brown KE, McGrane SD, Bolme CA, Moore DS. 2014. Ultrafast chemical reactions in shocked nitromethane probed with dynamic ellipsometry and transient absorption spectroscopy. J. Phys. Chem. A 118:2559–67
    [Google Scholar]
  34. 34. 
    Kritcher AL, Swift DC, Döppner T, Bachmann B, Benedict LX et al. 2020. A measurement of the equation of state of carbon envelopes of white dwarfs. Nature 584:51–54
    [Google Scholar]
  35. 35. 
    Waxer L, Maywar D, Kelly J, Kessler T, Kruschwitz B et al. 2005. High-energy petawatt capability for the OMEGA laser. Opt. Photonics News 16:30–36
    [Google Scholar]
  36. 36. 
    Miller GH, Moses EI, Wuest CR. 2004. The National Ignition Facility: enabling fusion ignition for the 21st century. Nucl. Fusion 44:S228
    [Google Scholar]
  37. 37. 
    Knudson MD. 2012. Megaamps, megagauss, and megabars: Using the Sandia Z Machine to perform extreme material dynamics experiments. AIP Conf. Proc. 1426:35–42
    [Google Scholar]
  38. 38. 
    Millot M, Dubrovinskaia N, Černok A, Blaha S, Dubrovinsky L et al. 2015. Shock compression of stishovite and melting of silica at planetary interior conditions. Science 347:418–20
    [Google Scholar]
  39. 39. 
    Rice M, McQueen RG, Walsh J 1958. Compression of solids by strong shock waves. Solid State Physics, Vol. 6: Advances in Research and Applications F Seitz, D Turnbull 1–63 Amsterdam: Elsevier
    [Google Scholar]
  40. 40. 
    Barker LM. 2000. The development of the VISAR, and its use in shock compression science. AIP Conf. Proc. 505:11–18
    [Google Scholar]
  41. 41. 
    Strand OT, Goosman D, Martinez C, Whitworth T, Kuhlow W. 2006. Compact system for high-speed velocimetry using heterodyne techniques. Rev. Sci. Instrum. 77:083108
    [Google Scholar]
  42. 42. 
    Jensen B, Holtkamp D, Rigg P, Dolan D. 2007. Accuracy limits and window corrections for photon Doppler velocimetry. J. Appl. Phys. 101:013523
    [Google Scholar]
  43. 43. 
    Barker L. 1972. Laser interferometry in shock-wave research. Exp. Mech. 12:209–15
    [Google Scholar]
  44. 44. 
    Forbes JW. 2013. Shock Wave Compression of Condensed Matter: A Primer New York: Springer Sci. Bus. Media
    [Google Scholar]
  45. 45. 
    Walsh JM, Christian RH. 1955. Equation of state of metals from shock wave measurements. Phys. Rev. 97:1544–56
    [Google Scholar]
  46. 46. 
    Bassett WP, Dlott DD. 2017. 32-channel pyrometer with high dynamic range for studies of shocked nanothermites. AIP Conf. Proc. 1793:060012
    [Google Scholar]
  47. 47. 
    Pangilinan G, Gupta Y. 1997. Use of time-resolved Raman scattering to determine temperatures in shocked carbon tetrachloride. J. Appl. Phys. 81:6662–69
    [Google Scholar]
  48. 48. 
    Bassett WP, Johnson BP, Salvati L III, Nissen EJ, Bhowmick M, Dlott DD. 2020. Shock initiation microscopy with high time and space resolution. Propellants Explos. Pyrotech. 45:223–35
    [Google Scholar]
  49. 49. 
    Stavrou E, Bagge-Hansen M, Hammons JA, Nielsen MH, Steele BA et al. 2020. Detonation-induced transformation of graphite to hexagonal diamond. Phys. Rev. B 102:104116
    [Google Scholar]
  50. 50. 
    Moore DS, McGrane SD. 2003. Comparative infrared and Raman spectroscopy of energetic polymers. J. Mol. Struct. 661:561–66
    [Google Scholar]
  51. 51. 
    McGrane S, Moore D, Funk D. 2004. Shock induced reaction observed via ultrafast infrared absorption in poly(vinyl nitrate) films. J. Phys. Chem. A 108:9342–47
    [Google Scholar]
  52. 52. 
    Powell MS, Sakano MN, Cawkwell MJ, Bowlan PR, Brown KE et al. 2020. Insight into the chemistry of PETN under shock compression through ultrafast broadband mid-infrared absorption spectroscopy. J. Phys. Chem. A 124:7031–46
    [Google Scholar]
  53. 53. 
    Gupta Y, Pangilinan G, Winey J, Constantinou CP. 1995. Time-resolved molecular changes in a chemically reacting shocked energetic liquid. Chem. Phys. Lett. 232:341–45
    [Google Scholar]
  54. 54. 
    Dreger Z, Tao Y, Gupta Y. 2013. Polymorphs of 1,1-diamino-2,2-dinitroethene (FOX-7): isothermal compression versus isobaric heating. Chem. Phys. Lett. 584:83–87
    [Google Scholar]
  55. 55. 
    Dang N, Bolme C, Moore D, McGrane S 2012. Shock induced chemistry in liquids studied with ultrafast dynamic ellipsometry and visible transient absorption spectroscopy. J. Phys. Chem. A 116:10301–309
    [Google Scholar]
  56. 56. 
    McGrane SD, Dang NC, Whitley VH, Bolome CA, Moore D 2010. Transient absorption spectroscopy of laser shocked explosives Tech. Rep., Los Alamos Natl. Lab. Los Alamos, NM:
    [Google Scholar]
  57. 57. 
    van der Giessen E, Schultz PA, Bertin N, Bulatov VV, Cai W et al. 2020. Roadmap on multiscale materials modeling. Model. Simul. Mat. Sci. Eng. 28:043001
    [Google Scholar]
  58. 58. 
    Chakraborty D, Muller RP, Dasgupta S, Goddard WA. 2000. The mechanism for unimolecular decomposition of RDX (1,3,5-trinitro-1,3,5-triazine), an ab initio study. J. Phys. Chem. A 104:2261–72
    [Google Scholar]
  59. 59. 
    Schweigert IV. 2015. Ab initio molecular dynamics of high-temperature unimolecular dissociation of gas-phase RDX and its dissociation products. J. Phys. Chem. A 119:2747–59
    [Google Scholar]
  60. 60. 
    Manaa MR, Reed EJ, Fried LE, Galli G, Gygi F 2004. Early chemistry in hot and dense nitromethane: molecular dynamics simulations. J. Chem. Phys. 120:10146–53
    [Google Scholar]
  61. 61. 
    Elert ML, Deaven DM, Brenner DW, White C. 1989. One-dimensional molecular-dynamics simulation of the detonation of nitric oxide. Phys. Rev. B 39:1453(R)
    [Google Scholar]
  62. 62. 
    Brenner DW, Robertson D, Elert M, White C. 1993. Detonations at nanometer resolution using molecular dynamics. Phys. Rev. Lett. 70:2174–77
    [Google Scholar]
  63. 63. 
    Van Duin AC, Dasgupta S, Lorant F, Goddard WA. 2001. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105:9396–409
    [Google Scholar]
  64. 64. 
    Strachan A, van Duin AC, Chakraborty D, Dasgupta S, Goddard WA III 2003. Shock waves in high-energy materials: the initial chemical events in nitramine RDX. Phys. Rev. Lett. 91:098301
    [Google Scholar]
  65. 65. 
    Strachan A, Kober EM, van Duin AC, Oxgaard J, Goddard WA III 2005. Thermal decomposition of RDX from reactive molecular dynamics. J. Chem. Phys. 122:054502
    [Google Scholar]
  66. 66. 
    Mortier WJ, Van Genechten K, Gasteiger J. 1985. Electronegativity equalization: application and parametrization. J. Am. Chem. Soc. 107:829–35
    [Google Scholar]
  67. 67. 
    Bock N, Cawkwell M, Coe J, Krishnapriyan A, Kroonblawd M et al. 2008. LATTE. Software Package https://doi.org/10.5281/zenodo.1297664
    [Crossref] [Google Scholar]
  68. 68. 
    Manaa MR, Fried LE, Melius CF, Elstner M, Frauenheim T. 2002. Decomposition of HMX at extreme conditions: a molecular dynamics simulation. J. Phys. Chem. A 106:9024–29
    [Google Scholar]
  69. 69. 
    Ravelo R, Holian B, Germann T, Lomdahl P. 2004. Constant-stress Hugoniostat method for following the dynamical evolution of shocked matter. Phys. Rev. B 70:014103
    [Google Scholar]
  70. 70. 
    Reed EJ, Fried LE, Joannopoulos J. 2003. A method for tractable dynamical studies of single and double shock compression. Phys. Rev. Lett. 90:235503
    [Google Scholar]
  71. 71. 
    Holian BL, Lomdahl PS. 1998. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science 280:2085–88
    [Google Scholar]
  72. 72. 
    Kadau K, Germann TC, Lomdahl PS, Holian BL. 2005. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals. Phys. Rev. B 72:064120
    [Google Scholar]
  73. 73. 
    Kadau K, Germann TC, Lomdahl PS, Albers RC, Wark JS et al. 2007. Shock waves in polycrystalline iron. Phys. Rev. Lett. 98:135701
    [Google Scholar]
  74. 74. 
    Ravelo R, Germann T, Guerrero O, An Q, Holian B 2013. Shock-induced plasticity in tantalum single crystals: interatomic potentials and large-scale molecular-dynamics simulations. Phys. Rev. B 88:134101
    [Google Scholar]
  75. 75. 
    Bringa EM, Caro A, Wang Y, Victoria M, McNaney JM et al. 2005. Ultrahigh strength in nanocrystalline materials under shock loading. Science 309:1838–41
    [Google Scholar]
  76. 76. 
    Cherukara MJ, Germann TC, Kober EM, Strachan A. 2014. Shock loading of granular Ni/Al composites. Part 1: Mechanics of loading. J. Phys. Chem. C 118:26377–86
    [Google Scholar]
  77. 77. 
    Holian BL, Germann TC, Maillet JB, White CT. 2002. Atomistic mechanism for hot spot initiation. Phys. Rev. Lett. 89:285501
    [Google Scholar]
  78. 78. 
    Zhao S, Germann TC, Strachan A. 2006. Atomistic simulations of shock-induced alloying reactions in Ni/Al nanolaminates. J. Chem. Phys. 125:164707
    [Google Scholar]
  79. 79. 
    Zhao S, Germann TC, Strachan A. 2007. Molecular dynamics simulation of dynamical response of perfect and porous Ni/Al nanolaminates under shock loading. Phys. Rev. B 76:014103
    [Google Scholar]
  80. 80. 
    Cherukara MJ, Germann TC, Kober EM, Strachan A. 2016. Shock loading of granular Ni/Al composites. Part 2: Shock-induced chemistry. J. Phys. Chem. C 120:6804–13
    [Google Scholar]
  81. 81. 
    Heim AJ, Grønbech-Jensen N, Germann TC, Holian BL, Kober EM, Lomdahl PS. 2007. Influence of interatomic bonding potentials on detonation properties. Phys. Rev. E 76:026318
    [Google Scholar]
  82. 82. 
    Maillet JB, Bourasseau E, Desbiens N, Vallverdu G, Stoltz G. 2011. Mesoscopic simulations of shock-to-detonation transition in reactive liquid high explosive. Eur. Phys. Lett. 96:68007
    [Google Scholar]
  83. 83. 
    Cawkwell M, Sewell TD, Zheng L, Thompson DL. 2008. Shock-induced shear bands in an energetic molecular crystal: application of shock-front absorbing boundary conditions to molecular dynamics simulations. Phys. Rev. B 78:014107
    [Google Scholar]
  84. 84. 
    Hamilton BW, Kroonblawd MP, Li C, Strachan A. 2021. A hotspot's better half: non-equilibrium intra-molecular strain in shock physics. J. Phys. Chem. Lett. 12:2756–62
    [Google Scholar]
  85. 85. 
    Maillet JB, Mareschal M, Soulard L, Ravelo R, Lomdahl PS et al. 2000. Uniaxial Hugoniostat: a method for atomistic simulations of shocked materials. Phys. Rev. E 63:016121
    [Google Scholar]
  86. 86. 
    Reed EJ, Fried LE, Manaa MR, Joannopoulos J. 2004. A multi-scale approach to molecular dynamics simulations of shock waves. Tech. Rep., Lawrence Livermore Natl. Lab. Livermore, CA:
    [Google Scholar]
  87. 87. 
    Islam MM, Strachan A. 2017. Decomposition and reaction of polyvinyl nitrate under shock and thermal loading: a ReaxFF reactive molecular dynamics study. J. Phys. Chem. C 121:22452–64
    [Google Scholar]
  88. 88. 
    Shen Y, Jester SB, Qi T, Reed EJ. 2016. Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2. Nat. Mater. 15:60–65
    [Google Scholar]
  89. 89. 
    Dammak H, Chalopin Y, Laroche M, Hayoun M, Greffet JJ. 2009. Quantum thermal bath for molecular dynamics simulation. Phys. Rev. Lett. 103:190601
    [Google Scholar]
  90. 90. 
    Qi T, Reed EJ. 2012. Simulations of shocked methane including self-consistent semiclassical quantum nuclear effects. J. Phys. Chem. A 116:10451–59
    [Google Scholar]
  91. 91. 
    Hamilton BW, Kroonblawd MP, Islam MM, Strachan A. 2019. Sensitivity of the shock initiation threshold of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) to nuclear quantum effects. J. Phys. Chem. C 123:21969–81
    [Google Scholar]
  92. 92. 
    Manaa MR, Reed EJ, Fried LE, Goldman N. 2009. Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives. J. Am. Chem. Soc. 131:5483–87
    [Google Scholar]
  93. 93. 
    Reed EJ, Manaa MR, Fried LE, Glaesemann KR, Joannopoulos J. 2008. A transient semimetallic layer in detonating nitromethane. Nat. Phys. 4:72–76
    [Google Scholar]
  94. 94. 
    Reed EJ, Rodriguez AW, Manaa MR, Fried LE, Tarver CM. 2012. Ultrafast detonation of hydrazoic acid (HN3). Phys. Rev. Lett. 109:038301
    [Google Scholar]
  95. 95. 
    Bowlan P, Powell M, Perriot R, Martinez E, Kober EM et al. 2019. Probing ultrafast shock-induced chemistry in liquids using broad-band mid-infrared absorption spectroscopy. J. Chem. Phys. 150:204503
    [Google Scholar]
  96. 96. 
    Islam MM, Strachan A. 2019. Reactive molecular dynamics simulations to investigate the shock response of liquid nitromethane. J. Phys. Chem. C 123:2613–26
    [Google Scholar]
  97. 97. 
    Goldman N, Reed EJ, Fried LE, Kuo IFW, Maiti A. 2010. Synthesis of glycine-containing complexes in impacts of comets on early Earth. Nat. Chem. 2:949–54
    [Google Scholar]
  98. 98. 
    Martins Z, Price MC, Goldman N, Sephton MA, Burchell MJ. 2013. Shock synthesis of amino acids from impacting cometary and icy planet surface analogues. Nat. Geosci. 6:1045–49
    [Google Scholar]
  99. 99. 
    Kroonblawd MP, Lindsey RK, Goldman N. 2019. Synthesis of functionalized nitrogen-containing polycyclic aromatic hydrocarbons and other prebiotic compounds in impacting glycine solutions. Chem. Sci. 10:6091–98
    [Google Scholar]
  100. 100. 
    Yoo P, Sakano MN, Desai S, Islam MM, Liao P, Strachan A. 2021. Neural network reactive force field for C, H, N, and O systems. npj Comput. Mater. 7:9
    [Google Scholar]
  101. 101. 
    Handley C, Lambourn B, Whitworth N, James H, Belfield W. 2018. Understanding the shock and detonation response of high explosives at the continuum and meso scales. Appl. Phys. Rev. 5:011303
    [Google Scholar]
  102. 102. 
    Davis WC. 1981. High explosives: the interaction of chemistry and mechanics. Los Alamos Sci. 2:48–75
    [Google Scholar]
  103. 103. 
    Jaramillo E, Sewell TD, Strachan A. 2007. Atomic-level view of inelastic deformation in a shock loaded molecular crystal. Phys. Rev. B 76:064112
    [Google Scholar]
  104. 104. 
    Dienes J, Zuo Q, Kershner J. 2006. Impact initiation of explosives and propellants via statistical crack mechanics. J. Mech. Phys. Solids 54:1237–75
    [Google Scholar]
  105. 105. 
    Grilli N, Duarte CA, Koslowski M. 2018. Dynamic fracture and hot-spot modeling in energetic composites. J. Appl. Phys. 123:065101
    [Google Scholar]
  106. 106. 
    Campbell A, Davis W, Travis J. 1961. Shock initiation of detonation in liquid explosives. Phys. Fluids 4:498–510
    [Google Scholar]
  107. 107. 
    Tarver CM, Chidester SK, Nichols AL. 1996. Critical conditions for impact- and shock-induced hot spots in solid explosives. J. Phys. Chem. 100:5794–99
    [Google Scholar]
  108. 108. 
    Kroonblawd MP, Fried LE. 2020. High explosive ignition through chemically activated nanoscale shear bands. Phys. Rev. Lett. 124:206002
    [Google Scholar]
  109. 109. 
    Campbell A, Travis J. 1985. Shock desensitization of PBX-9404 and composition B-3. Tech. Rep., Los Alamos Natl. Lab. Los Alamos, NM:
    [Google Scholar]
  110. 110. 
    Dattelbaum D, Sheffield S, Stahl D, Dattelbaum A. 2009. Influence of hot spot features on the shock initiation of heterogeneous nitromethane. AIP Conf. Proc. 1195:263–66
    [Google Scholar]
  111. 111. 
    Carroll M, Holt A. 1972. Static and dynamic pore-collapse relations for ductile porous materials. J. Appl. Phys. 43:1626–36
    [Google Scholar]
  112. 112. 
    Mader CL. 1965. Initiation of detonation by the interaction of shocks with density discontinuities. Phys. Fluids 8:1811–16
    [Google Scholar]
  113. 113. 
    Bassett WP, Dlott DD. 2016. High dynamic range emission measurements of shocked energetic materials: Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). J. Appl. Phys. 119:225103
    [Google Scholar]
  114. 114. 
    Shan TR, Wixom RR, Thompson AP. 2016. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive. Phys. Rev. B 94:054308
    [Google Scholar]
  115. 115. 
    Wood MA, Kittell DE, Yarrington CD, Thompson AP. 2018. Multiscale modeling of shock wave localization in porous energetic material. Phys. Rev. B 97:014109
    [Google Scholar]
  116. 116. 
    Li C, Hamilton BW, Strachan A. 2020. Hotspot formation due to shock-induced pore collapse in 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX): role of pore shape and shock strength in collapse mechanism and temperature. J. Appl. Phys. 127:175902
    [Google Scholar]
  117. 117. 
    Bassett WP, Johnson BP, Dlott DD. 2019. Dynamic absorption in optical pyrometry of hot spots in plastic-bonded triaminotrinitrobenzene. Appl. Phys. Lett. 114:194101
    [Google Scholar]
  118. 118. 
    Herring SD, Germann TC, Grønbech-Jensen N. 2010. Effects of void size, density, and arrangement on deflagration and detonation sensitivity of a reactive empirical bond order high explosive. Phys. Rev. B 82:214108
    [Google Scholar]
  119. 119. 
    Esposito AP, Farber DL, Reaugh JE, Zaug JM. 2003. Reaction propagation rates in HMX at high pressure. Propellants Explos. Pyrotech. 28:83–88
    [Google Scholar]
  120. 120. 
    Sakano M, Hamilton B, Islam MM, Strachan A. 2018. Role of molecular disorder on the reactivity of RDX. J. Phys. Chem. C 122:27032–43
    [Google Scholar]
  121. 121. 
    Islam MM, Strachan A. 2020. Role of dynamical compressive and shear loading on hotspot criticality in RDX via reactive molecular dynamics. J. Appl. Phys. 128:065101
    [Google Scholar]
  122. 122. 
    Steele BA, Goldman N, Kuo IFW, Kroonblawd MP. 2020. Mechanochemical synthesis of glycine oligomers in a virtual rotational diamond anvil cell. Chem. Sci. 11:7760–71
    [Google Scholar]
  123. 123. 
    Zhou T, Song H, Liu Y, Huang F. 2014. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation. Phys. Chem. Chem. Phys. 16:13914–31
    [Google Scholar]
  124. 124. 
    Joshi K, Losada M, Chaudhuri S. 2016. Intermolecular energy transfer dynamics at a hot-spot interface in RDX crystals. J. Phys. Chem. A 120:477–89
    [Google Scholar]
  125. 125. 
    Kerschen NE, Sorensen CJ, Guo Z, Mares JO, Fezzaa K et al. 2019. X-ray phase contrast imaging of the impact of a single HMX particle in a polymeric matrix. Propellants Explos. Pyrotech. 44:447–54
    [Google Scholar]
  126. 126. 
    Duarte CA, Hamed A, Drake JD, Sorensen CJ, Son SF et al. 2020. Void collapse in shocked-HMX single crystals: simulations and experiments. Propellants Explos. Pyrotech. 45:243–53
    [Google Scholar]
  127. 127. 
    Austin R, Barton N, Howard W, Fried L 2014. Modeling pore collapse and chemical reactions in shock-loaded HMX crystals. J. Phys. Conf. Ser. 500:052002
    [Google Scholar]
  128. 128. 
    Boulard B, Kieffer J, Phifer C, Angell C. 1992. Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation. J. Non-Cryst. Solids 140:350–58
    [Google Scholar]
  129. 129. 
    Marsh SP 1980. LASL Shock Hugoniot Data, Vol. 5 Berkeley: Univ. Calif. Press
    [Google Scholar]
  130. 130. 
    Popolato TR, Gibbs A 1980. LASL Explosive Property Data. Los Angeles: Univ. Calif. Press
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-120123
Loading
/content/journals/10.1146/annurev-matsci-080819-120123
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error