1932

Abstract

Herein, we critically evaluate computational and experimental studies in the emerging field of high-entropy ultra-high-temperature ceramics. High-entropy ultra-high-temperature ceramics are candidates for use in extreme environments that include temperatures over 2,000°C, heat fluxes of hundreds of watts per square centimeter, or irradiation from neutrons with energies of several megaelectron volts. Computational studies have been used to predict the ability to synthesize stable high-entropy materials as well as the resulting properties but face challenges such as the number and complexity of unique bonding environments that are possible for these compositionally complex compounds. Experimental studies have synthesized and densified a large number of different high-entropy borides and carbides, but no systematic studies of composition-structure-property relationships have been completed. Overall, this emerging field presents a number of exciting research challenges and numerous opportunities for future studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-121217
2021-07-26
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080819-121217.html?itemId=/content/journals/10.1146/annurev-matsci-080819-121217&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Wuchina EJ, Opila E, Opeka MM, Fahrenholtz WG, Talmy IG. 2007. UHTCs: ultra-high temperature ceramic materials for extreme environment applications. Interface 16:30–36
    [Google Scholar]
  2. 2. 
    Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA. 2007. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90:1347–64
    [Google Scholar]
  3. 3. 
    Fahrenholtz WG 2014. A historical perspective on research related to ultra-high temperature ceramics. Ultra-High Temperature Ceramics: Materials For Extreme Environment Applications WG Fahrenholtz, EJ Wuchina, WE Lee, Y Zhou 6–32 New York: Wiley
    [Google Scholar]
  4. 4. 
    Cantor B, Chang ITH, Knight P, Vincent AJB. 2004. Microstructural development in equiatomic multicomponent alloys. Mater Sci. Eng. A 375–77:213–18
    [Google Scholar]
  5. 5. 
    Yeh J-W, Chen S-K, Lin S-J, Gan J-Y, Chin T-S et al. 2004. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6:299–303
    [Google Scholar]
  6. 6. 
    Tsai M-H, Yeh J-W. 2014. High-entropy alloys: a critical review. Mater. Res. Lett. 2:107–23
    [Google Scholar]
  7. 7. 
    Senkov ON, Wilks GB, Scott JM, Miracle DB. 2011. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19:698–706
    [Google Scholar]
  8. 8. 
    Otto F, Yang Y, Bei H, George EP. 2013. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater 61:2628–38
    [Google Scholar]
  9. 9. 
    Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC et al. 2016. Entropy-stabilized oxides. Nat. Commun. 6:8485
    [Google Scholar]
  10. 10. 
    Yan X, Constantin L, Lu Y, Sivain J-F, Nastasi M, Cui B. 2018. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high entropy ceramics with low thermal conductivity. J. Am. Ceram. Soc. 101:4486–91
    [Google Scholar]
  11. 11. 
    Han X, Girman V, Sedlak R, Dusza J, Castle EG et al. 2020. Improved creep resistance of high entropy transition metal carbides. J. Eur. Ceram. Soc. 40:2709–15
    [Google Scholar]
  12. 12. 
    Rak Z, Maria JP, Brenner DW. 2018. Evidence for Jahn-Teller compression in the (Mg,Co,Ni,Cu,Ni)O entropy-stabilized oxide: a DFT study. Mater. Lett. 217:300–3
    [Google Scholar]
  13. 13. 
    Berardan D, Meena AK, Fanger S, Herero C, Dragoe N. 2017. Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys Comp. 704:693–700
    [Google Scholar]
  14. 14. 
    Pu Y, Zhang Q, Li R, Chen M, Du X, Zhou S. 2019. Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic. Appl. Phys. Lett. 115:223901
    [Google Scholar]
  15. 15. 
    Liu Y, Jia D, Zhou Y, Zhou Y, Zhao J et al. 2020. Zn0.1Ca0.1Sr0.4Ba0.4ZrO3: a non-equimolar multicomponent perovskite with low thermal conductivity. J. Eur. Ceram. Soc. 40:6272–77
    [Google Scholar]
  16. 16. 
    Qin Y, Liu J-X, Li F, Wei X, Wu H, Zhang G-J. 2019. A high entropy silicide by reactive spark plasma sintering. J. Adv. Ceram. 8:148–52
    [Google Scholar]
  17. 17. 
    Miracle DB, Senkov ON. 2017. A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511
    [Google Scholar]
  18. 18. 
    Oses C, Toher C, Curtarolo S. 2020. High-entropy ceramics. Nat. Rev. Mater. 5:295–309
    [Google Scholar]
  19. 19. 
    Zhang RZ, Reece MJ. 2019. Review of high entropy ceramics: design, synthesis, structure and properties. J. Mater. Chem. A 7:22148–62
    [Google Scholar]
  20. 20. 
    Gurao NP, Biswas K. 2020. High-entropy materials: critical review and way forward. Curr. Sci. 118:1520–39
    [Google Scholar]
  21. 21. 
    Berardan D, Franger S, Dragoe D, Meena AK, Dragoe N. 2016. Colossal dielectric constant in high entropy oxides. Phys. Status Solidi Rapid Res. Lett. 10:328–33
    [Google Scholar]
  22. 22. 
    Berardan D, Franger S, Meena AK, Dragoe N. 2016. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4:9536–41
    [Google Scholar]
  23. 23. 
    Gild J, Zhang YY, Harrington TJ, Jiang SC, Hu T et al. 2016. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6:37946
    [Google Scholar]
  24. 24. 
    Ye B, Wen T, Nguyen MC, Hao L, Wang C-Z, Chu Y. 2019. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics. Acta Mater 170:15–23
    [Google Scholar]
  25. 25. 
    Jiang S, Shao L, Fan T-W, Duan J-M, Chen X-T, Tang B-Y. 2020. Elastic and thermodynamic properties of high entropy carbide (HfTaZrTi)C and (HfTaZrNb)C from ab initio investigation. Ceram. Int. 46:15104–12
    [Google Scholar]
  26. 26. 
    Zhang Q, Zhang J, Li N, Chen W. 2019. Understanding the electronic structure, mechanical properties, and thermodynamic stability of (TiZrHfNbTa)C combined experiments and first-principles simulation. J. Appl. Phys. 126:025101
    [Google Scholar]
  27. 27. 
    Sarker P, Harrington T, Toher C, Oses C, Samiee M et al. 2018. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9:4980
    [Google Scholar]
  28. 28. 
    Kaufmann K, Maryanovsky D, Mellor WM, Zhu C, Rosengarten AS et al. 2020. Discovery of high-entropy ceramics via machine learning. NPJ Comput. Mater. 6:42
    [Google Scholar]
  29. 29. 
    Toher C, Oses C, Hicks D, Curtarolo S. 2019. Unavoidable disorder and entropy in multi-component systems. NPJ Comput. Mater. 5:69
    [Google Scholar]
  30. 30. 
    Friedrich R, Usanmaz D, Oses C, Supka A, Fornari M et al. 2019. Coordination corrected ab initio formation enthalpies. NPJ Comput. Mater. 5:59
    [Google Scholar]
  31. 31. 
    Lu H, Zhao C, Wang H, Liu X, Yu R, Song X 2019. Hardening tungsten carbide by alloying elements with high work function. Acta Crystallogr. Sect. B 75:994–1002
    [Google Scholar]
  32. 32. 
    Kundu A, Ma J, Carrete J, Madsen GKH, Li W. 2020. Anomalously large lattice thermal conductivity in metallic tungsten carbide and its origin in the electronic structure. Mater. Today Phys. 13:100214
    [Google Scholar]
  33. 33. 
    Holleck H. 1986. Material selection for hard coatings. J. Vac. Sci. Technol. A 4:2661–69
    [Google Scholar]
  34. 34. 
    Jhi SH, Ihm J, Loule SG, Cohen ML. 1999. Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 399:132–34
    [Google Scholar]
  35. 35. 
    Balasubramanian K, Khare SV, Gall D. 2018. Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides. Acta Mater 152:175–85
    [Google Scholar]
  36. 36. 
    Harrington TJ, Gild J, Sarker P, Toher C, Rost CM et al. 2019. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater 166:271–80
    [Google Scholar]
  37. 37. 
    Lim M. 2020. Understanding the thermal, structural, and electrical properties of high entropy oxides and carbides, using computational modeling PhD Diss., N.C. State Univ. Raleigh, NC:
    [Google Scholar]
  38. 38. 
    Chen XQ, Fu CL, Krčmar M, Painter GS. 2008. Electronic and structural origin of ultraincompressibility of 5d transition-metal diborides MB2 (M = W, Re, Os). Phys. Rev. Lett. 100:196403
    [Google Scholar]
  39. 39. 
    Wang N, Fu Z, Legut D, Wei B, Germann TC, Zhang R. 2019. Designing ultrastrong 5d transition metal diborides with excellent stability for harsh service environments. Phys. Chem. Chem. Phys. 21:16095–107
    [Google Scholar]
  40. 40. 
    Braun JL, Rost CM, Lim M, Giri A, Olson DH et al. 2018. Charge induced disorder controls the thermal conductivity of entropy stabilized oxides. Adv. Mater. 30:1805004
    [Google Scholar]
  41. 41. 
    Lim M, Rak Z, Braun JL, Rost CM, Kotsonis GN et al. 2019. Influence of mass and charge disorder on the phonon thermal conductivity of entropy stabilized oxides determined by molecular dynamics simulations. J. Appl. Phys. 125:055105
    [Google Scholar]
  42. 42. 
    Rak Z, Rost CM, Lim M, Sarker P, Toher C et al. 2016. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: results from density functional theory calculations. J. Appl. Phys. 120:095105
    [Google Scholar]
  43. 43. 
    Dai FZ, Wen B, Sun Y, Xiang H, Zhou Y. 2020. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential. J. Mater. Sci. Technol. 43:168–74
    [Google Scholar]
  44. 44. 
    Rost CM, Borman T, Hossain MD, Lim M, Quiambo-Tomko KF et al. 2020. Electron and phonon thermal conductivity in high entropy carbides with variable carbon content. Acta Mater 196:231–39
    [Google Scholar]
  45. 45. 
    Feng L, Lee SH, Kim HN. 2017. Effects of high-energy ball milling and reactive spark plasma sintering on the densification of HfC-SiC composites. J. Eur. Ceram. Soc. 37:1891–98
    [Google Scholar]
  46. 46. 
    Zhang Y, Guo WM, Jiang ZB, Zhu QQ, Sun SK et al. 2019. Dense high-entropy boride ceramics with ultra-high hardness. Scr. Mater. 164:135–39
    [Google Scholar]
  47. 47. 
    Liu D, Wen TQ, Ye BL, Chu YH. 2019. Synthesis of superfine high-entropy metal diboride powders. Scr. Mater. 167:110–14
    [Google Scholar]
  48. 48. 
    Wen TQ, Ning SS, Liu D, Ye BL, Liu HH, Chu YH. 2019. Synthesis and characterization of the ternary metal diboride solid-solution nanopowders. J. Am. Ceram. Soc. 102:4956–62
    [Google Scholar]
  49. 49. 
    Monteverde F, Saraga F. 2020. Entropy stabilized single-phase (Hf,Nb,Ta,Ti,Zr)B2 solid solution powders obtained via carbo/boro-thermal reduction. J. Alloys Compd. 824:153930
    [Google Scholar]
  50. 50. 
    Shen XQ, Liu JX, Li F, Zhang GJ. 2019. Preparation and characterization of diboride-based high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC particulate composites. Ceram. Int. 45:1824508–14
    [Google Scholar]
  51. 51. 
    Gild J, Wright A, Quiambao-Tomko K, Qin M, Tomko JA et al. 2020. Thermal conductivity and hardness of three single-phase high-entropy metal diborides fabricated by borocarbothermal reduction and spark plasma sintering. Ceram. Int. 46:6906–13
    [Google Scholar]
  52. 52. 
    Gu JF, Zou J, Sun SK, Wang H, Yu SY et al. 2019. Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach. Sci. China Mater. 62:1898–909
    [Google Scholar]
  53. 53. 
    Feng L, Fahrenholtz WG, Hilmas GE. 2020. Two-step synthesis process for high-entropy diboride powders. J. Am. Ceram. Soc. 103:2724–30
    [Google Scholar]
  54. 54. 
    Tallarita G, Licheri R, Garroni S, Orru R, Cao G. 2019. Novel processing route for the fabrication of bulk high-entropy metal diborides. Scr. Mater. 158:100–4
    [Google Scholar]
  55. 55. 
    Tallarita G, Licheri R, Garroni S, Barbarossa S, Orru R, Cao G. 2020. High-entropy transition metal diborides by reactive and non-reactive spark plasma sintering: a comparative investigation. J. Eur. Ceram. Soc. 40:942–52
    [Google Scholar]
  56. 56. 
    Failla S, Galizia P, Fu S, Grasso S, Sciti D. 2020. Formation of high entropy metal diborides using arc-melting and combinatorial approach to study quinary and quaternary solid solutions. J. Eur. Ceram. Soc. 40:588–93
    [Google Scholar]
  57. 57. 
    Baik S, Becher PF. 1987. Effect of oxygen contamination on densification of TiB2. J. Am. Ceram. Soc. 70:8527–30
    [Google Scholar]
  58. 58. 
    Fahrenholtz WG, Hilmas GE, Zhang SC, Zhu S. 2008. Pressureless sintering of zirconium diboride: particle size and additive effects. J. Am. Ceram. Soc. 91:51398–404
    [Google Scholar]
  59. 59. 
    Sciti D, Guicciardi S, Nygren M. 2008. Densification and mechanical behavior of HfC and HfB2 fabricated by spark plasma sintering. J. Am. Ceram. Soc. 91:51433–40
    [Google Scholar]
  60. 60. 
    Wang HL, Lee SL, Feng L. 2014. The processing and properties of (Zr, Hf)B2–SiC nanostructured composites. J. Eur. Ceram. Soc. 34:154105–9
    [Google Scholar]
  61. 61. 
    Zamora V, Ortiz AL, Guiberteau F, Nygren M. 2012. Crystal-size dependence of the spark-plasma-sintering kinetics of ZrB2 ultra-high-temperature ceramics. J. Eur. Ceram. Soc. 32:2271–76
    [Google Scholar]
  62. 62. 
    Zhang Y, Jiang ZB, Sun SK, Guo WM, Chen QS et al. 2019. Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction. J. Eur. Ceram. Soc. 39:3920–24
    [Google Scholar]
  63. 63. 
    Feng L, Fahrenholtz WG, Hilmas GE. 2020. Processing of dense high-entropy boride ceramics. J. Eur. Ceram. Soc. 40:123815–23
    [Google Scholar]
  64. 64. 
    Cologna M, Rashkova B, Raj R 2010. Flash sintering of nanograin zirconia in <5 s at 850°C. J. Am. Ceram. Soc. 93:113556–59
    [Google Scholar]
  65. 65. 
    Yu M, Grasso S, Mckinnon R, Saunders T, Reece MJ. 2017. Review of flash sintering: materials, mechanisms and modelling. Adv. Appl. Ceram. 116:124–60
    [Google Scholar]
  66. 66. 
    Gild J, Kaufmann K, Vecchio KS, Luo J. 2019. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics. Scr. Mater. 170:106–10
    [Google Scholar]
  67. 67. 
    Chen H, Xiang HM, Dai FZ, Liu JC, Zhou YC. 2019. Porous high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: a novel strategy towards making ultrahigh temperature ceramics thermal insulating. J. Mater. Sci. Technol. 35:2404–8
    [Google Scholar]
  68. 68. 
    Feng L, Fahrenholtz WG, Hilmas GE, Monteverde F. 2021. Effect of Nb content on the phase composition, densification, microstructure, and mechanical properties of high-entropy boride ceramics. J. Eur. Ceram. Soc. 41:92–100
    [Google Scholar]
  69. 69. 
    Monteverde F, Saraga F, Gaboardi M. 2020. Compositional disorder and sintering of entropy stabilized (Hf,Nb,Ta,Ti,Zr)B2 solid solution powders. J. Eur. Ceram. Soc. 40:3807–14
    [Google Scholar]
  70. 70. 
    Zhang Y, Sun SK, Zhang W, You Y, Guo WM et al. 2020. Improved densification and hardness of high-entropy diboride ceramics from fine powders synthesized via borothermal reduction process. Ceram. Int. 46:14299–303
    [Google Scholar]
  71. 71. 
    Ye YF, Wang Q, Lu J, Liu CT, Yang Y. 2016. High-entropy alloy: challenges and prospects. Mater. Today 19:349–62
    [Google Scholar]
  72. 72. 
    Senkov ON, Senkova SV, Woodward C, Miracle DB. 2013. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: microstructure and phase analysis. Acta Mater 61:1545–57
    [Google Scholar]
  73. 73. 
    Chen XQ, Niu H, Li D, Li Y 2011. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19:1275–81
    [Google Scholar]
  74. 74. 
    Teter DM. 1998. Computational alchemy: the search for new superhard materials. MRS Bull 23:22–27
    [Google Scholar]
  75. 75. 
    Tian Y, Xu B, Zhao Z. 2012. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33:93–106
    [Google Scholar]
  76. 76. 
    Shaffer PTB, Jun CK. 1972. The elastic modulus of dense polycrystalline silicon carbide. Mater. Res. Bull. 7:63–69
    [Google Scholar]
  77. 77. 
    Wang YP, Gan GY, Wang W, Yang Y, Tang BY 2018. Ab initio prediction of mechanical and electronic properties of ultrahigh temperature high-entropy ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr). Phys. Status Solidi B 255:1800011
    [Google Scholar]
  78. 78. 
    Backman L, Gild J, Luo J, Opila EJ. 2020. Part I: theoretical predictions of preferential oxidation in refractory high entropy materials. Acta Mater 197:20–27
    [Google Scholar]
  79. 79. 
    Backman L, Gild J, Luo J, Opila EJ. 2020. Part II: experimental verification of computationally predicted preferential oxidation in refractory high entropy ultra-high temperature ceramics. Acta Mater 197:81–90
    [Google Scholar]
  80. 80. 
    Zhou JY, Zhang JY, Zhang F, Niu B, Lei LW, Wang WM. 2018. High-entropy carbide: a novel class of multicomponent ceramics. Ceram. Int. 44:1722014–18
    [Google Scholar]
  81. 81. 
    Chicardi E, Garcia-Garrido C, Gotor FJ. 2019. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route. Ceram. Int. 45:1721858–63
    [Google Scholar]
  82. 82. 
    Feng L, Fahrenholtz WG, Hilmas GE, Zhou Y. 2019. Synthesis of single-phase high-entropy carbide powders. Scr. Mater. 162:90–93
    [Google Scholar]
  83. 83. 
    Li F, Lu Y, Wang XG, Bao WC, Liu JX et al. 2019. Liquid precursor-derived high-entropy carbide nanopowders. Ceram. Int. 45:22437–41
    [Google Scholar]
  84. 84. 
    Castle EG, Csanadi T, Grasso S, Dusza J, Reece M 2018. Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep. 8:8609–20
    [Google Scholar]
  85. 85. 
    Ye BL, Wen TQ, Huang KH, Wang CZ, Chu YH. 2019. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic. J. Am. Ceram. Soc. 102:4344–52
    [Google Scholar]
  86. 86. 
    Chen H, Xiang HM, Dai FZ, Liu JC, Lei YM et al. 2019. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. J. Mater. Sci. Technol. 35:1700–5
    [Google Scholar]
  87. 87. 
    Wei XF, Liu JX, Li F, Qin Y, Liang YC, Zhang GJ. 2019. High entropy carbide ceramics from different starting materials. J. Eur. Ceram. Soc. 39:2989–94
    [Google Scholar]
  88. 88. 
    Wang K, Chen L, Xu CG, Zhang W, Liu ZG et al. 2019. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. J. Mater. Sci. Technol. 39:99–105
    [Google Scholar]
  89. 89. 
    Wei XF, Qin Y, Liu JX, Li F, Liang YC, Zhang GJ. 2020. Gradient microstructure development and grain growth inhibition in high-entropy carbide ceramics prepared by reactive spark plasma sintering. J. Eur. Ceram. Soc. 40:935–41
    [Google Scholar]
  90. 90. 
    Feng L, Fahrenholtz WG, Hilmas GE. 2019. Low-temperature sintering of single-phase, high-entropy carbide ceramics. J. Am. Ceram. Soc. 102:7217–24
    [Google Scholar]
  91. 91. 
    Smith CJ, Yu XX, Guo QY, Weinberger CR, Thompson GB. 2018. Phase, hardness, and deformation slip behavior in mixed HfxTa1-xC. Acta Mater 145:142–53
    [Google Scholar]
  92. 92. 
    Wang F, Zhang X, Yan XL, Lu YF, Nastasi M et al. 2020. The effect of submicron grain size on thermal stability and mechanical properties of high-entropy carbides ceramics. J. Am. Ceram. Soc. 103:4463–72
    [Google Scholar]
  93. 93. 
    Feng L, Chen WT, Fahrenholtz WG, Hilmas GE. 2020. Strength of single-phase high-entropy carbide ceramics up to 2300°C. J. Am. Ceram. Soc. 104:419–27
    [Google Scholar]
  94. 94. 
    Ye BL, Wen TQ, Liu D, Chu YH. 2019. Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073–1473 K in air. Corros. Sci. 153:327–32
    [Google Scholar]
  95. 95. 
    Ye BL, Wen TQ, Chu YH. 2020. High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air. J. Am. Ceram. Soc. 103:500–7
    [Google Scholar]
  96. 96. 
    Tan YQ, Chen C, Li SQ, Han XC, Xue JX et al. 2020. Oxidation behaviors of high-entropy transition metal carbides in 1200°C water vapor. J. Alloys Comp. 816:152523
    [Google Scholar]
  97. 97. 
    Wang HX, Cao YJ, Liu W, Wang YG. 2020. Oxidation behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C-xSiC ceramics at high temperature. Ceram. Int. 46:11160–68
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-121217
Loading
/content/journals/10.1146/annurev-matsci-080819-121217
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error