1932

Abstract

Processing science for nanocrystalline metals has largely focused on far-from-equilibrium methods that can generate many grain boundaries with excess defect energy. Conversely, the science of stabilizing nanocrystalline alloys has largely focused on the lowering of that excess defect energy through grain boundary segregation, bringing nanocrystalline structures closer to equilibrium. With increasing technological adoption of stabilized nanocrystalline alloys, there is a substantial need for research at the intersection of these two fields. This review lays out the basic thermodynamic issues of the two subfields and surveys the literature on the most common processing methods, including severe plastic deformation, ball milling, physical vapor deposition, and electrodeposition. We provide an overview of studies that have examined grain boundary segregation through each of these methods and identify general themes. We conclude that there is substantial scope for more systematic work at the intersection of these fields to understand how nonequilibrium processing affects grain boundary segregation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-121823
2021-07-26
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080819-121823.html?itemId=/content/journals/10.1146/annurev-matsci-080819-121823&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Tian L. 2017. A short review on mechanical behavior of nanocrystalline materials. Int. J. Metall. Met. Phys. 2:1008 https://doi.org/10.35840/2631-5076/9208
    [Crossref] [Google Scholar]
  2. 2. 
    Gupta RK, Birbilis N. 2015. The influence of nanocrystalline structure and processing route on corrosion of stainless steel: a review. Corros. Sci. 92:1–15 https://doi.org/10.1016/j.corsci.2014.11.041
    [Crossref] [Google Scholar]
  3. 3. 
    Abdeen DH, El Hachach M, Koc M, Atieh MA. 2019. A review on the corrosion behaviour of nanocoatings on metallic substrates. Materials 12:2210 https://doi.org/10.3390/ma12020210
    [Crossref] [Google Scholar]
  4. 4. 
    Kumar KS, Van Swygenhoven H, Suresh S. 2003. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:195743–74 https://doi.org/10.1016/j.actamat.2003.08.032
    [Crossref] [Google Scholar]
  5. 5. 
    Gleiter H. 2000. Nanostructured materials: basic concepts and microstructure. Acta Mater 48:11–29 https://doi.org/10.1016/S1359-6454(99)00285-2
    [Crossref] [Google Scholar]
  6. 6. 
    Meyers MA, Mishra A, Benson DJJ. 2006. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51:4427–556 https://doi.org/10.1016/j.pmatsci.2005.08.003
    [Crossref] [Google Scholar]
  7. 7. 
    Schuh CA, Lu K. 2021. Stability of nanocrystalline metals: the role of grain boundary chemistry and structure. MRS Bull 46:22535 https://doi.org/10.1557/s43577-021-00055-x
    [Crossref] [Google Scholar]
  8. 8. 
    Li FC, Liu T, Zhang JY, Shuang S, Wang Q et al. 2019. Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Mater. Today Adv. 4:100027 https://doi.org/10.1016/j.mtadv.2019.100027
    [Crossref] [Google Scholar]
  9. 9. 
    Ames M, Markmann J, Karos R, Michels A, Tschöpe A, Birringer R. 2008. Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater 56:164255–66 https://doi.org/10.1016/j.actamat.2008.04.051
    [Crossref] [Google Scholar]
  10. 10. 
    Millett PC, Selvam RP, Saxena A. 2007. Stabilizing nanocrystalline materials with dopants. Acta Mater 55:72329–36 https://doi.org/10.1016/j.actamat.2006.11.028
    [Crossref] [Google Scholar]
  11. 11. 
    Gertsman VY, Birringer R. 1994. On the room-temperature grain growth in nanocrystalline copper. Scr. Metall. Mater. 30:5577–81 https://doi.org/10.1016/0956-716X(94)90432-4
    [Crossref] [Google Scholar]
  12. 12. 
    Gunther B, Kumpmann A, Kunze H-D. 1992. Secondary recrystallization in nanostructured elemental effects metals. Scr. Metall. Mater. 27:7833–38 https://doi.org/10.1016/0956-716X(92)90401-Y
    [Crossref] [Google Scholar]
  13. 13. 
    Weissmüller J, Loffler J, Kleber M. 1995. Atomic structure of nanocrystalline metals studied by diffraction techniques and EXAFS. Nanostruct. Mater. 6:105–14 https://doi.org/10.1016/0965-9773(95)00034-8
    [Crossref] [Google Scholar]
  14. 14. 
    Haber JA, Buhro WE. 1998. Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth. J. Am. Chem. Soc. 120:4210847–55 https://doi.org/10.1021/ja981972y
    [Crossref] [Google Scholar]
  15. 15. 
    Enrique RA, Bellon P. 1999. Phase stability under irradiation in alloys with a positive heat of mixing: effective thermodynamics description. Phys. Rev. B 60:2114649–59 https://doi.org/10.1103/PhysRevB.60.14649
    [Crossref] [Google Scholar]
  16. 16. 
    Martin G. 1998. Modelling materials driven far from equilibrium. Curr. Opin. Solid State Mater. Sci. 3:552–57 https://doi.org/10.1016/S1359-0286(98)80024-7
    [Crossref] [Google Scholar]
  17. 17. 
    Burke JE, Turnbull D. 1952. Recrystallization and grain growth. Prog. Met. Phys. 3:C220–92 httxps://doi.org/10.1201/9780429265587-18
    [Crossref] [Google Scholar]
  18. 18. 
    Rabkin E. 2000. On the grain size dependent solute and particle drag. Scr. Mater. 42:121199–206 https://doi.org/10.1016/S1359-6462(00)00359-6
    [Crossref] [Google Scholar]
  19. 19. 
    Koch CC. 1993. The synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review. Nanostruct. Mater. 2:109–29 https://doi.org/10.1016/0965-9773(93)90016-5
    [Crossref] [Google Scholar]
  20. 20. 
    Edalati K, Horita Z. 2016. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A 652:325–52 https://doi.org/10.1016/j.msea.2015.11.074
    [Crossref] [Google Scholar]
  21. 21. 
    Adedokun ST. 2011. A review on equal channel angular extrusion as a deformation and grain refinement process. J. Emerg. Trends Eng. Appl. Sci. 2:2360–63
    [Google Scholar]
  22. 22. 
    Erb U, Palumbo G, McCrea JL 2011. The processing of bulk nanocrystalline metals and alloys by electrodeposition. Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications S Whang 118–51 Cambridge, UK: Woodhead Publ https://doi.org/10.1533/9780857091123.1.118
    [Crossref] [Google Scholar]
  23. 23. 
    Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT. 1999. Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater 47:72143–52 https://doi.org/10.1016/S1359-6454(99)00079-8
    [Crossref] [Google Scholar]
  24. 24. 
    Darling KA, Tschopp MA, Guduru RK, Yin WH, Wei Q, Kecskes LJ. 2014. Microstructure and mechanical properties of bulk nanostructured Cu-Ta alloys consolidated by equal channel angular extrusion. Acta Mater 76:168–85 https://doi.org/10.1016/j.actamat.2014.04.074
    [Crossref] [Google Scholar]
  25. 25. 
    Cai X, Xin S, Sun B, Cui H, Yu H et al. 2018. Thermally stable and strong bulk Mg-MgO in situ nanocomposites by reactive cryomilling and high-pressure consolidation. J. Mater. Sci. 53:96613–25 https://doi.org/10.1007/s10853-018-2041-x
    [Crossref] [Google Scholar]
  26. 26. 
    Chen YZ, Wang K, Shan GB, Ceguerra AV, Huang LK et al. 2018. Grain size stabilization of mechanically alloyed nanocrystalline Fe-Zr alloys by forming highly dispersed coherent Fe-Zr-O nanoclusters. Acta Mater 158:340–53 https://doi.org/10.1016/j.actamat.2018.07.070
    [Crossref] [Google Scholar]
  27. 27. 
    Hanna W, Maung K, Enayati M, Earthman JC, Mohamed FA. 2019. Grain size stability in a cryomilled nanocrystalline Al alloy powders containing diamantane nanoparticles. Mater. Sci. Eng. A 746:290–99 https://doi.org/10.1016/j.msea.2018.10.006
    [Crossref] [Google Scholar]
  28. 28. 
    Kalidindi AR, Schuh CA. 2017. Stability criteria for nanocrystalline alloys. Acta Mater 132:128–37 https://doi.org/10.1016/j.actamat.2017.03.029
    [Crossref] [Google Scholar]
  29. 29. 
    Weissmüller J. 1993. Alloy effects in nanostructures. Nanostruct. Mater. 3:1–6261–72 https://doi.org/10.1016/0965-9773(93)90088-S
    [Crossref] [Google Scholar]
  30. 30. 
    Trelewicz JR, Schuh CA. 2009. Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B 79:9094112 https://doi.org/10.1103/PhysRevB.79.094112
    [Crossref] [Google Scholar]
  31. 31. 
    Kirchheim R. 2007. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. II. Experimental evidence and consequences. Acta Mater 55:155139–48 https://doi.org/10.1016/j.actamat.2007.05.033
    [Crossref] [Google Scholar]
  32. 32. 
    Liu F, Kirchheim R. 2004. Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264:385–91 https://doi.org/10.1016/j.jcrysgro.2003.12.021
    [Crossref] [Google Scholar]
  33. 33. 
    Beke DL, Cserháti C, Szabó IA. 2004. Segregation inhibited grain coarsening in nanocrystalline alloys. J. Appl. Phys. 95:94996–5001 https://doi.org/10.1063/1.1688461
    [Crossref] [Google Scholar]
  34. 34. 
    Krill CE, Ehrhardt H, Birringer R. 2005. Thermodynamic stabilization of nanocrystallinity. Int. J. Mater. Res. 96:101134–41 https://doi.org/10.3139/146.101152
    [Crossref] [Google Scholar]
  35. 35. 
    Chookajorn T, Schuh CA. 2014. Thermodynamics of stable nanocrystalline alloys: a Monte Carlo analysis. Phys. Rev. B 89:6064102 https://doi.org/10.1103/PhysRevB.89.064102
    [Crossref] [Google Scholar]
  36. 36. 
    Kirchheim R. 2002. Grain coarsening inhibited by solute segregation. Acta Mater 50:2413–19 https://doi.org/10.1016/S1359-6454(01)00338-X
    [Crossref] [Google Scholar]
  37. 37. 
    Chookajorn T, Murdoch HA, Schuh CA. 2012. Design of stable nanocrystalline alloys. Science 337:6097951–54 https://doi.org/10.1126/science.1224737
    [Crossref] [Google Scholar]
  38. 38. 
    Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP. 2014. Grain boundary complexions. Acta Mater 62:1–48 https://doi.org/10.1016/j.actamat.2013.07.037
    [Crossref] [Google Scholar]
  39. 39. 
    Rupert TJ. 2016. The role of complexions in metallic nano-grain stability and deformation. Curr. Opin. Solid State Mater. Sci. 20:5257–67 https://doi.org/10.1016/j.cossms.2016.05.005
    [Crossref] [Google Scholar]
  40. 40. 
    Dillon SJ, Tang M, Carter WC, Harmer MP. 2007. Complexion: a new concept for kinetic engineering in materials science. Acta Mater 55:186208–18 https://doi.org/10.1016/j.actamat.2007.07.029
    [Crossref] [Google Scholar]
  41. 41. 
    Bojarski SA, Harmer MP, Rohrer GS. 2014. Influence of grain boundary energy on the nucleation of complexion transitions. Scr. Mater. 88:1–4 https://doi.org/10.1016/j.scriptamat.2014.06.016
    [Crossref] [Google Scholar]
  42. 42. 
    Khalajhedayati A, Rupert TJ. 2015. High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy. JOM 67:122788–801 https://doi.org/10.1007/s11837-015-1644-9
    [Crossref] [Google Scholar]
  43. 43. 
    Rohrer GS. 2016. The role of grain boundary energy in grain boundary complexion transitions. Curr. Opin. Solid State Mater. Sci. 20:5231–39 https://doi.org/10.1016/j.cossms.2016.03.001
    [Crossref] [Google Scholar]
  44. 44. 
    Schuler JD, Donaldson OK, Rupert TJ. 2018. Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W. Scr. Mater. 154:49–53 https://doi.org/10.1016/j.scriptamat.2018.05.023
    [Crossref] [Google Scholar]
  45. 45. 
    Schuler JD, Rupert TJ. 2017. Materials selection rules for amorphous complexion formation in binary metallic alloys. Acta Mater 140:196–205 https://doi.org/10.1016/j.actamat.2017.08.042
    [Crossref] [Google Scholar]
  46. 46. 
    Cantwell PR, Frolov T, Rupert TJ, Krause AR, Marvel CJ et al. 2020. Grain boundary complexion transitions. Annu. Rev. Mater. Res. 50:465–92 https://doi.org/10.1146/annurev-matsci-081619-114055
    [Crossref] [Google Scholar]
  47. 47. 
    Jiao ZB, Schuh CA. 2018. Nanocrystalline Ag-W alloys lose stability upon solute desegregation from grain boundaries. Acta Mater 161:194–206 https://doi.org/10.1016/j.actamat.2018.09.014
    [Crossref] [Google Scholar]
  48. 48. 
    Graetz K, Paras JS, Schuh CA. 2018. Nanostructure stability and nano-phase separation sintering in the titanium-magnesium system. Materialia 1:89–98 https://doi.org/10.1016/J.MTLA.2018.05.005
    [Crossref] [Google Scholar]
  49. 49. 
    Murdoch HA, Schuh CA. 2013. Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater 61:62121–32 https://doi.org/10.1016/j.actamat.2012.12.033
    [Crossref] [Google Scholar]
  50. 50. 
    Zhou N, Luo J. 2014. Developing thermodynamic stability diagrams for equilibrium-grain-size binary alloys. Mater. Lett. 115:268–71 https://doi.org/10.1016/j.matlet.2013.09.093
    [Crossref] [Google Scholar]
  51. 51. 
    Saber M, Kotan H, Koch CC, Scattergood RO. 2013. Thermodynamic stabilization of nanocrystalline binary alloys. J. Appl. Phys. 113:6063515 https://doi.org/10.1063/1.4791704
    [Crossref] [Google Scholar]
  52. 52. 
    Saber M, Kotan H, Koch CC, Scattergood RO. 2013. A predictive model for thermodynamic stability of grain size in nanocrystalline ternary alloys. J. Appl. Phys. 114:10103510 https://doi.org/10.1063/1.4821040
    [Crossref] [Google Scholar]
  53. 53. 
    Chookajorn T, Park M, Schuh CA. 2015. Duplex nanocrystalline alloys: entropic nanostructure stabilization and a case study on W-Cr. J. Mater. Res. 30:2151–63 https://doi.org/10.1557/jmr.2014.385
    [Crossref] [Google Scholar]
  54. 54. 
    Kalidindi AR, Schuh CA. 2017. Phase transitions in stable nanocrystalline alloys. J. Mater. Res. 32:111993–2002 https://doi.org/10.1557/jmr.2017.188
    [Crossref] [Google Scholar]
  55. 55. 
    Polyakov MN, Chookajorn T, Mecklenburg M, Schuh CA, Hodge AM. 2016. Sputtered Hf-Ti nano-structures: a segregation and high-temperature stability study. Acta Mater 108:8–16 https://doi.org/10.1016/j.actamat.2016.01.073
    [Crossref] [Google Scholar]
  56. 56. 
    Ahadi A, Kalidindi AR, Sakurai J, Matsushita Y, Tsuchiya K, Schuh CA. 2018. The role of W on the thermal stability of nanocrystalline NiTiWx thin films. Acta Mater 142:181–92 https://doi.org/10.1016/j.actamat.2017.09.056
    [Crossref] [Google Scholar]
  57. 57. 
    Xing W, Kalidindi AR, Schuh CA. 2017. Preferred nanocrystalline configurations in ternary and multicomponent alloys. Scr. Mater. 127:136–40 https://doi.org/10.1016/j.scriptamat.2016.09.014
    [Crossref] [Google Scholar]
  58. 58. 
    Clark BG, Hattar K, Marshall MT, Chookajorn T, Boyce BL, Schuh CA. 2016. Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs. JOM 68:61625–33 https://doi.org/10.1007/s11837-016-1868-3
    [Crossref] [Google Scholar]
  59. 59. 
    Chookajorn T, Schuh CA. 2014. Nanoscale segregation behavior and high-temperature stability of nanocrystalline W–20 at.% Ti. Acta Mater 73:128–38 https://doi.org/10.1016/j.actamat.2014.03.039
    [Crossref] [Google Scholar]
  60. 60. 
    Haas V, Birringer R, Gleiter H, Pratsinis SE. 1997. Synthesis of nanostructured powders in an aerosol flow condenser. J. Aerosol Sci. 28:81443–53 https://doi.org/10.1016/S0021-8502(97)00006-2
    [Crossref] [Google Scholar]
  61. 61. 
    Weissmüller J, Krauss W, Haubold T, Birringer R, Gleiter H. 1992. Atomic structure and thermal stability of nanostructured Y-Fe alloys. Nanostruct. Mater. 1:6439–47 https://doi.org/10.1016/0965-9773(92)90076-A
    [Crossref] [Google Scholar]
  62. 62. 
    Konrad H, Haubold T, Birringer R, Gleiter H. 1996. Nanostructured Cu-Bi alloys prepared by co-evaporation in a continuous gas flow. Nanostruct. Mater. 7:6605–10 https://doi.org/10.1016/0965-9773(96)00038-4
    [Crossref] [Google Scholar]
  63. 63. 
    Liu F. 2005. Grain growth in nanocrystalline Fe-Ag thin film. Mater. Lett. 59:111458–62 https://doi.org/10.1016/j.matlet.2005.01.003
    [Crossref] [Google Scholar]
  64. 64. 
    Csiszár G, Kurz SJB, Mittemeijer EJ. 2016. Stability of nanosized alloy thin films: faulting and phase separation in metastable Ni/Cu/Ag-W films. Acta Mater 110:324–40 https://doi.org/10.1016/j.actamat.2016.02.068
    [Crossref] [Google Scholar]
  65. 65. 
    Zhao JT, Zhang JY, Hou ZQ, Wu K, Feng XB et al. 2018. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films. Nanotechnology 29:19195705 https://doi.org/10.1088/1361-6528/aab19a
    [Crossref] [Google Scholar]
  66. 66. 
    Lu P, Abdeljawad F, Rodriguez M., Chandross M, Adams DP et al. 2019. On the thermal stability and grain boundary segregation in nanocrystalline PtAu alloys. Materialia 6:100298 https://doi.org/10.1016/j.mtla.2019.100298
    [Crossref] [Google Scholar]
  67. 67. 
    Curry JF, Babuska TF, Furnish TA, Lu P, Adams DP et al. 2018. Achieving ultralow wear with stable nanocrystalline metals. Adv. Mater. 30:321802026 https://doi.org/10.1002/adma.201802026
    [Crossref] [Google Scholar]
  68. 68. 
    Callisti M, Mellor BG, Polcar T. 2014. Microstructural investigation on the grain refinement occurring in Cu-doped Ni-Ti thin films. Scr. Mater. 77:52–55 https://doi.org/10.1016/j.scriptamat.2014.01.021
    [Crossref] [Google Scholar]
  69. 69. 
    Xing W, Kalidindi AR, Amram D, Schuh CA. 2018. Solute interaction effects on grain boundary segregation in ternary alloys. Acta Mater 161:285–94 https://doi.org/10.1016/j.actamat.2018.09.005
    [Crossref] [Google Scholar]
  70. 70. 
    Xing W, Kube SA, Kalidindi AR, Amram D, Schroers J, Schuh CA. 2019. Stability of ternary nanocrystalline alloys in the Pt-Pd-Au system. Materialia 8:100449 https://doi.org/10.1016/j.mtla.2019.100449
    [Crossref] [Google Scholar]
  71. 71. 
    Kube SA, Xing W, Kalidindi A, Sohn S, Datye A et al. 2020. Combinatorial study of thermal stability in ternary nanocrystalline alloys. Acta Mater 188:40–48 https://doi.org/10.1016/j.actamat.2020.01.059
    [Crossref] [Google Scholar]
  72. 72. 
    Harsha RN, Kulkarni VM, Babu BS. 2018. Severe plastic deformation—a review. Mater. Today Proc. 5:1022340–49 https://doi.org/10.1016/j.matpr.2018.06.600
    [Crossref] [Google Scholar]
  73. 73. 
    Valiev RZ, Langdon TG. 2006. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51:7881–981 https://doi.org/10.1016/j.pmatsci.2006.02.003
    [Crossref] [Google Scholar]
  74. 74. 
    Borodachenkova M, Wen W, Manuel de Bastos Pereira A 2017. High-pressure torsion: experiments and modeling. Severe Plastic Deformation Techniques M Cabibbo 93–112 Rijeka, Croat: InTech https://doi.org/10.5772/intechopen.69173
    [Crossref] [Google Scholar]
  75. 75. 
    Sha G, Wang YB, Liao XZ, Duan ZC, Ringer SP, Langdon TG. 2009. Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy. Acta Mater 57:103123–32 https://doi.org/10.1016/j.actamat.2009.03.017
    [Crossref] [Google Scholar]
  76. 76. 
    Sha G, Yao L, Liao X, Ringer SP, Duan ZC, Langdon TG. 2011. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy. Ultramicroscopy 111:6500–5 https://doi.org/10.1016/j.ultramic.2010.11.013
    [Crossref] [Google Scholar]
  77. 77. 
    Jia H, Bjørge R, Cao L, Song H, Marthinsen K, Li Y. 2018. Quantifying the grain boundary segregation strengthening induced by post-ECAP aging in an Al-5Cu alloy. Acta Mater 155:199–213 https://doi.org/10.1016/j.actamat.2018.05.075
    [Crossref] [Google Scholar]
  78. 78. 
    Enikeev NA, Murashkin MY, Sauvage X, VU Kazykhanov, Valiev RZ. 2011. SPD-induced grain boundary segregations and superior strength in UFG Al alloys. Mater. Sci. Forum667–669665–69 https://doi.org/10.4028/www.scientific.net/MSF.667-669.665
    [Crossref] [Google Scholar]
  79. 79. 
    Xue J, Jin S, An X, Liao X, Li J, Sha G 2019. Understanding formation of Mg-depletion zones in Al-Mg alloys under high pressure torsion. J. Mater. Sci. Technol. 35:5858–64 https://doi.org/10.1016/j.jmst.2018.11.017
    [Crossref] [Google Scholar]
  80. 80. 
    Sauvage X, Enikeev N, Valiev R, Nasedkina Y, Murashkin M. 2014. Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al-Mg alloy. Acta Mater 72:125–36 https://doi.org/10.1016/j.actamat.2014.03.033
    [Crossref] [Google Scholar]
  81. 81. 
    Sha G, Tugcu K, Liao XZ, Trimby PW, Murashkin MY et al. 2014. Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion. Acta Mater 63:169–79 https://doi.org/10.1016/j.actamat.2013.10.022
    [Crossref] [Google Scholar]
  82. 82. 
    Straumal BB, Rodin AO, Petelin AL, Baretzky B, Protasova S et al. 2011. Grain boundary segregation and amount of bulk carbides in severely deformed Fe–C alloys. Defect Diffus. Forum 309–310:51–62 https://doi.org/10.4028/www.scientific.net/DDF.309-310.51
    [Crossref] [Google Scholar]
  83. 83. 
    Ivanisenko Y, Sauvage X, Mazilkin A, Kilmametov A, Beach JA, Straumal BB. 2018. Bulk nanocrystalline ferrite stabilized through grain boundary carbon segregation. Adv. Eng. Mater. 20:101800443 https://doi.org/10.1002/adem.201800443
    [Crossref] [Google Scholar]
  84. 84. 
    Abramova MM, Enikeev NA, Valiev RZ, Etienne A, Radiguet B et al. 2014. Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Mater. Lett. 136:349–52 https://doi.org/10.1016/j.matlet.2014.07.188
    [Crossref] [Google Scholar]
  85. 85. 
    Ni S, Sha G, Wang YB, Liao XZ, Alhajeri SN et al. 2011. Elemental redistribution in a nanocrystalline Ni-Fe alloy induced by high-pressure torsion. Mater. Sci. Eng. A 528:25–267500–5 https://doi.org/10.1016/j.msea.2011.06.057
    [Crossref] [Google Scholar]
  86. 86. 
    Basha DA, Sahara R, Somekawa H, Rosalie JM, Singh A, Tsuchiya K. 2016. Interfacial segregation induced by severe plastic deformation in a Mg–Zn–Y alloy. Scr. Mater. 124:169–73 https://doi.org/10.1016/j.scriptamat.2016.07.021
    [Crossref] [Google Scholar]
  87. 87. 
    Edalati K, Masuda T, Arita M, Furui M, Sauvage X et al. 2017. Room-temperature superplasticity in an ultrafine-grained magnesium alloy. Sci. Rep. 7:12662 https://doi.org/10.1038/s41598-017-02846-2
    [Crossref] [Google Scholar]
  88. 88. 
    Suryanarayana C. 2019. Mechanical alloying: a novel technique to synthesize advanced materials. Research 2019:4219812 https://doi.org/10.34133/2019/4219812
    [Crossref] [Google Scholar]
  89. 89. 
    Eckert J, Holzer JC, Krill CE, Johnson WL. 1993. Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders. J. Appl. Phys. 73:62794–802 https://doi.org/10.1063/1.353055
    [Crossref] [Google Scholar]
  90. 90. 
    Gao ZQ, Fultz B. 1994. Inter-dependence of grain growth, Nb segregation, and chemical ordering in FeSiNb nanocrystals. Nanostruct. Mater. 4:8939–47 https://doi.org/10.1016/0965-9773(94)90100-7
    [Crossref] [Google Scholar]
  91. 91. 
    Chen YZ, Herz A, Li YJ, Borchers C, Choi P et al. 2013. Nanocrystalline Fe–C alloys produced by ball milling of iron and graphite. Acta Mater 61:93172–85 https://doi.org/10.1016/j.actamat.2013.02.006
    [Crossref] [Google Scholar]
  92. 92. 
    Ohsaki S, Hono K, Hidaka H, Takaki S. 2005. Characterization of nanocrystalline ferrite produced by mechanical milling of pearlitic steel. Scr. Mater. 52:4271–76 https://doi.org/10.1016/j.scriptamat.2004.10.020
    [Crossref] [Google Scholar]
  93. 93. 
    Sauvage X, Lefebvre W, Genevois C, Ohsaki S, Hono K. 2009. Complementary use of transmission electron microscopy and atom probe tomography for the investigation of steels nanostructured by severe plastic deformation. Scr. Mater. 60:121056–61 https://doi.org/10.1016/j.scriptamat.2009.02.019
    [Crossref] [Google Scholar]
  94. 94. 
    Darling KA, Chan RN, Wong PZ, Semones JE, Scattergood RO, Koch CC. 2008. Grain-size stabilization in nanocrystalline FeZr alloys. Scr. Mater. 59:5530–33 https://doi.org/10.1016/j.scriptamat.2008.04.045
    [Crossref] [Google Scholar]
  95. 95. 
    Darling KA, VanLeeuwen BK, Koch CC, Scattergood RO. 2010. Thermal stability of nanocrystalline Fe-Zr alloys. Mater. Sci. Eng. A 527:153572–80 https://doi.org/10.1016/j.msea.2010.02.043
    [Crossref] [Google Scholar]
  96. 96. 
    Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO et al. 2011. Stabilized nanocrystalline iron-based alloys: guiding efforts in alloy selection. Mater. Sci. Eng. A 528:13–144365–71 https://doi.org/10.1016/j.msea.2011.02.080
    [Crossref] [Google Scholar]
  97. 97. 
    Gupta R, Singh Raman RK, Koch CC. 2008. Grain growth behaviour and consolidation of ball-milled nanocrystalline Fe-10Cr alloy. Mater. Sci. Eng. A 494:1–2253–56 https://doi.org/10.1016/j.msea.2008.04.019
    [Crossref] [Google Scholar]
  98. 98. 
    Amram D, Schuh CA. 2018. Interplay between thermodynamic and kinetic stabilization mechanisms in nanocrystalline Fe-Mg alloys. Acta Mater 144:447–58 https://doi.org/10.1016/j.actamat.2017.11.014
    [Crossref] [Google Scholar]
  99. 99. 
    Amram D, Schuh CA. 2020. Mechanical alloying produces grain boundary segregation in Fe-Mg powders. Scr. Mater. 180:57–61 https://doi.org/10.1016/j.scriptamat.2020.01.021
    [Crossref] [Google Scholar]
  100. 100. 
    Yelsukov EP, Dorofeev GA, Ulyanov AL. 2005. Mechanism and kinetics of mechanical alloying in an immiscible Fe-Mg system. Czechoslov. J. Phys. 55:7913–21 https://doi.org/10.1007/s10582-005-0092-0
    [Crossref] [Google Scholar]
  101. 101. 
    Amram D, Schuh CA. 2018. Higher temperatures yield smaller grains in a thermally stable phase-transforming nanocrystalline alloy. Phys. Rev. Lett. 121:14145503 https://doi.org/10.1103/PhysRevLett.121.145503
    [Crossref] [Google Scholar]
  102. 102. 
    Darling KA, Roberts AJ, Mishin Y, Mathaudhu SN, Kecskes LJ. 2013. Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum. J. Alloys Compd. 573:142–50 https://doi.org/10.1016/j.jallcom.2013.03.177
    [Crossref] [Google Scholar]
  103. 103. 
    Atwater MA, Roy D, Darling KA, Butler BG, Scattergood RO, Koch CC. 2012. The thermal stability of nanocrystalline copper cryogenically milled with tungsten. Mater. Sci. Eng. A 558:226–33 https://doi.org/10.1016/j.msea.2012.07.117
    [Crossref] [Google Scholar]
  104. 104. 
    Atwater MA, Scattergood RO, Koch CC. 2013. The stabilization of nanocrystalline copper by zirconium. Mater. Sci. Eng. A 559:250–56 https://doi.org/10.1016/j.msea.2012.08.092
    [Crossref] [Google Scholar]
  105. 105. 
    Cordero ZC, Schuh CA. 2015. Phase strength effects on chemical mixing in extensively deformed alloys. Acta Mater 82:123–36 https://doi.org/10.1016/j.actamat.2014.09.009
    [Crossref] [Google Scholar]
  106. 106. 
    Donaldson OK, Rupert TJ. 2019. Amorphous intergranular films enable the creation of bulk nanocrystalline Cu-Zr with full density. Adv. Eng. Mater. 21:91900333 https://doi.org/10.1002/adem.201900333
    [Crossref] [Google Scholar]
  107. 107. 
    Roy D, Chakraborty S, Gupta AK, Basu Mallick A, Koch CC. 2020. Synergistic effect of Nb and Zr addition in thermal stabilization of nano-crystalline Cu synthesized by ball milling. Mater. Lett. 271:127780 https://doi.org/10.1016/j.matlet.2020.127780
    [Crossref] [Google Scholar]
  108. 108. 
    Park M, Schuh CA. 2015. Accelerated sintering in phase-separating nanostructured alloys. Nat. Commun. 6:6858 https://doi.org/10.1038/ncomms7858
    [Crossref] [Google Scholar]
  109. 109. 
    Cordero ZC, Huskins EL, Park M, Livers S, Frary M et al. 2014. Powder-route synthesis and mechanical testing of ultrafine grain tungsten alloys. Metall. Mater. Trans. A 45A:3609–18 https://doi.org/10.1007/s11661-014-2286-1
    [Crossref] [Google Scholar]
  110. 110. 
    Liu X, Hu L, Wang E 2013. Cold compaction behavior of nano-structured Nd-Fe-B alloy powders prepared by different processes. J. Alloys Compd. 551:682–87 https://doi.org/10.1016/j.jallcom.2012.10.192
    [Crossref] [Google Scholar]
  111. 111. 
    Azabou M, Khitouni M, Kolsi A. 2009. Characterization of nanocrystalline Al-based alloy produced by mechanical milling followed by cold-pressing consolidation. Mater. Charact. 60:6499–505 https://doi.org/10.1016/j.matchar.2008.12.016
    [Crossref] [Google Scholar]
  112. 112. 
    Mhadhbi M, Khitouni M, Escoda L, Suñol JJ, Dammak M. 2011. Microstructure evolution and mechanical properties of nanocrystalline FeAl obtained by mechanical alloying and cold consolidation. J. Alloys Compd. 509:73293–98 https://doi.org/10.1016/j.jallcom.2010.10.214
    [Crossref] [Google Scholar]
  113. 113. 
    Talin AA, Marquis EA, Goods SH, Kelly JJ, Miller MK. 2006. Thermal stability of Ni-Mn electrodeposits. Acta Mater 54:71935–47 https://doi.org/10.1016/j.actamat.2005.12.027
    [Crossref] [Google Scholar]
  114. 114. 
    Boylan K, Ostrander D, Erb U, Palumbo G, Aust KT. 1991. An in-situ TEM study of the thermal stability of nanocrystalline NiP. Scr. Metall. Mater. 25:122711–16 https://doi.org/10.1016/0956-716X(91)90144-P
    [Crossref] [Google Scholar]
  115. 115. 
    Abraham M, Thuvander M, Lane HM, Cerezo A, Smith GDW. 2000. Atomic scale characterisation of electrodeposited nanocrystalline Ni-P alloys. MRS Online Proc. Libr. 581:517–22 https://doi.org/10.1557/proc-581-517
    [Crossref] [Google Scholar]
  116. 116. 
    Hentschel T, Isheim D, Kirchheim R, Müller F, Kreye H. 2000. Nanocrystalline Ni–3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy. Acta Mater 48:4933–41 https://doi.org/10.1016/S1359-6454(99)00371-7
    [Crossref] [Google Scholar]
  117. 117. 
    Färber B, Cadel E, Menand A, Schmitz G, Kirchheim R. 2000. Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater 48:3789–96 https://doi.org/10.1016/S1359-6454(99)00397-3
    [Crossref] [Google Scholar]
  118. 118. 
    Gibson MA, Schuh CA. 2015. Segregation-induced changes in grain boundary cohesion and embrittlement in binary alloys. Acta Mater 95:145–55 https://doi.org/10.1016/j.actamat.2015.05.004
    [Crossref] [Google Scholar]
  119. 119. 
    Gibson MA, Schuh CA. 2016. A compilation of ab-initio calculations of embrittling potencies in binary metallic alloys. Data Brief 6:143–48 https://doi.org/10.1016/j.dib.2015.11.024
    [Crossref] [Google Scholar]
  120. 120. 
    Yamasaki T, Schlossmacher P, Ehrlich K, Ogino Y. 1998. Formation of amorphous electrodeposited Ni-W alloys and their nanocrystallization. Nanostruct. Mater. 10:3375–88 https://doi.org/10.1016/S0965-9773(98)00078-6
    [Crossref] [Google Scholar]
  121. 121. 
    Yamasaki T. 2000. High-strength nanocrystalline Ni-W alloys produced by electrodeposition. Mater. Phys. Mech. 1:127–32
    [Google Scholar]
  122. 122. 
    Yamasaki T. 2001. High-strength nanocrystalline Ni-W alloys produced by electrodeposition and their embrittlement behaviors during grain growth. Scr. Mater. 44:81497–502 https://doi.org/10.1016/S1359-6462(01)00720-5
    [Crossref] [Google Scholar]
  123. 123. 
    Schuh CA, Nieh TG, Iwasaki H. 2003. The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater 51:2431–43 https://doi.org/10.1016/S1359-6454(02)00427-5
    [Crossref] [Google Scholar]
  124. 124. 
    Choi P, Al-Kassab T, Gártner F, Kreye H, Kirchheim R. 2003. Thermal stability of nanocrystalline nickel–18 at.% tungsten alloy investigated with the tomographic atom probe. Mater. Sci. Eng. A 353:1–274–79 https://doi.org/10.1016/s0921-5093(02)00670-6
    [Crossref] [Google Scholar]
  125. 125. 
    Detor AJ, Schuh CA. 2007. Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater 55:1371–79 https://doi.org/10.1016/j.actamat.2006.08.032
    [Crossref] [Google Scholar]
  126. 126. 
    Detor AJ, Miller MK, Schuh CA. 2007. Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe tomography. Philos. Mag. Lett. 87:8581–87 https://doi.org/10.1080/09500830701400125
    [Crossref] [Google Scholar]
  127. 127. 
    Detor AJ, Schuh CA. 2007. Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni-W system. Acta Mater 55:124221–32 https://doi.org/10.1016/j.actamat.2007.03.024
    [Crossref] [Google Scholar]
  128. 128. 
    Detor AJ, Miller MK, Schuh CA. 2006. Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86:284459–75 https://doi.org/10.1080/14786430600726749
    [Crossref] [Google Scholar]
  129. 129. 
    Choi IS, Detor AJ, Schwaiger R, Dao M, Schuh CA, Suresh S. 2008. Mechanics of indentation of plastically graded materials—II: experiments on nanocrystalline alloys with grain size gradients. J. Mech. Phys. Solids 56:1172–83 https://doi.org/10.1016/J.JMPS.2007.07.006
    [Crossref] [Google Scholar]
  130. 130. 
    Jones AR, Hamann J, Lund AC, Schuh C. 2010. Nanocrystalline Ni-W alloy coating for engineering applications. Plat. Surf. Finish. 97:452–60
    [Google Scholar]
  131. 131. 
    Do TK, Lund A. 2010. A reliability study of a new nanocrystalline nickel alloy barrier layer for electrical contacts. 2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts1–9 Piscataway, NJ: IEEE https://doi.org/10.1109/holm.2010.5619561
    [Crossref]
  132. 132. 
    Hono K, Laughlin DE. 1989. Evidence of phosphorus segregation in grain boundaries in electroless-plated Co-P thin film. J. Magn. Magn. Mater. 80:L137–41 https://doi.org/10.1016/0304-8853(89)90107-8
    [Crossref] [Google Scholar]
  133. 133. 
    Choi P, Da Silva M, Klement U, Al-Kassab T, Kirchheim R 2005. Thermal stability of electrodeposited nanocrystalline Co-1.1at.%P. Acta Mater. 53:164473–81 https://doi.org/10.1016/j.actamat.2005.06.006
    [Crossref] [Google Scholar]
  134. 134. 
    da Silva M, Wille C, Klement U, Choi P, Al-Kassab T. 2007. Electrodeposited nanocrystalline Co-P alloys: microstructural characterization and thermal stability. Mater. Sci. Eng. A445–44631–39 https://doi.org/10.1016/j.msea.2006.07.069
    [Crossref] [Google Scholar]
  135. 135. 
    Vijayan S, Luo N, Aindow M. 2017. Microstructural stability and phase transformations in electrodeposited cobalt-phosphorus coatings. J. Alloys Compd. 719:142–50 https://doi.org/10.1016/j.jallcom.2017.05.152
    [Crossref] [Google Scholar]
  136. 136. 
    Hibbard G, Palumbo G, Aust KT, Erb U. 2006. Nanoscale combined reactions: non-equilibrium Co formation in nanocrystalline Co by abnormal grain growth. Philos. Mag. 86:2125–39 https://doi.org/10.1080/14786430500313820
    [Crossref] [Google Scholar]
  137. 137. 
    Weston DP, Gill SPA, Fay M, Harris SJ, Yap GN et al. 2013. Nano-structure of Co–W alloy electrodeposited from gluconate bath. Surf. Coat. Technol. 236:75–83 https://doi.org/10.1016/j.surfcoat.2013.09.031
    [Crossref] [Google Scholar]
  138. 138. 
    Chen X, Mao J. 2011. Thermal stability and tensile properties of electrodeposited Cu-Bi alloy. J. Mater. Eng. Perform. 20:3481–86 https://doi.org/10.1007/s11665-010-9700-7
    [Crossref] [Google Scholar]
  139. 139. 
    Ruan S, Schuh CA. 2012. Towards electroformed nanostructured aluminum alloys with high strength and ductility. J. Mater. Res. 27:121638–51 https://doi.org/10.1557/jmr.2012.105
    [Crossref] [Google Scholar]
  140. 140. 
    Ruan S, Torres KL, Thompson GB, Schuh CA. 2011. Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al-Mn alloys. Ultramicroscopy 111:81062–72 https://doi.org/10.1016/j.ultramic.2011.01.026
    [Crossref] [Google Scholar]
  141. 141. 
    Ruan S, Schuh CA. 2009. Electrodeposited Al-Mn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. Acta Mater 57:133810–22 https://doi.org/10.1016/j.actamat.2009.04.030
    [Crossref] [Google Scholar]
  142. 142. 
    Huang TY, Marvel CJ, Cantwell PR, Harmer MP, Schuh CA. 2016. Grain boundary segregation in Al-Mn electrodeposits prepared from ionic liquid. J. Mater. Sci. 51:1438–48 https://doi.org/10.1007/s10853-015-9316-2
    [Crossref] [Google Scholar]
  143. 143. 
    Huang TY, Kalidindi AR, Schuh CA. 2018. Grain growth and second-phase precipitation in nanocrystalline aluminum-manganese electrodeposits. J. Mater. Sci. 53:53709–19 https://doi.org/10.1007/s10853-017-1764-4
    [Crossref] [Google Scholar]
  144. 144. 
    Liu F, Deng Y, Han X, Hu W, Zhong C. 2016. Electrodeposition of metals and alloys from ionic liquids. J. Alloys Compd. 654:163–70 https://doi.org/10.1016/j.jallcom.2015.09.137
    [Crossref] [Google Scholar]
  145. 145. 
    McFadden SX, Mukherjee AK. 2005. Sulfur and superplasticity in electrodeposited ultrafine-grained Ni. Mater. Sci. Eng. A 395:1–2265–68 https://doi.org/10.1016/j.msea.2004.12.025
    [Crossref] [Google Scholar]
  146. 146. 
    Pellicer E, Varea A, Sivaraman KM, Pané S, Suriñach S et al. 2011. Grain boundary segregation and interdiffusion effects in nickel-copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel. ACS Appl. Mater. Interfaces 3:72265–74 https://doi.org/10.1021/am2004587
    [Crossref] [Google Scholar]
  147. 147. 
    Martin G, Bellon P. 1996. Driven alloys. Solid State Phys. 50189–331 https://doi.org/10.1016/S0081-1947(08)60605-0
    [Crossref] [Google Scholar]
  148. 148. 
    Abad MD, Parker S, Kiener D, Primorac MM, Hosemann P. 2015. Microstructure and mechanical properties of CuxNb1–x alloys prepared by ball milling and high pressure torsion compacting. J. Alloys Compd. 630:117–25 https://doi.org/10.1016/j.jallcom.2014.11.193
    [Crossref] [Google Scholar]
  149. 149. 
    Vo NQ, Chee SW, Schwen D, Zhang X, Bellon P, Averback RS. 2010. Microstructural stability of nano-structured Cu alloys during high-temperature irradiation. Scr. Mater. 63:9929–32 https://doi.org/10.1016/j.scriptamat.2010.07.009
    [Crossref] [Google Scholar]
  150. 150. 
    Ardell AJ, Bellon P. 2016. Radiation-induced solute segregation in metallic alloys. Curr. Opin. Solid State Mater. Sci. 20:3115–39 https://doi.org/10.1016/j.cossms.2015.11.001
    [Crossref] [Google Scholar]
  151. 151. 
    Wang M, Vo NQ, Campion M, Nguyen TD, Setman D et al. 2014. Forced atomic mixing during severe plastic deformation: chemical interactions and kinetically driven segregation. Acta Mater 66:1–11 https://doi.org/10.1016/j.actamat.2013.11.066
    [Crossref] [Google Scholar]
  152. 152. 
    Zghal S, Twesten R, Wu F, Bellon P. 2002. Electron microscopy nanoscale characterization of ball milled Cu-Ag powders. Part II: Nanocomposites synthesized by elevated temperature milling or annealing. Acta Mater 50:194711–26 https://doi.org/10.1016/S1359-6454(02)00286-0
    [Crossref] [Google Scholar]
  153. 153. 
    Park M, Chookajorn T, Schuh CA. 2018. Nano-phase separation sintering in nanostructure-stable versus bulk-stable alloys. Acta Mater 145:123–33 https://doi.org/10.1016/j.actamat.2017.11.030
    [Crossref] [Google Scholar]
  154. 154. 
    Faulkner RG. 1997. Radiation-induced grain boundary segregation in nuclear reactor steels. J. Nucl. Mater. 251:269–75 https://doi.org/10.1016/S0022-3115(97)00248-1
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-121823
Loading
/content/journals/10.1146/annurev-matsci-080819-121823
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error