1932

Abstract

The next generation of nuclear reactors will expose materials to conditions that, in some cases, are even more extreme than those in current fission reactors, inevitably leading to new materials science challenges. Radiation-induced damage and corrosion are two key phenomena that must be understood both independently and synergistically, but their interactions are often convoluted. In the light water reactor community, a tremendous amount of work has been done to illuminate irradiation-corrosion effects, and similar efforts are under way for heavy liquid metal and molten salt environments. While certain effects, such as radiolysis and irradiation-assisted stress corrosion cracking, are reasonably well established, the basic science of how irradiation-induced defects in the base material and the corrosion layer influence the corrosion process still presents many unanswered questions. In this review, we summarize the work that has been done to understand these coupled extremes, highlight the complex nature of this problem, and identify key knowledge gaps.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Effects of Radiation-Induced Defects on Corrosion
Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-123403
2021-07-26
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080819-123403.html?itemId=/content/journals/10.1146/annurev-matsci-080819-123403&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    IEA 2019. Nuclear Power in a Clean Energy System Paris: IEA
  2. 2. 
    Allen T, Busby J, Meyer M, Petti D. 2010. Materials challenges for nuclear systems. Mater. Today 13:14–23
    [Google Scholar]
  3. 3. 
    IAEA 2020. Nuclear Power Reactors in the World Vienna:: IAEA
  4. 4. 
    Was GS, Busby J, Andresen PL 2006. Effect of irradiation on stress-corrosion cracking and corrosion in light water reactors. ASM Handbook, Vol. 13C SD Cramer, BS Covino Jr 386–414 Materials Park, OH: ASM Int.
    [Google Scholar]
  5. 5. 
    Andresen PL. 2013. Stress corrosion cracking of current structural materials in commercial nuclear power plants. Corrosion 69:101024–38
    [Google Scholar]
  6. 6. 
    Hettiarachchi S, Wozadlo GP, Andresen PL, Diaz TP, Cowan RL. 1995. The concept of noble metal chemical addition technology for IGSCC mitigation of structural materials Presented at National Association of Corrosion Engineers (NACE) International Symposium on Environmental Degradation of Materials in Nuclear Power Plants: Water Reactors Breckenridge, CO: Aug 6–10
  7. 7. 
    Demma A, Cirilli J. 2018. Primary systems corrosion research program update Presented at EPRI Technical Exchange Meeting on Materials Rockville, MD: May 22
  8. 8. 
    Ohshima H, Kubo S 2016. Sodium-cooled fast reactor. Handbook of Generation IV Nuclear Reactors IL Pioro 97–118 Amsterdam: Elsevier
    [Google Scholar]
  9. 9. 
    Bhatt NP, Borgstedt HU. 1988. Corrosion behaviour of structural materials in sodium influenced by formation of ternary oxides. Mater. Corros. 39:3115–23
    [Google Scholar]
  10. 10. 
    Serp J, Allibert M, Beneš O, Delpech S, Feynberg O et al. 2014. The molten salt reactor (MSR) in generation IV: overview and perspectives. Prog. Nucl. Energy 77:308–19
    [Google Scholar]
  11. 11. 
    Scarlat RO, Laufer MR, Blandford ED, Zweibaum N, Krumwiede DL et al. 2014. Design and licensing strategies for the fluoride-salt-cooled, high-temperature reactor (FHR) technology. Prog. Nucl. Energy 77:406–20
    [Google Scholar]
  12. 12. 
    Andreades C, Cisneros AT, Choi JK, Chong AYK, Fratoni M et al. 2016. Design summary of the Mark-I pebble-bed, fluoride salt–cooled, high-temperature reactor commercial power plant. Nucl. Technol. 195:3223–38
    [Google Scholar]
  13. 13. 
    LeBlanc D. 2010. Molten salt reactors: a new beginning for an old idea. Nucl. Eng. Des. 240:61644–56
    [Google Scholar]
  14. 14. 
    Delpech S 2013. Molten salts for nuclear applications. Molten Salts Chemistry: From Lab to Applications F Lantelme, H Groult 497–520 Amsterdam: Elsevier
    [Google Scholar]
  15. 15. 
    Lang M, Zhang FX, Ewing RC, Lian J, Trautmann C, Wang Z. 2009. Structural modifications of Gd2Zr2−xTixO7 pyrochlore induced by swift heavy ions: disordering and amorphization. J. Mater. Res. 24:41322–34
    [Google Scholar]
  16. 16. 
    Benyagoub A. 2006. Phase transformations in oxides induced by swift heavy ions. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 245:1225–30
    [Google Scholar]
  17. 17. 
    Uberuaga BP, Tang M, Jiang C, Valdez JA, Smith R et al. 2015. Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores. Nat. Commun. 6:8750
    [Google Scholar]
  18. 18. 
    Wang LM, Gong WL, Wang SX, Ewing RC. 1999. Comparison of ion-beam irradiation effects in X2YO4 compounds. J. Am. Ceram. Soc. 82:123321–29
    [Google Scholar]
  19. 19. 
    Nordlund K, Zinkle SJ, Sand AE, Granberg F, Averback RS et al. 2018. Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Commun. 9:1084
    [Google Scholar]
  20. 20. 
    Burns WG, Moore PB. 1976. Water radiolysis and its effect upon in-reactor zircaloy corrosion. Radiat. Eff. 30:4233–42
    [Google Scholar]
  21. 21. 
    Christensen H. 1981. Effect of water radiolysis on corrosion in nuclear reactors. Radiat. Phys. Chem. 18:1–2147–58
    [Google Scholar]
  22. 22. 
    Joseph JM, Choi BS, Yakabuskie P, Wren JC. 2008. A combined experimental and model analysis on the effect of pH and O2(aq) on γ-radiolytically produced H2 and H2O2. Radiat. Phys. Chem. 77:91009–20
    [Google Scholar]
  23. 23. 
    Une K, Hirai M, Nogita K, Hosokawa T, Suzawa Y et al. 2000. Rim structure formation and high burnup fuel behavior of large-grained UO2 fuels. J. Nucl. Mater. 278:154–63
    [Google Scholar]
  24. 24. 
    Was GS, Busby JT, Allen T, Kenik EA, Jensson A et al. 2002. Emulation of neutron irradiation effects with protons: validation of principle. J. Nucl. Mater. 300:2–3198–216
    [Google Scholar]
  25. 25. 
    Was GS. 2015. Challenges to the use of ion irradiation for emulating reactor irradiation. J. Mater. Res. 30:91158–82Summarizes, in depth, ion beam applications and limitations for long-term reactor damage simulation.
    [Google Scholar]
  26. 26. 
    Piatti G, Schiller P. 1986. Thermal and mechanical properties of the Cr-Mn-(Ni-free) austenitic steels for fusion reactor applications. J. Nucl. Mater.141–143 Part 1 417–26
    [Google Scholar]
  27. 27. 
    Uhlig HH, Woodside GE. 1953. Anodic polarization of passive and non-passive chromium-iron alloys. J. Phys. Chem. 57:3280–83
    [Google Scholar]
  28. 28. 
    Kirchheim R, Heine B, Fischmeister H, Hofmann S, Knote H, Stolz U. 1989. The passivity of iron-chromium alloys. Corros. Sci. 29:7899–917
    [Google Scholar]
  29. 29. 
    Proriol Serre I, Vogt JB 2020. Liquid metal embrittlement sensitivity of the T91 steel in lead, in bismuth and in lead-bismuth eutectic. J. Nucl. Mater. 531:152021
    [Google Scholar]
  30. 30. 
    Zinkle SJ, Maziasz PJ, Stoller RE. 1993. Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel. J. Nucl. Mater. 206:2–3266–86
    [Google Scholar]
  31. 31. 
    Jianu A, Fetzer R, Weisenburger A, Doyle S, Bruns M et al. 2016. Stability domain of alumina thermally grown on Fe-Cr-Al-based model alloys and modified surface layers exposed to oxygen-containing molten Pb. J. Nucl. Mater. 470:68–75
    [Google Scholar]
  32. 32. 
    Kolman DG. 2019. A review of recent advances in the understanding of liquid metal embrittlement. Corrosion 75:142–57
    [Google Scholar]
  33. 33. 
    Baes CF. 1974. The chemistry and thermodynamics of molten salt reactor fuels. J. Nucl. Mater. 51:1149–62Seminal paper on the chemistry and thermodynamics of molten salt reactor fuels.
    [Google Scholar]
  34. 34. 
    Baes CF Jr. 1969. Chemistry and thermodynamics of molten salt reactor fuels. Nucl. Metall. 15:617–44
    [Google Scholar]
  35. 35. 
    Jin G, Xu C, Hu S, Zhou X. 2020. Temperature dependent electrochemical equilibrium diagram of zirconium-water system studied with density functional theory and experimental thermodynamic data. J. Nucl. Mater. 532:152036
    [Google Scholar]
  36. 36. 
    Yau TL, Webster RT. 1983. Effects of iron on the corrosion resistance of zirconium. Corrosion 39:6218–26
    [Google Scholar]
  37. 37. 
    Yau TL, Webster RT. 1995. Delayed hydride cracking of zirconium alloys Presented at Corrosion 1995 NACE International Orlando, FL: March 26–31
  38. 38. 
    Scully JR. 2019. Future frontiers in corrosion science and engineering. II. Managing the many stages of corrosion. Corrosion 75:2123–25
    [Google Scholar]
  39. 39. 
    Galvele JR. 1976. Transport processes and the mechanism of pitting of metals. J. Electrochem. Soc. 123:4464–74
    [Google Scholar]
  40. 40. 
    Cox B. 1968. Effects of irradiation on the oxidation of zirconium alloys in high temperature aqueous environments: a review. J. Nucl. Mater. 28:11–47
    [Google Scholar]
  41. 41. 
    IAEA 1998. Waterside corrosion of zirconium alloys in nuclear power plants TECDOC 996 IAEA: Vienna
  42. 42. 
    Cox B. 2005. Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. J. Nucl. Mater. 336:2–3331–68Extensively discusses experimental evidence for potential Zircaloy irradiation-corrosion mechanisms.
    [Google Scholar]
  43. 43. 
    Allen TR, Konings RJM, Motta AT, Couet A. 2020. Corrosion of zirconium alloys. Compr. Nucl. Mater. 5:49–68
    [Google Scholar]
  44. 44. 
    Machiels AJ. 1987. Corrosion of Zircaloy-clad LWR fuel rods: corrosion in high temperature water. See Ref. 169 2497–504
  45. 45. 
    Wagner C. 1952. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys. J. Electrochem. Soc. 99:1036980
    [Google Scholar]
  46. 46. 
    Charlesby A. 1953. Ionic currents in thin films of zirconium oxide. Acta Metall 1:3340–47
    [Google Scholar]
  47. 47. 
    Bradhurst DH, Heuer PM. 1970. The influence of oxide stress on the breakaway oxidation of zircaloy-2. J. Nucl. Mater. 37:135–47
    [Google Scholar]
  48. 48. 
    Park JR, Szklarska-Smialowska Z. 1985. Pitting corrosion of Inconel 600 in high-temperature water containing CuCl2. Corrosion 41:11665–75
    [Google Scholar]
  49. 49. 
    Davidson RM, DeBold T, Johnson MJ 1987. Corrosion of stainless steels. See Ref. 169 1312–66
  50. 50. 
    Zhai Z, Toloczko M, Kruska K, Bruemmer S. 2017. Precursor evolution and stress corrosion cracking initiation of cold-worked Alloy 690 in simulated pressurized water reactor primary water. Corrosion 73:101224–36
    [Google Scholar]
  51. 51. 
    Ford FP. 1996. Quantitative prediction of environmentally assisted cracking. Corrosion 52:5375–95
    [Google Scholar]
  52. 52. 
    Desgranges C, Lequien F, Aublant E, Nastar M, Monceau D. 2013. Depletion and voids formation in the substrate during high temperature oxidation of Ni-Cr alloys. Oxid. Met. 79:1–293–105
    [Google Scholar]
  53. 53. 
    Kirkendall E. 1939. Rates of diffusion of copper and zinc in alpha brass. Trans. AIME 133:186–203
    [Google Scholar]
  54. 54. 
    Arioka K. 2020. Role of cavity formation on long-term stress corrosion cracking initiation: a review. Corrosion 76:2142–75
    [Google Scholar]
  55. 55. 
    Toloczko MB, Olszta MJ, Bruemmer SM 2011. One dimensional cold rolling effects on stress corrosion crack growth in Alloy 690 tubing and plate materials. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, JT Busby, G Ilevbare, PL Andresen 91–107 Cham, Switz: Springer
    [Google Scholar]
  56. 56. 
    Sedriks AJ. 1996. Corrosion of Stainless Steels New York: Wiley. , 2nd ed..
  57. 57. 
    Gordon BM, Gordon GM 1987. Corrosion in boiling water reactors. See Ref. 169 2439–78
  58. 58. 
    Féron D, Guerre C, Herms E, Laghoutaris P 2016. Stress corrosion cracking of Alloy 600: overviews and experimental techniques. Stress Corrosion Cracking of Nickel Based Alloys in Water-Cooled Nuclear Reactors: The Coriou Effect D Féron, RW Staehle 325–53 Duxford, UK: Elsevier
    [Google Scholar]
  59. 59. 
    Moss T, Kuang W, Was GS. 2018. Stress corrosion crack initiation in Alloy 690 in high temperature water. Curr. Opin. Solid State Mater. Sci. 22:116–25
    [Google Scholar]
  60. 60. 
    Kim TK. 2013. GEN-IV reactors. Nuclear Energy N Tsoulfanidis 175–201 New York: Springer
    [Google Scholar]
  61. 61. 
    Hosemann P, Dickerson R, Dickerson P, Li N, Maloy SA. 2013. Transmission electron microscopy (TEM) on oxide layers formed on D9 stainless steel in lead bismuth eutectic (LBE). Corros. Sci. 66:196–202
    [Google Scholar]
  62. 62. 
    Heinzel A, Kondo M, Takahashi M. 2006. Corrosion of steels with surface treatment and Al-alloying by GESA exposed in lead-bismuth. J. Nucl. Mater. 350:3264–70
    [Google Scholar]
  63. 63. 
    Martinelli L, Balbaud-Célérier F, Terlain A, Delpech S, Santarini G et al. 2008. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy. I. Corros. Sci. 50:92523–36
    [Google Scholar]
  64. 64. 
    Martinelli L, Balbaud-Célérier F, Picard G, Santarini G. 2008. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy. III. Corros. Sci. 50:92549–59
    [Google Scholar]
  65. 65. 
    Zhang J, Li N. 2008. Review of the studies on fundamental issues in LBE corrosion. J. Nucl. Mater. 373:1–3351–77
    [Google Scholar]
  66. 66. 
    Zhang J, Hosemann P, Maloy S. 2010. Models of liquid metal corrosion. J. Nucl. Mater. 404:182–96
    [Google Scholar]
  67. 67. 
    Van den Bosch J, Hosemann P, Almazouzi A, Maloy SA. 2010. Liquid metal embrittlement of silicon enriched steel for nuclear applications. J. Nucl. Mater. 398:1–3116–21
    [Google Scholar]
  68. 68. 
    Hosemann P, Frazer D, Stergar E, Lambrinou K. 2016. Twin boundary–accelerated ferritization of austenitic stainless steels in liquid lead-bismuth eutectic. Scr. Mater. 118:37–40
    [Google Scholar]
  69. 69. 
    Rossi F, Fumagalli F, Ruiz-Moreno A, Moilanen P, Hähner P. 2020. Membrane bulge test rig for irradiation-assisted stress-corrosion cracking. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 479:80–92
    [Google Scholar]
  70. 70. 
    Raiman SS, Lee S. 2018. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts. J. Nucl. Mater. 511:523–35
    [Google Scholar]
  71. 71. 
    Nishimura H, Terai T, Yamawaki M, Tanaka S, Sagara A, Motojima O. 2002. Compatibility of ferritic steels with Li2BeF4 molten salt breeder. J. Nucl. Mater.307–311 Part 2 1355–59
    [Google Scholar]
  72. 72. 
    Terai T, Hosoya Y, Tanaka S, Sagara A, Motojima O. 1998. Compatibility of structural materials with Li2BeF4 molten salt breeder. J. Nucl. Mater.258–263 Part 1 513–18
    [Google Scholar]
  73. 73. 
    Tzvetkoff T, Kolchakov J. 2004. Mechanism of growth, composition and structure of oxide films formed on ferrous alloys in molten salt electrolytes: a review. Mater. Chem. Phys. 87:1201–11
    [Google Scholar]
  74. 74. 
    Olander D. 2002. Redox condition in molten fluoride salts: definition and control. J. Nucl. Mater. 300:2–3270–72
    [Google Scholar]
  75. 75. 
    Stempien JD, Ballinger RG, Forsberg CW. 2016. An integrated model of tritium transport and corrosion in fluoride salt–cooled high-temperature reactors (FHRs). I. Theory and benchmarking. Nucl. Eng. Des. 310:258–72
    [Google Scholar]
  76. 76. 
    McNeese LE. 1976. Molten-Salt Reactor Program: semiannual progress report for period ending February 29, 1976 Tech. Rep., Oak Ridge Natl. Lab. Oak Ridge, TN:
    [Google Scholar]
  77. 77. 
    Ignatiev V, Surenkov A. 2012. Material performance in molten salts. Compr. Nucl. Mater. 5:221–50
    [Google Scholar]
  78. 78. 
    Ignatiev V, Surenkov A 2017. Corrosion phenomena induced by molten salts in generation IV nuclear reactors. Structural Materials for Generation IV Nuclear Reactors P Yvon 153–89 Amsterdam: ElsevierReviews corrosion phenomena and corrosion experience in molten salts.
    [Google Scholar]
  79. 79. 
    Haubenreich PN, Engel JR. 1970. Experience with the Molten-Salt Reactor Experiment. Nucl. Appl. Technol. 8:2118–36Summarizes 4 years of operating experience with the Molten Salt Reactor Experiment.
    [Google Scholar]
  80. 80. 
    Chan KJ, Ambrecht RJ, Luong JM, Choi WT, Singh PM. 2018. Carburization effects on the corrosion of Cr, Fe, Ni, W, and Mo in fluoride-salt cooled high temperature reactor (FHR) coolant. Ann. Nucl. Energy 120:279–85
    [Google Scholar]
  81. 81. 
    Qiu J, Wu A, Li Y, Xu Y, Scarlat R, Macdonald DD. 2020. Galvanic corrosion of type 316L stainless steel and graphite in molten fluoride salt. Corros. Sci. 170:108677
    [Google Scholar]
  82. 82. 
    Zheng G, Kelleher B, Cao G, Anderson M, Allen T, Sridharan K 2015. Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt. J. Nucl. Mater. 461:143–50
    [Google Scholar]
  83. 83. 
    Falconer C, Doniger WH, Bailly-Salins L, Buxton E, Elbakhshwan M et al. 2020. Non-galvanic mass transport in molten fluoride salt isothermal corrosion cells. Corros. Sci. 177:108955
    [Google Scholar]
  84. 84. 
    Eichenberg JD, Lieberman RM, Mrazik FP. 1960. Irradiation of UO2 fuel rods—the XII experiment AEC Res. Dev. Rep. WAPD-208 Bettis At. Power Lab. Pittsburgh, PA:
  85. 85. 
    Dalgaard SB. 1962. Corrosion and hydriding behaviour of some Zr 2.5 wt% Nb alloys in water, steam and various gases at high temperature Presented at IAEA Conference on Corrosion of Reactor Materials Salzburg: June
  86. 86. 
    Johnson A Jr. 1977. Behavior of spent nuclear fuel in water pool storage Rep., Pac. Northw. Lab. Richland, WA:
  87. 87. 
    Burns W, Maffei H. 1962. Neutron irradiation and cold work effects on Zircaloy-2 corrosion and hydrogen pickup. Corrosion of Zirconium Alloys W Anderson 101–17 West Conshohocken, PA: ASTM Int.
    [Google Scholar]
  88. 88. 
    Asher RC, Davies D, Kirstein TBA, McCullen PAJ, White JF. 1970. The effects of radiation on the corrosion of some Zr alloys. Corros. Sci. 10:10695–707
    [Google Scholar]
  89. 89. 
    Jenks GH. 1961. Review and correlation of in-pile zircaloy-2 corrosion data and a model for the effect of irradiation Tech. Rep., Oak Ridge Natl. Lab. Oak Ridge, TN:
  90. 90. 
    Cabrera N, Mott NF. 1949. Theory of the oxidation of metals. Rep. Prog. Phys. 12:1163–84
    [Google Scholar]
  91. 91. 
    Fehlner FP, Mott NF. 1970. Low-temperature oxidation. Oxid. Met. 2:159–99
    [Google Scholar]
  92. 92. 
    Chao CY, Lin LF, Macdonald DD. 1981. A point defect model for anodic passive films. I. Film growth kinetics. J. Electrochem. Soc. 128:6118794
    [Google Scholar]
  93. 93. 
    Suman S, Khan MK, Pathak M, Singh RN, Chakravartty JK. 2015. Hydrogen in Zircaloy: mechanism and its impacts. Int. J. Hydrog. Energy 40:175976–94Summarizes the effects of hydrogen on Zircaloy properties.
    [Google Scholar]
  94. 94. 
    Was GS, Andresen PL. 2012. Irradiation assisted corrosion and stress corrosion cracking (IAC/IASCC) in nuclear reactor systems and components. Nucl. Corros. Sci. Eng. 2012.131–85Introduces IASCC in nuclear materials in water.
    [Google Scholar]
  95. 95. 
    Bradhurst DH, Shirvington PJ, Heuer PM. 1973. The effects of radiation and oxygen on the aqueous oxidation of zirconium and its alloys at 290°C. J. Nucl. Mater. 46:153–76
    [Google Scholar]
  96. 96. 
    Marlowe MO. 1985. Nuclear fuel cladding localized corrosion Presented at American Nuclear Safety Topical Meeting on Light Water Reactor Fuel Performance Orlando: April 21–24
  97. 97. 
    Hillner E, Franklin DG, Smee JD. 2000. Long-term corrosion of Zircaloy before and after irradiation. J. Nucl. Mater. 278:2334–45
    [Google Scholar]
  98. 98. 
    Johnson ABJ, Irvin JE. 1967. Radiation-enhanced oxidation of Zircaloy-2 in pH-10 LiOH and pH-10 NH4OH Rep., Pac. Northw. Lab Richland, WA:
  99. 99. 
    Cheng B, Adamson RB 1987. Mechanistic studies of Zircaloy nodular corrosion. Zirconium in the Nuclear Industry R Adamson, LS Van 387–416 West Conshohocken, PA: ASTM Int.
    [Google Scholar]
  100. 100. 
    Etoh Y, Shimada S. 1992. Irradiation-induced dissolution of precipitates in Zircaloy-2. J. Nucl. Sci. Technol. 29:4353–66
    [Google Scholar]
  101. 101. 
    Kruger RM, Adamson RB. 1993. Precipitate behavior in zirconium-based alloys in BWRs. J. Nucl. Mater. 205:242–50
    [Google Scholar]
  102. 102. 
    Kammenzind BF, Gruber JA, Bajaj R, Smee JD 2018. Neutron irradiation effects on the corrosion of Zircaloy-4 in a pressurized water reactor environment. Zirconium in the Nuclear Industry (18th International Symposium) R Comstock, A Motta 448–90 West Conshohocken, PA: ASTM Int.
  103. 103. 
    Howlader MMR, Kinoshita C, Shiiyama K, Kutsuwada M, Inagaki M. 1999. In situ measurement of electrical conductivity of Zircaloy oxides and their formation mechanism under electron irradiation. J. Nucl. Mater. 265:1–2100–7
    [Google Scholar]
  104. 104. 
    Kritsky VG, Petrik NG, Berezina IG, Doilnitsina Vnipiet VV 1993. Effect of water chemistry and fuel operation parameters on Zr + 1% Nb cladding corrosion. Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants (TECDOC 927) Vienna: IAEA
    [Google Scholar]
  105. 105. 
    Lysell G, Nystrand A-C, Ullberg M 2005. Shadow corrosion mechanism of Zircaloy. Zirconium in the Nuclear Industry: Fourteenth International Symposium P Rudling, B Kammenzind pp. 44561 West Conshohocken, PA: ASTM Int.
    [Google Scholar]
  106. 106. 
    Wang P, Was GS. 2015. Oxidation of Zircaloy-4 during in situ proton irradiation and corrosion in PWR primary water. J. Mater. Res. 30:91335–48
    [Google Scholar]
  107. 107. 
    Was GS, Andresen PL. 2007. Stress corrosion cracking behavior of alloys in aggressive nuclear reactor core environments. Corrosion 63:119–45
    [Google Scholar]
  108. 108. 
    Andresen PL, Was GS. 2019. Irradiation assisted stress corrosion cracking. Compr. Nucl. Mater. 4:190–217
    [Google Scholar]
  109. 109. 
    Chopra OK, Rao AS. 2011. A review of irradiation effects on LWR core internal materials—IASCC susceptibility and crack growth rates of austenitic stainless steels. J. Nucl. Mater. 409:3235–56
    [Google Scholar]
  110. 110. 
    Garner FA. 2020. Radiation-induced damage in austenitic structural steels used in nuclear reactors. Compr. Nucl. Mater. 3:57–168
    [Google Scholar]
  111. 111. 
    Raiman SS, Wang P, Was GS. 2017. Irradiation accelerated corrosion of stainless steel and ferritic-martensitic steel in simulated primary water Presented at Corrosion 2017, Pap. NACE-2017-9131 New Orleans: March
  112. 112. 
    Raiman SS, Bartels DM, Was GS. 2017. Radiolysis driven changes to oxide stability during irradiation-corrosion of 316L stainless steel in high temperature water. J. Nucl. Mater. 493:40–52
    [Google Scholar]
  113. 113. 
    Raiman SS, Was GS. 2017. Accelerated corrosion and oxide dissolution in 316L stainless steel irradiated in situ in high temperature water. J. Nucl. Mater. 493:207–18
    [Google Scholar]
  114. 114. 
    Kondou K, Hasegawa A, Abe K 2004. Study on irradiation induced corrosion behavior in austenitic stainless steel using hydrogen-ion bombardment. J. Nucl. Mater. 329–333 652–56
    [Google Scholar]
  115. 115. 
    Qvist S, Bolind AM, Hosemann P, Wang Y, Tesmer J et al. 2013. Capability demonstration of simultaneous proton beam irradiation during exposure to molten lead–bismuth eutectic for HT9 steel. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 698:98–105
    [Google Scholar]
  116. 116. 
    Dai Y, Wohlmuther M, Boutellier V, Hahl S, Lagotzki A et al. 2016. Non-destructive testing of the MEGAPIE target. J. Nucl. Mater. 468:221–27
    [Google Scholar]
  117. 117. 
    Saito S, Suzuki K, Hatakeyama Y, Suzuki M, Dai Y. 2020. Experimental validation of tensile properties measured with thick samples taken from MEGAPIE target. J. Nucl. Mater. 534:152146
    [Google Scholar]
  118. 118. 
    OECD 2011. Technology and Components of Accelerator-Driven Systems Paris: OECD
  119. 119. 
    Fazio C, Briceno DG, Rieth M, Gessi A, Henry J, Malerba L. 2011. Innovative materials for Gen IV systems and transmutation facilities: the cross-cutting research project GETMAT. Nucl. Eng. Des. 241:3514–20
    [Google Scholar]
  120. 120. 
    Yao C, Wang Z, Zhang H, Chang H, Sheng Y et al. 2019. HLMIF, a facility for investigating the synergistic effect of ion-irradiation and LBE corrosion. J. Nucl. Mater. 523:260–67
    [Google Scholar]
  121. 121. 
    NEA Expert Group Heavy Liquid Met. Technol., OECD 2015. Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies Paris: NEA/OECDComprehensively presents lead-bismuth eutectic properties, including a detailed discussion of recommended values for each property.
    [Google Scholar]
  122. 122. 
    Bauer GS, Salvatores M, Heusener G. 2001. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target. J. Nucl. Mater. 296:1–317–33
    [Google Scholar]
  123. 123. 
    Wagner W, Dai Y, Glasbrenner H, Aebersold HU. 2007. Materials irradiation facilities at the high-power Swiss proton accelerator complex. J. Nucl. Mater. 361: 2–3 Spec. Issue 274–81
    [Google Scholar]
  124. 124. 
    Kirchner T, Bortoli Y, Cadiou A, Foucher Y, Stutzmann JS et al. 2003. LiSoR, a liquid metal loop for material investigation under irradiation. J. Nucl. Mater. 318: Suppl 70–83
    [Google Scholar]
  125. 125. 
    Glasbrenner H, Brütsch R, Dai Y, Gröschel F, Martin M. 2006. Post-irradiation examination on LiSoR 3 experiment. J. Nucl. Mater. 356:1–3247–55
    [Google Scholar]
  126. 126. 
    Glasbrenner H, Gröschel F. 2007. Liquid metal compatibility under irradiation: the LiSoR 5 experiment. J. Nucl. Mater. 367–370(B Spec. Issue) 1590–95
    [Google Scholar]
  127. 127. 
    Glasbrenner H, Dai Y, Gröschel F. 2005. LiSoR irradiation experiments and preliminary post-irradiation examinations. J. Nucl. Mater. 343:1–3267–74
    [Google Scholar]
  128. 128. 
    Dai Y, Glasbrenner H, Boutellier V, Bruetsch R, Jia X, Groeschel F. 2004. Preliminary results of post-irradiation examinations on LiSoR-2 test section. J. Nucl. Mater. 335: 2 Spec. Issue 232–38
    [Google Scholar]
  129. 129. 
    Gavrilov S, Lambrecht M, Stergar E, Eremin S, Zhemkov I et al. 2016. Deliverable D3.9a: PIE of LEXUR II LBE capsules. Rep Eur. Comm., Luxembourg
    [Google Scholar]
  130. 130. 
    Frazer D, Qvist S, Parker S, Krumwiede DL, Caro M et al. 2016. Degradation of HT9 under simultaneous ion beam irradiation and liquid metal corrosion. J. Nucl. Mater. 479:382–89
    [Google Scholar]
  131. 131. 
    Lillard RS, Paciotti M, Tcharnotskaia V. 2004. The influence of proton irradiation on the corrosion of HT-9 during immersion in lead bismuth eutectic. J. Nucl. Mater. 335:3487–92
    [Google Scholar]
  132. 132. 
    Hammer-Rotzler B, Neuhausen J, Boutellier V, Wohlmuther M, Zanini L et al. 2016. Distribution and surface enrichment of radionuclides in lead-bismuth eutectic from spallation targets. Eur. Phys. J. Plus 131:233
    [Google Scholar]
  133. 133. 
    Kugler E. 2000. The ISOLDE facility. Hyperfine Interact 129:1–423–42
    [Google Scholar]
  134. 134. 
    Dai Y, Henry J, Auger T, Vogt JB, Almazouzi A et al. 2006. Assessment of the lifetime of the beam window of MEGAPIE target liquid metal container. J. Nucl. Mater. 356:1–3308–20
    [Google Scholar]
  135. 135. 
    Hombourger B, Křepel J, Pautz A. 2019. Breed-and-burn fuel cycle in molten salt reactors. EPJ Nucl. Sci. Technol. 5:15
    [Google Scholar]
  136. 136. 
    Forsberg CW, Lam S, Carpenter DM, Whyte DG, Scarlat R et al. 2017. Tritium control and capture in salt-cooled fission and fusion reactors: status, challenges, and path forward. Nucl. Technol. 197:2119–39
    [Google Scholar]
  137. 137. 
    Powers JJ, Wirth BD. 2010. A review of TRISO fuel performance models. J. Nucl. Mater. 405:74–82
    [Google Scholar]
  138. 138. 
    Zheng G, Carpenter D, Hu LW, Sridharan K 2016. High temperature corrosion of structural alloys in molten Li2BeF4 (FLiBe) salt. Advances in Materials Science for Environmental and Energy Technologies, Vol. V: Ceramic Transactions T Ohji, R Kanakala, J Matyáš, NJ Manjooran, G Pickrell, W Wong-Ng 93–101 Hoboken, NJ: Wiley
    [Google Scholar]
  139. 139. 
    Zhou W, Yang Y, Zheng G, Woller KB, Stahle PW et al. 2020. Proton irradiation–decelerated intergranular corrosion of Ni-Cr alloys in molten salt. Nat. Commun. 11:3430
    [Google Scholar]
  140. 140. 
    Ezell NDB, Raiman SS, Kurley JM, McDuffee J. 2021. Neutron irradiation of alloy N and 316L stainless steel in contact with a molten chloride salt. Nucl. Eng. Technol. 53:3920–26
    [Google Scholar]
  141. 141. 
    Lane JA 1958. Chemical aspects of molten-fluoride-salt reactor fuels. Fluid Fuel Reactors JA Lane, HG MacPherson, F Maslan, US At. Energy Comm 569–94 Reading, MA: Addison-Wesley
    [Google Scholar]
  142. 142. 
    Lane JA 1958. Behavior of fission products. Fluid Fuel Reactors JA Lane, HG MacPherson, F Maslan, US At. Energy Comm 588–91 Reading, MA: Addison-Wesley
    [Google Scholar]
  143. 143. 
    McCoy HE, McNabb B. 1972. Intergranular cracking of INOR-8 in the MSRE Tech. Rep. ORNL-4829 Oak Ridge Natl. Lab. Oak Ridge, TN:
  144. 144. 
    Guo S, Zhang J, Wu W, Zhou W. 2018. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Prog. Mater. Sci. 97:448–87
    [Google Scholar]
  145. 145. 
    Jia Y, Li Z, Ye X, Liu R, Leng B et al. 2017. Effect of Cr contents on the diffusion behavior of Te in Ni-based alloy. J. Nucl. Mater. 497:101–6
    [Google Scholar]
  146. 146. 
    Keiser JR. 1977. Status of telluriumHastelloy N studies in molten fluoride salts Tech. Rep. Oak Ridge Natl. Lab. Oak Ridge, TN:
    [Google Scholar]
  147. 147. 
    Delpech S, Cabet C, Slim C, Picard GS 2010. Molten fluorides for nuclear applications. Mater. Today 13:1234–41
    [Google Scholar]
  148. 148. 
    Ignatiev V, Surenkov A. 2013. Alloys compatibility in molten salt fluorides: Kurchatov Institute related experience. J. Nucl. Mater. 441:1–3592–603
    [Google Scholar]
  149. 149. 
    Keilholtz GW, Morgan JG, Browning WE. 1959. Effect of radiation on corrosion of structural materials by molten fluorides. Nucl. Sci. Eng. 5:115–20
    [Google Scholar]
  150. 150. 
    Reyes M, Wang P, Was G, Marian J 2019. Determination of dose rate effects on Zircaloy oxidation using proton irradiation and oxygen transport modeling. J. Nucl. Mater. 523:56–65
    [Google Scholar]
  151. 151. 
    Nordlund K, Zinkle SJ, Sand AE, Granberg F, Averback RS et al. 2018. Primary radiation damage: a review of current understanding and models. J. Nucl. Mater. 512:450–79
    [Google Scholar]
  152. 152. 
    Aerts A, Lim J, Rosseel K, Marino A, Gonzalez Prieto B et al. 2018. The Conditioning and Chemistry Programme for MYRRHA Vienna: IAEA
  153. 153. 
    Yin H, Qiu J, Liu H, Liu W, Wang Y et al. 2018. Effect of CrF3 on the corrosion behaviour of Hastelloy-N and 316L stainless steel alloys in FLiNaK molten salt. Corros. Sci. 131:355–64
    [Google Scholar]
  154. 154. 
    Cheng H, Li Z, Leng B, Zhang W, Han F et al. 2015. Intergranular diffusion and embrittlement of a Ni-16Mo-7Cr alloy in Te vapor environment. J. Nucl. Mater. 467:341–48
    [Google Scholar]
  155. 155. 
    DeVan JH, DiStefano JR, Eatherly WP, Keiser JR, Klueh RL. 2008. Materials considerations for molten salt accelerator–based plutonium conversion systems Tech. Rep. Oak Ridge Natl. Lab. Oak Ridge, TN:
  156. 156. 
    Allen TR, Cole JI, Kenik EA, Tsai H, Ukai S et al. 1999. Using fast reactor component evaluation for pressurized water reactor life extension. JOM 51:1027–30
    [Google Scholar]
  157. 157. 
    Zinkle SJ, Busby JT. 2009. Structural materials for fission and fusion energy. Mater. Today 12:1112–19
    [Google Scholar]
  158. 158. 
    Bartels D 2018. Assessment of corrosion resistance of candidate alloys for accident tolerant fuel cladding under reactor conditions. Final Rep NEUP, US Dep. Energy, Washington, DC
    [Google Scholar]
  159. 159. 
    Wang P, Was GS 2019. In-situ proton irradiation–corrosion study of ATF candidate alloys in simulated PWR primary water. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors J Jackson, D Paraventi, M Wright pp. 146174 Cham, Switz: Springer
  160. 160. 
    Zhou W, Woller KB, Zheng G, Stahle PW, Short MP. 2019. A simultaneous corrosion/irradiation facility for testing molten salt–facing materials. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 440:54–59
    [Google Scholar]
  161. 161. 
    Bakai AS 2008. Combined effect of molten fluoride salt and irradiation on Ni-based alloys. Materials Issues for Generation IV Systems V Ghetta, D Gorse, D Mazière, V Pontikis 537–57 Dordrecht, Neth: Springer
    [Google Scholar]
  162. 162. 
    Toth LM, Felker LK. 1990. Fluorine generation by gamma radiolysis of a fluoride salt mixture. Radiat. Eff. Defects Solids 112:4201–10
    [Google Scholar]
  163. 163. 
    Grimes WR. 1964. Reactor Chemistry Division annual progress report for period ending January 31, 1964 Rep. ORNL-3591 Oak Ridge Natl. Lab. Oak Ridge, TN:
  164. 164. 
    Akiyama R, Kitaichi M, Fujiwara T, Sawamura S. 1994. Short lived species produced in pulse irradiated melts of LiF-KF and LiF-NaF-KF eutectic mixtures. J. Nucl. Sci. Technol. 31:3250–52
    [Google Scholar]
  165. 165. 
    Pikaev AK, Makarov IE, Zhukova TN. 1982. Solvated electron in irradiated melts of alkaline halides. Radiat. Phys. Chem. 19:5377–87
    [Google Scholar]
  166. 166. 
    Baldwin CM, Almeida RM, Mackenzie JD. 1981. Halide glasses. J. Non-Cryst. Solids 43:3309–44
    [Google Scholar]
  167. 167. 
    Baes CF. 1970. A polymer model for BeF2 and SiO2 melts. J. Solid State Chem. 1:2159–69
    [Google Scholar]
  168. 168. 
    Féron D, Guerre C, Martin F. 2019. Historical review of Alloy 600 stress corrosion cracking: from the “Coriou effect” to the quantitative micro-nano approach. Corrosion 75:3267–73
    [Google Scholar]
  169. 169. 
    Korb L, Olson D 1987. Metals Handbook, Vol. 13 Materials Park, OH: ASM Int. , 9th ed..
/content/journals/10.1146/annurev-matsci-080819-123403
Loading
/content/journals/10.1146/annurev-matsci-080819-123403
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error