1932

Abstract

Gallium is a metal that literally melts in your hand. It has low toxicity, near-zero vapor pressure, and a viscosity similar to water. Despite possessing a surface tension larger than any other liquid (near room temperature), gallium can form nonspherical shapes due to the thin, solid native oxide skin that forms rapidly in oxygen. These properties enable new ways to pattern metals (e.g., injection and printing) to create stretchable and soft devices with an unmatched combination of mechanical and electrical properties. The oxide skin can be transferred to other substrates and manipulated electrochemically to lower the interfacial tension to near zero. The reactivity of gallium can drive a wide range of reactions. The liquid state of gallium makes it easy to break into particles for making colloids and soft composites that have unusual properties due to the deformable nature of the filler. This review summarizes the truly unique and exciting properties of gallium liquid metals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-125403
2021-07-26
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080819-125403.html?itemId=/content/journals/10.1146/annurev-matsci-080819-125403&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sacks O. 2003. Gallium. Chem. Eng. News Arch. 81:3688
    [Google Scholar]
  2. 2. 
    Jacoby M. 2016. Liquid metals went to work. C&EN Glob. Enterp. 94:4926–26
    [Google Scholar]
  3. 3. 
    Woo M. 2020. Liquid metal renaissance points to wearables, soft robots, and new materials. PNAS 117:105088–91
    [Google Scholar]
  4. 4. 
    Dickey MD. 2020. EML webinar overview: liquid metals at the extreme. Extreme Mech. Lett. 40:100863
    [Google Scholar]
  5. 5. 
    Spells KE. 1936. The determination of the viscosity of liquid gallium over an extended range of temperature. Proc. Phys. Soc. 48:2299
    [Google Scholar]
  6. 6. 
    Züger O, Dürig U. 1992. Atomic structure of the α-Ga(001) surface investigated by scanning tunneling microscopy: direct evidence for the existence of Ga2 molecules in solid gallium. Phys. Rev. B 46:117319–21
    [Google Scholar]
  7. 7. 
    Kim J-H, Kim S, So J-H, Kim K, Koo H-J. 2018. Cytotoxicity of gallium-indium liquid metal in an aqueous environment. ACS Appl. Mater. Interfaces 10:2017448–54
    [Google Scholar]
  8. 8. 
    Goss CH, Kaneko Y, Khuu L, Anderson GD, Ravishankar S et al. 2018. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci. Transl. Med. 10:460eaat7520
    [Google Scholar]
  9. 9. 
    Cochran CN, Foster LM. 1962. Vapor pressure of gallium, stability of gallium suboxide vapor, and equilibria of some reactions producing gallium suboxide vapor. J. Electrochem. Soc. 109:2144–48
    [Google Scholar]
  10. 10. 
    Briggs LJ. 1957. Gallium: thermal conductivity; supercooling; negative pressure. J. Chem. Phys. 26:4784–86
    [Google Scholar]
  11. 11. 
    Giguère PA, Lamontagne D. 1954. Polarography with a dropping gallium electrode. Science 120:3114390–91
    [Google Scholar]
  12. 12. 
    Jacob AR, Parekh DP, Dickey MD, Hsiao LC. 2019. Interfacial rheology of gallium-based liquid metals. Langmuir 35:3611774–83
    [Google Scholar]
  13. 13. 
    Dickey MD. 2014. Emerging applications of liquid metals featuring surface oxides. ACS Appl. Mater. Interfaces 6:2118369–79
    [Google Scholar]
  14. 14. 
    Joshipura ID, Ayers HR, Majidi C, Dickey MD. 2015. Methods to pattern liquid metals. J. Mater. Chem. C 3:3834–41
    [Google Scholar]
  15. 15. 
    Dickey MD. 2017. Stretchable and soft electronics using liquid metals. Adv. Mater. 29:271606425
    [Google Scholar]
  16. 16. 
    Kazem N, Hellebrekers T, Majidi C. 2017. Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 29:271605985
    [Google Scholar]
  17. 17. 
    Kalantar-Zadeh K, Tang J, Daeneke T, O'Mullane AP, Stewart LA et al. 2019. Emergence of liquid metals in nanotechnology. ACS Nano 13:77388–95
    [Google Scholar]
  18. 18. 
    Daeneke T, Khoshmanesh K, Mahmood N, de Castro IA, Esrafilzadeh D et al. 2018. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47:114073–111
    [Google Scholar]
  19. 19. 
    Chen S, Wang H-Z, Zhao R-Q, Rao W, Liu J. 2020. Liquid metal composites. Matter 2:61446–80
    [Google Scholar]
  20. 20. 
    Khoshmanesh K, Tang S-Y, Zhu JY, Schaefer S, Mitchell A et al. 2017. Liquid metal enabled microfluidics. Lab Chip 17:6974–93
    [Google Scholar]
  21. 21. 
    Ren L, Xu X, Du Y, Kalantar-Zadeh K, Dou SX. 2020. Liquid metals and their hybrids as stimulus-responsive smart materials. Mater. Today 34:92–114
    [Google Scholar]
  22. 22. 
    Khondoker MAH, Sameoto D. 2016. Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater. Struct. 25:9093001
    [Google Scholar]
  23. 23. 
    Yan J, Lu Y, Chen G, Yang M, Gu Z 2018. Advances in liquid metals for biomedical applications. Chem. Soc. Rev. 47:82518–33
    [Google Scholar]
  24. 24. 
    Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ 2020. Ga-based liquid metal micro/nanoparticles: recent advances and applications. Small 16:121903391
    [Google Scholar]
  25. 25. 
    Eaker CB, Dickey MD. 2016. Liquid metal actuation by electrical control of interfacial tension. Appl. Phys. Rev. 3:3031103
    [Google Scholar]
  26. 26. 
    Sun X, Yuan B, Sheng L, Rao W, Liu J. 2020. Liquid metal enabled injectable biomedical technologies and applications. Appl. Mater. Today 20:100722
    [Google Scholar]
  27. 27. 
    Lin Y, Genzer J, Dickey MD. 2020. Attributes, fabrication, and applications of gallium-based liquid metal particles. Adv. Sci. 7:122000192
    [Google Scholar]
  28. 28. 
    Neumann TV, Dickey MD. 2020. Liquid metal direct write and 3D printing: a review. Adv. Mater. Technol. 5:92000070
    [Google Scholar]
  29. 29. 
    Cheng S, Wu Z. 2012. Microfluidic electronics. Lab Chip 12:162782
    [Google Scholar]
  30. 30. 
    Chiechi RC, Weiss EA, Dickey MD, Whitesides GM. 2008. Eutectic gallium-indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. Int. Ed. 47:1142–44
    [Google Scholar]
  31. 31. 
    Tang S-Y, Khoshmanesh K, Sivan V, Petersen P, O'Mullane AP et al. 2014. Liquid metal enabled pump. PNAS 111:93304–9Shows the use of interfacial tension gradients on liquid metal to pump and mix fluids.
    [Google Scholar]
  32. 32. 
    Thelen J, Dickey MD, Ward T. 2012. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Lab Chip 12:203961–67
    [Google Scholar]
  33. 33. 
    Tang S-Y, Joshipura ID, Lin Y, Kalantar-Zadeh K, Mitchell A et al. 2016. Liquid-metal microdroplets formed dynamically with electrical control of size and rate. Adv. Mater. 28:4604–9
    [Google Scholar]
  34. 34. 
    Yang T, Kwon B, Weisensee PB, Kang JG, Li X et al. 2018. Millimeter-scale liquid metal droplet thermal switch. Appl. Phys. Lett. 112:6063505
    [Google Scholar]
  35. 35. 
    Cumby BL, Hayes GJ, Dickey MD, Justice RS, Tabor CE, Heikenfeld JC. 2012. Reconfigurable liquid metal circuits by Laplace pressure shaping. Appl. Phys. Lett. 101:17174102
    [Google Scholar]
  36. 36. 
    Jamtveit B, Meakin P. 1999. Growth, Dissolution, and Pattern Formation in Geosystems Dordrecht, Neth: Springer
  37. 37. 
    Ma J, Lin Y, Kim Y-W, Ko Y, Kim J et al. 2019. Liquid metal nanoparticles as initiators for radical polymerization of vinyl monomers. ACS Macro Lett 8:111522–27
    [Google Scholar]
  38. 38. 
    Esrafilzadeh D, Zavabeti A, Jalili R, Atkin P, Choi J et al. 2019. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 10:865
    [Google Scholar]
  39. 39. 
    Hardy SC. 1985. The surface tension of liquid gallium. J. Cryst. Growth 71:3602–6
    [Google Scholar]
  40. 40. 
    Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM. 2008. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18:71097–104
    [Google Scholar]
  41. 41. 
    Regan MJ, Kawamoto EH, Lee S, Pershan PS, Maskil N et al. 1995. Surface layering in liquid gallium: an X-ray reflectivity study. Phys. Rev. Lett. 75:132498–501
    [Google Scholar]
  42. 42. 
    Larsen RJ, Dickey MD, Whitesides GM, Weitz DA. 2009. Viscoelastic properties of oxide-coated liquid metals. J. Rheol. 53:61305–26
    [Google Scholar]
  43. 43. 
    Doudrick K, Liu S, Mutunga EM, Klein KL, Damle V et al. 2014. Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir 30:236867–77
    [Google Scholar]
  44. 44. 
    Kramer RK, Boley JW, Stone HA, Weaver JC, Wood RJ. 2014. Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys. Langmuir 30:2533–39
    [Google Scholar]
  45. 45. 
    Kadlaskar SS, Yoo JH, Abhijeet Lee JB, Choi W 2017. Cost-effective surface modification for Galinstan® lyophobicity. J. Colloid Interface Sci. 492:33–40
    [Google Scholar]
  46. 46. 
    Khan MR, Trlica C, So J-H, Valeri M, Dickey MD 2014. Influence of water on the interfacial behavior of gallium liquid metal alloys. ACS Appl. Mater. Interfaces 6:2422467–73
    [Google Scholar]
  47. 47. 
    Ilyas N, Cook A, Tabor CE. 2017. Designing liquid metal interfaces to enable next generation flexible and reconfigurable electronics. Adv. Mater. Interfaces 4:151700141
    [Google Scholar]
  48. 48. 
    Lin Y, Gordon O, Khan MR, Vasquez N, Genzer J, Dickey MD. 2017. Vacuum filling of complex microchannels with liquid metal. Lab Chip 17:183043–50
    [Google Scholar]
  49. 49. 
    Ladd C, So J-H, Muth J, Dickey MD. 2013. 3D printing of free standing liquid metal microstructures. Adv. Mater. 25:365081–85Illustrates the role of the oxide skin for patterning liquid metal.
    [Google Scholar]
  50. 50. 
    Park Y-G, An HS, Kim J-Y, Park J-U. 2019. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci. Adv. 5:6eaaw2844
    [Google Scholar]
  51. 51. 
    Watson AM, Cook AB, Tabor CE. 2019. Electrowetting-assisted selective printing of liquid metal. Adv. Eng. Mater. 21:101900397
    [Google Scholar]
  52. 52. 
    Boley JW, White EL, Kramer RK. 2015. Mechanically sintered gallium-indium nanoparticles. Adv. Mater. 27:142355–60
    [Google Scholar]
  53. 53. 
    Liu S, Yuen MC, White EL, Boley JW, Deng B et al. 2018. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl. Mater. Interfaces 10:3328232–41
    [Google Scholar]
  54. 54. 
    Morris NJ, Farrell ZJ, Tabor CE. 2019. Chemically modifying the mechanical properties of core-shell liquid metal nanoparticles. Nanoscale 11:3717308–18
    [Google Scholar]
  55. 55. 
    Thrasher CJ, Farrell ZJ, Morris NJ, Willey CL, Tabor CE. 2019. Mechanoresponsive polymerized liquid metal networks. Adv. Mater. 31:401903864
    [Google Scholar]
  56. 56. 
    Jeong SH, Hjort K, Wu Z. 2015. Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer. Sci. Rep. 5:8419
    [Google Scholar]
  57. 57. 
    Khondoker MAH, Ostashek A, Sameoto D. 2019. Direct 3D printing of stretchable circuits via liquid metal co-extrusion within thermoplastic filaments. Adv. Eng. Mater. 21:71900060
    [Google Scholar]
  58. 58. 
    Lu T, Finkenauer L, Wissman J, Majidi C. 2014. Rapid prototyping for soft-matter electronics. Adv. Funct. Mater. 24:223351–56
    [Google Scholar]
  59. 59. 
    Pan C, Kumar K, Li J, Markvicka EJ, Herman PR, Majidi C. 2018. Visually imperceptible liquid-metal circuits for transparent, stretchable electronics with direct laser writing. Adv. Mater. 30:121706937
    [Google Scholar]
  60. 60. 
    Zheng Y, He Z-Z, Yang J, Liu J 2014. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci. Rep. 4:4588
    [Google Scholar]
  61. 61. 
    Ma B, Xu C, Chi J, Chen J, Zhao C, Liu H 2019. A versatile approach for direct patterning of liquid metal using magnetic field. Adv. Funct. Mater. 29:281901370
    [Google Scholar]
  62. 62. 
    Kramer RK, Majidi C, Wood RJ. 2013. Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv. Funct. Mater. 23:425292–96
    [Google Scholar]
  63. 63. 
    Jeong SH, Hagman A, Hjort K, Jobs M, Sundqvist J, Wu Z. 2012. Liquid alloy printing of microfluidic stretchable electronics. Lab Chip 12:224657–64
    [Google Scholar]
  64. 64. 
    Gozen BA, Tabatabai A, Ozdoganlar OB, Majidi C. 2014. High-density soft-matter electronics with micron-scale line width. Adv. Mater. 26:305211–16
    [Google Scholar]
  65. 65. 
    Kim M, Alrowais H, Pavlidis S, Brand O. 2017. Size-scalable and high-density liquid-metal-based soft electronic passive components and circuits using soft lithography. Adv. Funct. Mater. 27:31604466
    [Google Scholar]
  66. 66. 
    Yan S, Li Y, Zhao Q, Yuan D, Yun G et al. 2018. Liquid metal–based amalgamation-assisted lithography for fabrication of complex channels with diverse structures and configurations. Lab Chip 18:5785–92
    [Google Scholar]
  67. 67. 
    Li G, Lee D-W. 2017. An advanced selective liquid-metal plating technique for stretchable biosensor applications. Lab Chip 17:203415–21
    [Google Scholar]
  68. 68. 
    Hirsch A, Michaud HO, Gerratt AP, de Mulatier S, Lacour SP. 2016. Intrinsically stretchable biphasic (solid-liquid) thin metal films. Adv. Mater. 28:224507–12
    [Google Scholar]
  69. 69. 
    Nijhuis CA, Reus WF, Barber JR, Dickey MD, Whitesides GM. 2010. Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Lett 10:93611–19
    [Google Scholar]
  70. 70. 
    Andrews JB, Mondal K, Neumann TV, Cardenas JA, Wang J et al. 2018. Patterned liquid metal contacts for printed carbon nanotube transistors. ACS Nano 12:65482–88
    [Google Scholar]
  71. 71. 
    Tang S-Y, Sivan V, Petersen P, Zhang W, Morrison PD et al. 2014. Liquid metal actuator for inducing chaotic advection. Adv. Funct. Mater. 24:375851–58
    [Google Scholar]
  72. 72. 
    Zhu JY, Tang S-Y, Khoshmanesh K, Ghorbani K. 2016. An integrated liquid cooling system based on Galinstan liquid metal droplets. ACS Appl. Mater. Interfaces 8:32173–80
    [Google Scholar]
  73. 73. 
    So J-H, Dickey MD. 2011. Inherently aligned microfluidic electrodes composed of liquid metal. Lab Chip 11:5905–11
    [Google Scholar]
  74. 74. 
    Sciambi A, Abate AR. 2014. Generating electric fields in PDMS microfluidic devices with salt water electrodes. Lab Chip 14:152605–9
    [Google Scholar]
  75. 75. 
    Hallfors N, Khan A, Dickey MD, Taylor AM. 2013. Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform. Lab Chip 13:4522–26
    [Google Scholar]
  76. 76. 
    Parekh DP, Ladd C, Panich L, Moussa K, Dickey MD. 2016. 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab Chip 16:101812–20
    [Google Scholar]
  77. 77. 
    Yerasimou Y, Pickert V, Ji B, Song X 2018. Liquid metal magnetohydrodynamic pump for junction temperature control of power modules. IEEE Trans. Power Electron. 33:1210583–93
    [Google Scholar]
  78. 78. 
    Krupenkin T, Taylor JA. 2011. Reverse electrowetting as a new approach to high-power energy harvesting. Nat. Commun. 2:448
    [Google Scholar]
  79. 79. 
    Jeon J, Chung SK, Lee J-B, Doo SJ, Kim D. 2018. Acoustic wave–driven oxidized liquid metal–based energy harvester. Eur. Phys. J. Appl. Phys. 81:220902
    [Google Scholar]
  80. 80. 
    Tang W, Jiang T, Fan FR, Yu AF, Zhang C et al. 2015. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 25:243718–25
    [Google Scholar]
  81. 81. 
    Dong C, Leber A, Das Gupta T, Chandran R, Volpi M et al. 2020. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 11:3537
    [Google Scholar]
  82. 82. 
    Wu J, Tang S-Y, Fang T, Li W, Li X, Zhang S. 2018. A wheeled robot driven by a liquid-metal droplet. Adv. Mater. 30:511805039
    [Google Scholar]
  83. 83. 
    Zhu S, So J-H, Mays R, Desai S, Barnes WR et al. 2013. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater. 23:182308–14
    [Google Scholar]
  84. 84. 
    Park J, Kang HS, Koo M, Park C 2020. Autonomous surface reconciliation of a liquid-metal conductor micropatterned on a deformable hydrogel. Adv. Mater. 32:372002178–83
    [Google Scholar]
  85. 85. 
    Park Y-L, Majidi C, Kramer R, Bérard P, Wood RJ. 2010. Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20:12125029
    [Google Scholar]
  86. 86. 
    So J-H, Thelen J, Qusba A, Hayes GJ, Lazzi G, Dickey MD. 2009. Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 19:223632–37An early demonstration of functional electronics that are stretchable and self-healing.
    [Google Scholar]
  87. 87. 
    Cheng S, Rydberg A, Hjort K, Wu Z. 2009. Liquid metal stretchable unbalanced loop antenna. Appl. Phys. Lett. 94:14144103
    [Google Scholar]
  88. 88. 
    Cooper CB, Arutselvan K, Liu Y, Armstrong D, Lin Y et al. 2017. Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv. Funct. Mater. 27:201605630
    [Google Scholar]
  89. 89. 
    Palleau E, Reece S, Desai SC, Smith ME, Dickey MD. 2013. Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 25:111589–92
    [Google Scholar]
  90. 90. 
    Tonazzini A, Mintchev S, Schubert B, Mazzolai B, Shintake J, Floreano D. 2016. Variable stiffness fiber with self-healing capability. Adv. Mater. 28:4610142–48
    [Google Scholar]
  91. 91. 
    Farrell ZJ, Tabor C. 2018. Control of gallium oxide growth on liquid metal eutectic gallium/indium nanoparticles via thiolation. Langmuir 34:1234–40
    [Google Scholar]
  92. 92. 
    Farrell ZJ, Thrasher CJ, Flynn AE, Tabor CE. 2020. Silanized liquid-metal nanoparticles for responsive electronics. ACS Appl. Nano Mater. 3:76297–303
    [Google Scholar]
  93. 93. 
    Gan T, Shang W, Handschuh-Wang S, Zhou X. 2019. Light-induced shape morphing of liquid metal nanodroplets enabled by polydopamine coating. Small 15:91804838
    [Google Scholar]
  94. 94. 
    Yan J, Malakooti MH, Lu Z, Wang Z, Kazem N et al. 2019. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 14:684–90
    [Google Scholar]
  95. 95. 
    Yu Y, Miyako E. 2017. Manipulation of biomolecule-modified liquid-metal blobs. Angew. Chem. 129:4413794–99
    [Google Scholar]
  96. 96. 
    Lu Y, Hu Q, Lin Y, Pacardo DB, Wang C et al. 2015. Transformable liquid-metal nanomedicine. Nat. Commun. 6:10066Reports on the formation of functional nanoparticles and utilization for drug delivery.
    [Google Scholar]
  97. 97. 
    Zhang J, Yao Y, Sheng L, Liu J. 2015. Self-fueled biomimetic liquid metal mollusk. Adv. Mater. 27:162648–55
    [Google Scholar]
  98. 98. 
    Lin Y, Liu Y, Genzer J, Dickey MD. 2017. Shape-transformable liquid metal nanoparticles in aqueous solution. Chem. Sci. 8:53832–37
    [Google Scholar]
  99. 99. 
    Lu Y, Lin Y, Chen Z, Hu Q, Liu Y et al. 2017. Enhanced endosomal escape by light-fueled liquid-metal transformer. Nano Lett 17:42138–45
    [Google Scholar]
  100. 100. 
    Tang J, Zhao X, Li J, Guo R, Zhou Y, Liu J. 2017. Gallium-based liquid metal amalgams: transitional-state metallic mixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl. Mater. Interfaces 9:4135977–87
    [Google Scholar]
  101. 101. 
    Daalkhaijav U, Yirmibesoglu OD, Walker S, Mengüç Y. 2018. Rheological modification of liquid metal for additive manufacturing of stretchable electronics. Adv. Mater. Technol. 3:41700351
    [Google Scholar]
  102. 102. 
    Carle F, Bai K, Casara J, Vanderlick K, Brown E. 2017. Development of magnetic liquid metal suspensions for magnetohydrodynamics. Phys. Rev. Fluids 2:1013301
    [Google Scholar]
  103. 103. 
    Elbourne A, Cheeseman S, Atkin P, Truong NP, Syed N et al. 2020. Antibacterial liquid metals: biofilm treatment via magnetic activation. ACS Nano 14:1802–17
    [Google Scholar]
  104. 104. 
    Wang D, Gao C, Wang W, Sun M, Guo B et al. 2018. Shape-transformable, fusible rodlike swimming liquid metal nanomachine. ACS Nano 12:1010212–20
    [Google Scholar]
  105. 105. 
    Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E. 2017. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat. Commun. 8:15432
    [Google Scholar]
  106. 106. 
    Yu Y, Miyako E 2018. Alternating-magnetic-field-mediated wireless manipulations of a liquid metal for therapeutic bioengineering. iScience 3:134–48
    [Google Scholar]
  107. 107. 
    Park Y-G, Min H, Kim H, Zhexembekova A, Lee CY, Park J-U 2019. Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement. Nano Lett 19:84866–72
    [Google Scholar]
  108. 108. 
    Losurdo M, Suvorova A, Rubanov S, Hingerl K, Brown AS. 2016. Thermally stable coexistence of liquid and solid phases in gallium nanoparticles. Nat. Mater. 15:9995–1002
    [Google Scholar]
  109. 109. 
    Tang S-Y, Mitchell DRG, Zhao Q, Yuan D, Yun G et al. 2019. Phase separation in liquid metal nanoparticles. Matter 1:1192–204
    [Google Scholar]
  110. 110. 
    Fassler A, Majidi C. 2015. Liquid-phase metal inclusions for a conductive polymer composite. Adv. Mater. 27:111928–32
    [Google Scholar]
  111. 111. 
    Jeong SH, Chen S, Huo J, Gamstedt EK, Liu J et al. 2015. Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment. Sci. Rep. 5:18257The first report of liquid metal elastomers that remain soft by using fillers that alter other properties.
    [Google Scholar]
  112. 112. 
    Kazem N, Bartlett MD, Majidi C. 2018. Extreme toughening of soft materials with liquid metal. Adv. Mater. 30:221706594
    [Google Scholar]
  113. 113. 
    Krisnadi F, Nguyen LL, Ankit Ma J, Kulkarni MR et al. 2020. Directed assembly of liquid metal–elastomer conductors for stretchable and self-healing electronics. Adv. Mater. 32:302001642
    [Google Scholar]
  114. 114. 
    Wang H, Yao Y, He Z, Rao W, Hu L et al. 2019. A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv. Mater. 31:231901337
    [Google Scholar]
  115. 115. 
    Blaiszik BJ, Kramer SLB, Grady ME, McIlroy DA, Moore JS et al. 2012. Autonomic restoration of electrical conductivity. Adv. Mater. 24:3398–401
    [Google Scholar]
  116. 116. 
    Markvicka EJ, Bartlett MD, Huang X, Majidi C. 2018. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17:7618–24
    [Google Scholar]
  117. 117. 
    Bartlett MD, Kazem N, Powell-Palm MJ, Huang X, Sun W et al. 2017. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. PNAS 114:92143–48116Reports that the deformation of liquid metal fillers can change the properties of composites
    [Google Scholar]
  118. 118. 
    Ford MJ, Ambulo CP, Kent TA, Markvicka EJ, Pan C et al. 2019. A multifunctional shape-morphing elastomer with liquid metal inclusions. PNAS 116:4321438–44
    [Google Scholar]
  119. 119. 
    Bartlett MD, Fassler A, Kazem N, Markvicka EJ, Mandal P, Majidi C. 2016. Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv. Mater. 28:193726–31
    [Google Scholar]
  120. 120. 
    Yang J, Tang D, Ao J, Ghosh T, Neumann TV et al. 2020. Ultrasoft liquid metal elastomer foams with positive and negative piezopermittivity for tactile sensing. Adv. Funct. Mater. 30:362002611
    [Google Scholar]
  121. 121. 
    Yun G, Tang S-Y, Sun S, Yuan D, Zhao Q et al. 2019. Liquid metal–filled magnetorheological elastomer with positive piezoconductivity. Nat. Commun. 10:1300
    [Google Scholar]
  122. 122. 
    Yun G, Tang S-Y, Zhao Q, Zhang Y, Lu H et al. 2020. Liquid metal composites with anisotropic and unconventional piezoconductivity. Matter 3:3824–41
    [Google Scholar]
  123. 123. 
    Zavabeti A, Ou JZ, Carey BJ, Syed N, Orrell-Trigg R et al. 2017. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358:6361332–35Demonstrates the ability to remove native oxide from liquid metal for synthesizing 2D-like materials at room temperature.
    [Google Scholar]
  124. 124. 
    Fujita J, Miyazawa Y, Ueki R, Sasaki M, Saito T. 2010. Fabrication of large-area graphene using liquid gallium and its electrical properties. Jpn. J. Appl. Phys. 49:6S 06GC01
    [Google Scholar]
  125. 125. 
    Carey BJ, Ou JZ, Clark RM, Berean KJ, Zavabeti A et al. 2017. Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nat. Commun. 8:14482
    [Google Scholar]
  126. 126. 
    Cutinho J, Chang BS, Oyola-Reynoso S, Chen J, Akhter SS et al. 2018. Autonomous thermal-oxidative composition inversion and texture tuning of liquid metal surfaces. ACS Nano 12:54744–53
    [Google Scholar]
  127. 127. 
    Mayyas M, Li H, Kumar P, Ghasemian MB, Yang J et al. 2020. Liquid-metal-templated synthesis of 2D graphitic materials at room temperature. Adv. Mater. 32:292001997
    [Google Scholar]
  128. 128. 
    Cheek Q, Fahrenkrug E, Hlynchuk S, Alsem DH, Salmon NJ, Maldonado S. 2020. In situ transmission electron microscopy measurements of Ge nanowire synthesis with liquid metal nanodroplets in water. ACS Nano 14:32869–79
    [Google Scholar]
  129. 129. 
    Gu J, Fahrenkrug E, Maldonado S. 2013. Direct electrodeposition of crystalline silicon at low temperatures. J. Am. Chem. Soc. 135:51684–87One of several papers that illustrate the use of Ga for reactions.
    [Google Scholar]
  130. 130. 
    Taccardi N, Grabau M, Debuschewitz J, Distaso M, Brandl M et al. 2017. Gallium-rich Pd-Ga phases as supported liquid metal catalysts. Nat. Chem. 9:9862–67
    [Google Scholar]
  131. 131. 
    Ghasemian MB, Mayyas M, Idrus-Saidi SA, Jamal MA, Yang J et al. 2019. Self-limiting galvanic growth of MnO2 monolayers on a liquid metal—applied to photocatalysis. Adv. Funct. Mater. 29:361901649
    [Google Scholar]
  132. 132. 
    Liang S-T, Wang H-Z, Liu J. 2018. Progress, mechanisms and applications of liquid-metal catalyst systems. Chemistry 24:6717616–26
    [Google Scholar]
  133. 133. 
    Zhang W, Ou JZ, Tang S-Y, Sivan V, Yao DD et al. 2014. Liquid metal/metal oxide frameworks. Adv. Funct. Mater. 24:243799–807
    [Google Scholar]
  134. 134. 
    Hoshyargar F, Crawford J, O'Mullane AP. 2017. Galvanic replacement of the liquid metal Galinstan. J. Am. Chem. Soc. 139:41464–71
    [Google Scholar]
  135. 135. 
    David R, Miki N. 2018. Tunable noble metal thin films on Ga alloys via galvanic replacement. Langmuir 34:3610550–59
    [Google Scholar]
  136. 136. 
    Khan MR, Eaker CB, Bowden EF, Dickey MD 2014. Giant and switchable surface activity of liquid metal via surface oxidation. PNAS 111:3914047–51Reports that electrochemical oxidation lowers the effective interfacial tension to near zero.
    [Google Scholar]
  137. 137. 
    Eaker CB, Hight DC, O'Regan JD, Dickey MD, Daniels KE. 2017. Oxidation-mediated fingering in liquid metals. Phys. Rev. Lett. 119:17174502
    [Google Scholar]
  138. 138. 
    Song M, Kartawira K, Hillaire KD, Li C, Eaker CB et al. 2020. Overcoming Rayleigh-Plateau instabilities: stabilizing and destabilizing liquid-metal streams via electrochemical oxidation. PNAS 117:3219026–32
    [Google Scholar]
  139. 139. 
    Yun FF, Yu Z, He Y, Jiang L, Wang Z et al. 2020. Voltage-induced penetration effect in liquid metals at room temperature. Natl. Sci. Rev. 7:2366–72
    [Google Scholar]
  140. 140. 
    Khan MR, Trlica C, Dickey MD. 2015. Recapillarity: electrochemically controlled capillary withdrawal of a liquid metal alloy from microchannels. Adv. Funct. Mater. 25:5671–78
    [Google Scholar]
  141. 141. 
    Yu Z, Chen Y, Yun FF, Cortie D, Jiang L, Wang X. 2018. Discovery of a voltage-stimulated heartbeat effect in droplets of liquid gallium. Phys. Rev. Lett. 121:2024302
    [Google Scholar]
  142. 142. 
    Tang S-Y, Lin Y, Joshipura ID, Khoshmanesh K, Dickey MD. 2015. Steering liquid metal flow in microchannels using low voltages. Lab Chip 15:193905–11
    [Google Scholar]
  143. 143. 
    Wissman J, Dickey MD, Majidi C. 2017. Field-controlled electrical switch with liquid metal. Adv. Sci. 4:121700169
    [Google Scholar]
  144. 144. 
    Koo H, So J, Dickey MD, Velev OD. 2011. Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater. 23:313559–64
    [Google Scholar]
  145. 145. 
    So J, Koo H, Dickey MD, Velev OD. 2012. Ionic current rectification in soft-matter diodes with liquid-metal electrodes. Adv. Funct. Mater. 22:3625–31
    [Google Scholar]
  146. 146. 
    Bernstein LR. 1998. Mechanisms of therapeutic activity for gallium. Pharmacol. Rev. 50:4665–82
    [Google Scholar]
  147. 147. 
    Wang Q, Yu Y, Pan K, Liu J. 2014. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy. IEEE Trans. Biomed. Eng. 61:72161–66
    [Google Scholar]
  148. 148. 
    Yi L, Jin C, Wang L, Liu J 2014. Liquid-solid phase transition alloy as reversible and rapid molding bone cement. Biomaterials 35:379789–801One of the first papers to illustrate the promise of liquid metal for biomedical applications.
    [Google Scholar]
  149. 149. 
    Guo X, Zhang L, Ding Y, Goodenough JB, Yu G 2019. Room-temperature liquid metal and alloy systems for energy storage applications. Energy Environ. Sci. 12:92605–19
    [Google Scholar]
  150. 150. 
    Jin Y, Lin Y, Kiani A, Joshipura ID, Ge M, Dickey MD. 2019. Materials tactile logic via innervated soft thermochromic elastomers. Nat. Commun. 10:4187
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-125403
Loading
/content/journals/10.1146/annurev-matsci-080819-125403
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error