1932

Abstract

The increasing consumption of nonrenewable materials urgently calls for the design and fabrication of sustainable alternatives. New generations of materials should be derived from renewable sources, processed using environmentally friendly methods, and designed considering their full life cycle, especially their end-of-life fate. Here, we review recent advances in developing sustainable polymers from biological matter (biomatter), including progress in the extraction and utilization of bioderived monomers and polymers, as well as the emergence of polymers produced directly from unprocessed biomatter (entire cells or tissues). We also discuss applications of sustainable polymers in bioplastics, biocomposites, and cementitious biomaterials, with emphasis on relating their performance to underlying fundamental mechanisms. Finally, we provide a future outlook for sustainable material development, highlighting the need for more accurate and accessible tools for assessing life-cycle impacts and socioeconomic challenges as this field advances.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080921-083655
2023-07-03
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-080921-083655.html?itemId=/content/journals/10.1146/annurev-matsci-080921-083655&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3:7e1700782
    [Google Scholar]
  2. 2.
    Schneiderman DK, Hillmyer MA. 2017. 50th anniversary perspective: There is a great future in sustainable polymers. Macromolecules 50:103733–49
    [Google Scholar]
  3. 3.
    Mohanty AK, Vivekanandhan S, Pin JM, Misra M. 2018. Composites from renewable and sustainable resources: challenges and innovations. Science 362:6414536–42
    [Google Scholar]
  4. 4.
    Gunawan NR, Tessman M, Schreiman AC, Simkovsky R, Samoylov AA et al. 2020. Rapid biodegradation of renewable polyurethane foams with identification of associated microorganisms and decomposition products. Bioresour. Technol. Rep. 11:100513
    [Google Scholar]
  5. 5.
    Duraj-Thatte AM, Manjula-Basavanna A, Courchesne NMD, Cannici GI, Sánchez-Ferrer A et al. 2021. Water-processable, biodegradable and coatable aquaplastic from engineered biofilms. Nat. Chem. Biol. 17:732–38
    [Google Scholar]
  6. 6.
    Joshi K, Meher MK, Poluri KM. 2020. Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications. ACS Appl. Bio Mater. 3:41884–92
    [Google Scholar]
  7. 7.
    Roumeli E, Hendrickx R, Bonanomi L, Vashisth A, Rinaldi K, Daraio C. 2022. Biological matrix composites from cultured plant cells. PNAS 119:15e2119523119
    [Google Scholar]
  8. 8.
    Abdelrahman OA, Park DS, Vinter KP, Spanjers CS, Ren L et al. 2017. Renewable isoprene by sequential hydrogenation of itaconic acid and dehydra-decyclization of 3-methyl-tetrahydrofuran. ACS Catal. 7:21428–31
    [Google Scholar]
  9. 9.
    Fournier L, Rivera Mirabal DM, Hillmyer MA 2022. Toward sustainable elastomers from the grafting-through polymerization of lactone-containing polyester macromonomers. Macromolecules 55:31003–14
    [Google Scholar]
  10. 10.
    Siracusa V, Blanco I. 2020. Bio-polyethylene (bio-PE), bio-polypropylene (bio-PP) and bio-poly (ethylene terephthalate) (bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 12:81641
    [Google Scholar]
  11. 11.
    John A, Hillmyer MA, Tolman WB. 2017. Anhydride-additive-free nickel-catalyzed deoxygenation of carboxylic acids to olefins. Organometallics 36:3506–9
    [Google Scholar]
  12. 12.
    Vert M, Doi Y, Hellwich KH, Hess M, Hodge P et al. 2012. Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl. Chem. 84:2377–410
    [Google Scholar]
  13. 13.
    Schneiderman DK, Vanderlaan ME, Mannion AM, Panthani TR, Batiste DC et al. 2016. Chemically recyclable biobased polyurethanes. ACS Macro Lett. 5:4515–18
    [Google Scholar]
  14. 14.
    Manker LP, Dick GR, Demongeot A, Hedou MA, Rayroud C et al. 2022. Sustainable polyesters via direct functionalization of lignocellulosic sugars. Nat. Chem. 14:976–84
    [Google Scholar]
  15. 15.
    Shen M, Vijjamarri S, Cao H, Solis K, Robertson ML. 2021. Degradability, thermal stability, and high thermal properties in spiro polycycloacetals partially derived from lignin. Polym. Chem. 12:415986–98
    [Google Scholar]
  16. 16.
    Bolton JM, Hillmyer MA, Hoye TR. 2014. Sustainable thermoplastic elastomers from terpene-derived monomers. ACS Macro Lett. 3:8717–20
    [Google Scholar]
  17. 17.
    Liang L, Liu R, Foster KE, Cook S, Cameron JC et al. 2020. Genome engineering of E. coli for improved styrene production. Metab. Eng. 57:74–84
    [Google Scholar]
  18. 18.
    Clarkson CM, El Awad Azrak SM, Forti ES, Schueneman GT, Moon RJ, Youngblood JP. 2021. Recent developments in cellulose nanomaterial composites. Adv. Mater. 33:282000718
    [Google Scholar]
  19. 19.
    Wang S, Jiang F, Xu X, Kuang Y, Fu K et al. 2017. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 29:351702498
    [Google Scholar]
  20. 20.
    Zhu H, Zhu S, Jia Z, Parvinian S, Li Y et al. 2015. Anomalous scaling law of strength and toughness of cellulose nanopaper. PNAS 112:298971–76
    [Google Scholar]
  21. 21.
    Mittal N, Ansari F, Gowda VK, Brouzet C, Chen P et al. 2018. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12:76378–88
    [Google Scholar]
  22. 22.
    Ling S, Chen W, Fan Y, Zheng K, Jin K et al. 2018. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polym. Sci. 85:1–56
    [Google Scholar]
  23. 23.
    Yusof NLBM, Lim LY, Khor E. 2004. Flexible chitin films: structural studies. Carbohydr. Res. 339:162701–11
    [Google Scholar]
  24. 24.
    Nawawi WMFW, Lee KY, Kontturi E, Murphy RJ, Bismarck A. 2019. Chitin nanopaper from mushroom extract: natural composite of nanofibers and glucan from a single biobased source. ACS Sustain. Chem. Eng. 7:76492–96
    [Google Scholar]
  25. 25.
    Nawawi WMFW, Jones MP, Kontturi E, Mautner A, Bismarck A. 2020. Plastic to elastic: fungi-derived composite nanopapers with tunable tensile properties. Compos. Sci. Technol. 198:108327
    [Google Scholar]
  26. 26.
    Avérous L, Halley PJ. 2009. Biocomposites based on plasticized starch. Biofuels Bioprod. Biorefin. 3:3329–43
    [Google Scholar]
  27. 27.
    Wang J, Liang Y, Zhang Z, Ye C, Chen Y et al. 2021. Thermoplastic starch plasticized by polymeric ionic liquid. Eur. Polym. J. 148:110367
    [Google Scholar]
  28. 28.
    Zhang H, Su Z, Wang X. 2022. Starch-based rehealable and degradable bioplastic enabled by dynamic imine chemistry. ACS Sustain. Chem. Eng. 10:268650–57
    [Google Scholar]
  29. 29.
    Mathew AP, Dufresne A. 2002. Plasticized waxy maize starch: effect of polyols and relative humidity on material properties. Biomacromolecules 3:51101–8
    [Google Scholar]
  30. 30.
    Ren J, Dang KM, Pollet E, Avérous L. 2018. Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: effect of plasticizer nature and nanoclay content. Polymers 10:8808
    [Google Scholar]
  31. 31.
    Epps TH, Korley LTJ, Yan T, Beers KL, Burt TM 2022. Sustainability of synthetic plastics: considerations in materials life-cycle management. JACS Au 2:13–11
    [Google Scholar]
  32. 32.
    Schneider WDH, Dillon AJP, Camassola M 2021. Lignin nanoparticles enter the scene: a promising versatile green tool for multiple applications. Biotechnol. Adv 47:107685
    [Google Scholar]
  33. 33.
    Farooq M, Zou T, Riviere G, Sipponen MH, Österberg M. 2019. Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles. Biomacromolecules 20:2693–704
    [Google Scholar]
  34. 34.
    Xia Q, Chen C, Yao Y, Li J, He S et al. 2021. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 4:7627–35
    [Google Scholar]
  35. 35.
    Fredricks JL, Parker M, Grandgeorge P, Jimenez AM, Law E et al. 2022. The effects of temperature, pressure, and time on lignin incorporation in bacterial cellulose materials. MRS Commun. 12:394–402
    [Google Scholar]
  36. 36.
    Moradali MF, Rehm BH. 2020. Bacterial biopolymers: from pathogenesis to advanced materials. Nat. Rev. Microbiol. 18:4195–210
    [Google Scholar]
  37. 37.
    Sabapathy PC, Devaraj S, Meixner K, Anburajan P, Kathirvel P et al. 2020. Recent developments in polyhydroxyalkanoates (PHAs) production–a review. Bioresour. Technol. 306:123132
    [Google Scholar]
  38. 38.
    Roja K, Sudhakar DR, Anto S, Mathimani T. 2019. Extraction and characterization of polyhydroxyalkanoates from marine green alga and cyanobacteria. Biocatal. Agricult. Biotechnol. 22:101358
    [Google Scholar]
  39. 39.
    Bhatia SK, Gurav R, Choi TR, Jung HR, Yang SY et al. 2019. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids. Int. J. Biol. Macromol. 133:1–10
    [Google Scholar]
  40. 40.
    Wang Q, Wang C, Zhang M, Jian M, Zhang Y. 2016. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett. 16:106695–700
    [Google Scholar]
  41. 41.
    Sanchez-Rexach E, Smith PT, Gomez-Lopez A, Fernandez M, Cortajarena AL et al. 2021. 3D-printed bioplastics with shape-memory behavior based on native bovine serum albumin. ACS Appl. Mater. Interfaces 13:1619193–99
    [Google Scholar]
  42. 42.
    Sabaté R, Ventura S. 2013. Cross-β-sheet supersecondary structure in amyloid folds: techniques for detection and characterization. Protein Supersecondary Structures AE Kister 237–57. Totowa, NJ: Humana
    [Google Scholar]
  43. 43.
    Xiao S, Xiao S, Gräter F 2013. Dissecting the structural determinants for the difference in mechanical stability of silk and amyloid beta-sheet stacks. Phys. Chem. Chem. Phys. 15:228765–71
    [Google Scholar]
  44. 44.
    Duraj-Thatte AM, Manjula-Basavanna A, Rutledge J, Xia J, Hassan S et al. 2021. Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nat. Commun. 12:16600
    [Google Scholar]
  45. 45.
    Nyström G, Roder L, Fernández-Ronco MP, Mezzenga R 2018. Amyloid templated organic-inorganic hybrid aerogels. Adv. Funct. Mater. 28:271703609
    [Google Scholar]
  46. 46.
    Nyström G, Fernández-Ronco MP, Bolisetty S, Mazzotti M, Mezzenga R. 2016. Amyloid templated gold aerogels. Adv. Mater. 28:3472–78
    [Google Scholar]
  47. 47.
    Shen Y, Nyström G, Mezzenga R. 2017. Amyloid fibrils form hybrid colloidal gels and aerogels with dispersed CaCO3 nanoparticles. Adv. Funct. Mater. 27:451700897
    [Google Scholar]
  48. 48.
    Cao Y, Bolisetty S, Adamcik J, Mezzenga R. 2018. Elasticity in physically cross-linked amyloid fibril networks. Phys. Rev. Lett. 120:15158103
    [Google Scholar]
  49. 49.
    Guidetti G, d'Amone L, Kim T, Matzeu G, Mogas-Soldevila L et al. 2022. Silk materials at the convergence of science, sustainability, healthcare, and technology. Appl. Phys. Rev. 9:1011302
    [Google Scholar]
  50. 50.
    Vollrath F. 2000. Strength and structure of spiders' silks. Rev. Mol. Biotechnol. 74:267–83
    [Google Scholar]
  51. 51.
    Luo J, Zhang L, Peng Q, Sun M, Zhang Y et al. 2014. Tough silk fibers prepared in air using a biomimetic microfluidic chip. Int. J. Biol. Macromol. 66:319–24
    [Google Scholar]
  52. 52.
    Keten S, Xu Z, Ihle B, Buehler MJ. 2010. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9:4359–67
    [Google Scholar]
  53. 53.
    Ling S, Li C, Adamcik J, Shao Z, Chen X, Mezzenga R 2014. Modulating materials by orthogonally oriented β-strands: composites of amyloid and silk fibroin fibrils. Adv. Mater. 26:264569–74
    [Google Scholar]
  54. 54.
    Meng L, Shao C, Cui C, Xu F, Lei J, Yang J 2020. Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association. ACS Appl. Mater. Interfaces 12:11628–39
    [Google Scholar]
  55. 55.
    Wang Y, Ma R, Hu K, Kim S, Fang G et al. 2016. Dramatic enhancement of graphene oxide/silk nanocomposite membranes: increasing toughness, strength, and Young's modulus via annealing of interfacial structures. ACS Appl. Mater. Interfaces 8:3724962–73
    [Google Scholar]
  56. 56.
    Ling S, Wang Q, Zhang D, Zhang Y, Mu X et al. 2018. Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv. Funct. Mater. 28:91705291
    [Google Scholar]
  57. 57.
    Lepore E, Bosia F, Bonaccorso F, Bruna M, Taioli S et al. 2017. Spider silk reinforced by graphene or carbon nanotubes. 2D Mater. 4:3031013
    [Google Scholar]
  58. 58.
    Smith PT, Altin G, Millik SC, Narupai B, Sietz C et al. 2022. Methacrylated bovine serum albumin and tannic acid composite materials for three-dimensional printing tough and mechanically functional parts. ACS Appl. Mater. Interfaces 14:1821418–25
    [Google Scholar]
  59. 59.
    De France KJ, Kummer N, Ren Q, Campioni S, Nyström G. 2020. Assembly of cellulose nanocrystal–lysozyme composite films with varied lysozyme morphology. Biomacromolecules 21:125139–47
    [Google Scholar]
  60. 60.
    Bonnaillie LM, Zhang H, Akkurt S, Yam KL, Tomasula PM. 2014. Casein films: the effects of formulation, environmental conditions and the addition of citric pectin on the structure and mechanical properties. Polymers 6:72018–36
    [Google Scholar]
  61. 61.
    Lissel A. 2022. Superwood–recyclable wood-fiber panels with casein binder for architecture and furniture manufacture. Press Release, Mar. 22. https://www.wki.fraunhofer.de/en/press-media/2022/PI_2022-02_superwood-recycling-casein-wood-fiber-panel.html
    [Google Scholar]
  62. 62.
    Jiménez-Rosado M, Zarate-Ramírez L, Romero A, Bengoechea C, Partal P, Guerrero A. 2019. Bioplastics based on wheat gluten processed by extrusion. J. Clean. Prod. 239:117994
    [Google Scholar]
  63. 63.
    Manjula-Basavanna A, Duraj-Thatte AM, Joshi NS. 2021. Robust self-regeneratable stiff living materials fabricated from microbial cells. Adv. Funct. Mater. 31:192010784
    [Google Scholar]
  64. 64.
    Das AAK, Bovill J, Ayesh M, Stoyanov SD, Paunov VN. 2016. Fabrication of living soft matter by symbiotic growth of unicellular microorganisms. J. Mater. Chem. B 4:213685–94
    [Google Scholar]
  65. 65.
    Birnbaum DP, Manjula-Basavanna A, Kan A, Tardy BL, Joshi NS. 2021. Hybrid living capsules autonomously produced by engineered bacteria. Adv. Sci. 8:112004699
    [Google Scholar]
  66. 66.
    Belie ND, Gruyaert E, Al-Tabbaa A, Antonaci P, Baera C et al. 2018. A review of self-healing concrete for damage management of structures. Adv. Mater. Interfaces 5:171800074
    [Google Scholar]
  67. 67.
    Erşan , Hernandez-Sanabria E, Boon N, De Belie N. 2016. Enhanced crack closure performance of microbial mortar through nitrate reduction. Cem. Concr. Compos. 70:159–70
    [Google Scholar]
  68. 68.
    Srinivas MK, Alengaram UJ, Ibrahim S, Phang SM, Vello V et al. 2021. Evaluation of crack healing potential of cement mortar incorporated with blue-green microalgae. J. Build. Eng. 44:102958
    [Google Scholar]
  69. 69.
    Qiu J, Artier J, Cook S, Srubar WV III, Cameron JC, Hubler MH 2021. Engineering living building materials for enhanced bacterial viability and mechanical properties. iScience 24:2102083
    [Google Scholar]
  70. 70.
    Appels FV, Camere S, Montalti M, Karana E, Jansen KM et al. 2019. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 161:64–71
    [Google Scholar]
  71. 71.
    Burry J, Sabin JE, Sheil B, Skavara M, eds. 2020. Fabricate 2020 London: UCL Press
    [Google Scholar]
  72. 72.
    Fang C, Kumari D, Zhu X, Achal V. 2018. Role of fungal-mediated mineralization in biocementation of sand and its improved compressive strength. Int. Biodeterior. Biodegrad. 133:216–20
    [Google Scholar]
  73. 73.
    Raut SH, Sarode D, Lele S. 2014. Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures. World J. Microbiol. Biotechnol. 30:1191–200
    [Google Scholar]
  74. 74.
    Heveran CM, Williams SL, Qiu J, Artier J, Hubler MH et al. 2020. Biomineralization and successive regeneration of engineered living building materials. Matter 2:2481–94
    [Google Scholar]
  75. 75.
    Kane S, Thane A, Espinal M, Lunday K, Armağan H et al. 2021. Biomineralization of plastic waste to improve the strength of plastic-reinforced cement mortar. Materials 14:81949
    [Google Scholar]
  76. 76.
    Haneef M, Ceseracciu L, Canale C, Bayer IS, Heredia-Guerrero JA, Athanassiou A. 2017. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7:141292
    [Google Scholar]
  77. 77.
    Appels FV, Dijksterhuis J, Lukasiewicz CE, Jansen KM, Wösten HA, Krijgsheld P. 2018. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci. Rep. 8:14703
    [Google Scholar]
  78. 78.
    Elsacker E, Vandelook S, Brancart J, Peeters E, De Laet L. 2019. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLOS ONE 14:7e0213954
    [Google Scholar]
  79. 79.
    Ji W, Shen Z, Wen Y. 2014. A continuous hydrothermal saccharification approach of rape straw using dilute sulfuric acid. BioEnergy Res. 7:41392–401
    [Google Scholar]
  80. 80.
    Fayoud N, Tahiri S, Alami Younssi S, Albizane A, Gallart-Mateu D et al. 2016. Kinetic, isotherm and thermodynamic studies of the adsorption of methylene blue dye onto agro-based cellulosic materials. Desalin. Water Treat. 57:3516611–25
    [Google Scholar]
  81. 81.
    Sun W, Tajvidi M, Hunt CG, McIntyre G, Gardner DJ. 2019. Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils. Sci. Rep. 9:13766
    [Google Scholar]
  82. 82.
    Cerimi K, Akkaya KC, Pohl C, Schmidt B, Neubauer P. 2019. Fungi as source for new bio-based materials: a patent review. Fungal Biol. Biotechnol. 6:117
    [Google Scholar]
  83. 83.
    Bitting S, Derme T, Lee J, Van Mele T, Dillenburger B, Block P. 2022. Challenges and opportunities in scaling up architectural applications of mycelium-based materials with digital fabrication. Biomimetics 7:244
    [Google Scholar]
  84. 84.
    Elsacker EV. 2021. Mycelium matters - an interdisciplinary exploration of the fabrication and properties of mycelium-based materials. PhD Thesis, Vrije Univ. Bruss. Brussels, Belg:.
    [Google Scholar]
  85. 85.
    Soh E, Chew ZY, Saeidi N, Javadian A, Hebel D, Le Ferrand H 2020. Development of an extrudable paste to build mycelium-bound composites. Mater. Des. 195:109058
    [Google Scholar]
  86. 86.
    Bindschedler S, Cailleau G, Verrecchia E. 2016. Role of fungi in the biomineralization of calcite. Minerals 6:241
    [Google Scholar]
  87. 87.
    Jackson S, Heath I 1993. Roles of calcium ions in hyphal tip growth. Microbiol. Rev. 57:2367–82
    [Google Scholar]
  88. 88.
    Luo J, Chen X, Crump J, Zhou H, Davies DG et al. 2018. Interactions of fungi with concrete: significant importance for bio-based self-healing concrete. Constr. Build. Mater. 164:275–85
    [Google Scholar]
  89. 89.
    Menon RR, Luo J, Chen X, Zhou H, Liu Z et al. 2019. Screening of fungi for potential application of self-healing concrete. Sci. Rep. 9:12075
    [Google Scholar]
  90. 90.
    Rong H, Qian C-X, Li L-Z. 2012. Influence of molding process on mechanical properties of sandstone cemented by microbe cement. Constr. Build. Mater. 28:1238–43
    [Google Scholar]
  91. 91.
    Di Giacomo R, Maresca B, Angelillo M, Landi G, Leone A et al. 2013. Bio-nano-composite materials constructed with single cells and carbon nanotubes: mechanical, electrical, and optical properties. IEEE Trans. Nanotechnol. 12:61026–30
    [Google Scholar]
  92. 92.
    Di Giacomo R, Daraio C, Maresca B. 2015. Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+. PNAS 112:154541–45
    [Google Scholar]
  93. 93.
    Fredricks JL, Iyer H, McDonald R, Hsu J, Jimenez AM, Roumeli E. 2021. Spirulina-based composites for 3D-printing. J. Polymer Sci. 59:222878–94
    [Google Scholar]
  94. 94.
    Morris A. 2017. Dutch designers convert algae into bioplastic for 3D printing. de zeen Dec. 4. https://www.dezeen.com/2017/12/04/dutch-designers-eric-klarenbeek-maartje-dros-convert-algae-biopolymer-3d-printing-good-design-bad-world/
    [Google Scholar]
  95. 95.
    Balasubramanian S, Yu K, Meyer AS, Karana E, Aubin-Tam ME. 2021. Bioprinting of regenerative photosynthetic living materials. Adv. Funct. Mater. 31:312011162
    [Google Scholar]
  96. 96.
    Natalio F, Fuchs R, Cohen SR, Leitus G, Fritz-Popovski G et al. 2017. Biological fabrication of cellulose fibers with tailored properties. Science 357:63561118–22
    [Google Scholar]
  97. 97.
    Beckwith AL, Borenstein JT, Velásquez-García LF. 2021. Tunable plant-based materials via in vitro cell culture using a Zinnia elegans model. J. Clean. Prod. 288:125571
    [Google Scholar]
  98. 98.
    Zeller MA, Hunt R, Jones A, Sharma S. 2013. Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. J. Appl. Polym. Sci. 130:53263–75
    [Google Scholar]
  99. 99.
    Mathiot C, Ponge P, Gallard B, Sassi JF, Delrue F, Le Moigne N 2019. Microalgae starch-based bioplastics: screening of ten strains and plasticization of unfractionated microalgae by extrusion. Carbohydr. Polym. 208:142–51
    [Google Scholar]
  100. 100.
    Kwak C, Ryu SY, Park H, Lim S, Yang J et al. 2021. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions. J. Colloid Interface Sci. 582:81–89
    [Google Scholar]
  101. 101.
    Otsuki T, Zhang F, Kabeya H, Hirotsu T. 2004. Synthesis and tensile properties of a novel composite of Chlorella and polyethylene. J. Appl. Polym. Sci. 92:2812–16
    [Google Scholar]
  102. 102.
    Saha P, Aloui H, Yun JH, Kim HS, Kim BS. 2021. Development of a novel composite film based on polyurethane and defatted Chlorella biomass: physical and functional characterization. J. Appl. Polym. Sci. 138:1450152
    [Google Scholar]
  103. 103.
    Torres S, Navia R, Campbell Murdy R, Cooke P, Misra M, Mohanty AK 2015. Green composites from residual microalgae biomass and poly(butylene adipate-co-terephthalate): processing and plasticization. ACS Sustain. Chem. Eng. 3:4614–24
    [Google Scholar]
  104. 104.
    Toro C, Reddy MM, Navia R, Rivas M, Misra M, Mohanty AK. 2013. Characterization and application in biocomposites of residual microalgal biomass generated in third generation biodiesel. J. Polym. Environ. 21:4944–51
    [Google Scholar]
  105. 105.
    Chen X, Matar MG, Beatty DN, Srubar WV III 2021. Retardation of portland cement hydration with photosynthetic algal biomass. ACS Sustain. Chem. Eng. 9:4113726–34
    [Google Scholar]
  106. 106.
    Bishop G, Styles D, Lens PN. 2021. Environmental performance comparison of bioplastics and petrochemical plastics: a review of life cycle assessment (LCA) methodological decisions. Resour. Conserv. Recycl. 168:105451
    [Google Scholar]
  107. 107.
    Yates MR, Barlow CY. 2013. Life cycle assessments of biodegradable, commercial biopolymers—a critical review. Resour. Conserv. Recycl. 78:54–66
    [Google Scholar]
  108. 108.
    Moshood TD, Nawanir G, Mahmud F, Mohamad F, Ahmad MH, AbdulGhani A 2022. Sustainability of biodegradable plastics: new problem or solution to solve the global plastic pollution?. Curr. Res. Green Sustain. Chem. 5:100273
    [Google Scholar]
  109. 109.
    Filiciotto L, Rothenberg G. 2021. Biodegradable plastics: standards, policies, and impacts. ChemSusChem 14:156–72
    [Google Scholar]
  110. 110.
    Gurunathan T, Mohanty S, Nayak SK. 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 77:1–25
    [Google Scholar]
  111. 111.
    Lee KY, Blaker JJ, Bismarck A. 2009. Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos. Sci. Technol. 69:15–162724–33
    [Google Scholar]
  112. 112.
    Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I et al. 2017. Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–93
    [Google Scholar]
  113. 113.
    Singh AA, Geng S, Herrera N, Oksman K. 2018. Aligned plasticized polylactic acid cellulose nanocomposite tapes: effect of drawing conditions. Compos. Part A Appl. Sci. Manuf. 104:101–7
    [Google Scholar]
  114. 114.
    Bilba K, Arsene MA, Ouensanga A. 2003. Sugar cane bagasse fibre reinforced cement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cem. Concr. Compos. 25:191–96
    [Google Scholar]
  115. 115.
    Ahmad MR, Chen B. 2020. Influence of type of binder and size of plant aggregate on the hygrothermal properties of bio-concrete. Constr. Build. Mater. 251:118981
    [Google Scholar]
  116. 116.
    Arehart JH, Nelson WS, Srubar WV III 2020. On the theoretical carbon storage and carbon sequestration potential of hempcrete. J. Clean. Prod. 266:121846
    [Google Scholar]
  117. 117.
    Jiao L, Su M, Chen L, Wang Y, Zhu H, Dai H. 2016. Natural cellulose nanofibers as sustainable enhancers in construction cement. PLOS ONE 11:12e0168422
    [Google Scholar]
  118. 118.
    Barnat-Hunek D, Szymńska-Chargot M, Jarosz-Hadam M, Łagód G 2019. Effect of cellulose nanofibrils and nanocrystals on physical properties of concrete. Constr. Build. Mater. 223:1–11
    [Google Scholar]
  119. 119.
    Haddad Kolour H, Ashraf W, Landis EN. 2021. Hydration and early age properties of cement pastes modified with cellulose nanofibrils. Trans. Res. Rec. 2675:938–46
    [Google Scholar]
  120. 120.
    Cao Y, Zavaterri P, Youngblood J, Moon R, Weiss J. 2015. The influence of cellulose nanocrystal additions on the performance of cement paste. Cem. Concr. Compos. 56:73–83
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080921-083655
Loading
/content/journals/10.1146/annurev-matsci-080921-083655
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error