1932

Abstract

Grain boundaries in polycrystalline materials migrate to reduce the total excess energy. It has recently been found that the factors governing migration rates of boundaries in bicrystals are insufficient to explain boundary migration in polycrystals. We first review our current understanding of the atomistic mechanisms of grain boundary migration based on simulations and high-resolution transmission electron microscopy observations. We then review our current understanding at the continuum scale based on simulations and observations using high-energy diffraction microscopy. We conclude that detailed comparisons of experimental observations with atomistic simulations of migration in polycrystals (rather than bicrystals) are required to better understand the mechanisms of grain boundary migration, that the driving force for grain boundary migration in polycrystals must include factors other than curvature, and that current simulations of grain growth are insufficient for reproducing experimental observations, possibly because of an inadequate representation of the driving force.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080921-091511
2023-07-03
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-080921-091511.html?itemId=/content/journals/10.1146/annurev-matsci-080921-091511&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kang S-JL, Park J-H, Ko S-Y, Lee H-Y. 2015. Solid-state conversion of single crystals: the principle and the state-of-the-art. J. Am. Ceram. Soc. 98:347–60
    [Google Scholar]
  2. 2.
    Perrin AE, Schuh CA. 2021. Stabilized nanocrystalline alloys: the intersection of grain boundary segregation with processing science. Annu. Rev. Mater. Res. 51:241–68
    [Google Scholar]
  3. 3.
    Gleiter H. 1969. Theory of grain boundary migration rate. Acta Metall 17:853–62
    [Google Scholar]
  4. 4.
    Gottstein G, Molodov DA, Shvindlerman LS. 1998. Grain boundary migration in metals: recent developments. Interface Sci 6:7–22
    [Google Scholar]
  5. 5.
    Smith DA. 1991. On the mechanisms of grain-boundary migration Paper presented at the 1st International Conference on Grain Growth in Polycrystalline Materials Rome, Italy:
  6. 6.
    Turnbull D. 1951. Theory of grain boundary migration rates. Trans. Am. Inst. Min. Metall. Eng. 191:661–65
    [Google Scholar]
  7. 7.
    Gottstein G, Shvindlerman LS. 2010. Grain Boundary Migration in Metals Boca Raton: CRC Press
  8. 8.
    Bernier JV, Suter RM, Rollett AD, Almer JD. 2020. High-energy X-ray diffraction microscopy in materials science. Annu. Rev. Mater. Res. 50:395–436
    [Google Scholar]
  9. 9.
    McKenna IM, Poulsen SO, Lauridsen EM, Ludwig W, Voorhees PW 2014. Grain growth in four dimensions: a comparison between simulation and experiment. Acta Mater 78:125–34
    [Google Scholar]
  10. 10.
    Rohrer GS. 2011. Grain boundary energy anisotropy: a review. J. Mater. Sci. 46:5881–95
    [Google Scholar]
  11. 11.
    Han J, Thomas SL, Srolovitz DJ. 2018. Grain-boundary kinetics: a unified approach. Prog. Mater. Sci. 98:386–476
    [Google Scholar]
  12. 12.
    Beck PA. 1952. Interface migration in recrystallization. Metal Interfaces208–47. Cleveland, OH: Am. Soc. Metals
    [Google Scholar]
  13. 13.
    Gottstein G, Shvindlerman LS. 1992. On the true dependence of grain-boundary migration rate on driving force. Scr. Metall. Mater. 27:1521–26
    [Google Scholar]
  14. 14.
    Zhang K, Weertman JR, Eastman JA. 2005. Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87:061921
    [Google Scholar]
  15. 15.
    Rheinheimer W, Hoffmann MJ. 2015. Non-Arrhenius behavior of grain growth in strontium titanate: new evidence for a structural transition of grain boundaries. Scr. Mater. 101:68–71
    [Google Scholar]
  16. 16.
    Homer ER, Johnson OK, Britton D, Patterson JE, Sevy ET, Thompson GB. 2022. A classical equation that accounts for observations of non-Arrhenius and cryogenic grain boundary migration. npj Comput. Mater. 8:157
    [Google Scholar]
  17. 17.
    Bhattacharya A, Shen YF, Hefferan CM, Li SF, Lind J et al. 2021. Grain boundary velocity and curvature are not correlated in Ni polycrystals. Science 374:189–93
    [Google Scholar]
  18. 18.
    Muralikrishnan V, Liu H, Yang L, Conry B, Marvel CJ et al. 2023. Observations of unexpected grain boundary migration in SrTiO3. Scr. Mater. 222:115055
    [Google Scholar]
  19. 19.
    Zhang J, Ludwig W, Zhang YB, Sorensen HHB, Rowenhorst DJ et al. 2020. Grain boundary mobilities in polycrystals. Acta Mater 191:211–20
    [Google Scholar]
  20. 20.
    Florez S, Alvarado K, Murgas B, Bozzolo N, Chatain D et al. 2022. Statistical behaviour of interfaces subjected to curvature flow and torque effects applied to microstructural evolutions. Acta Mater 222:117459
    [Google Scholar]
  21. 21.
    Holm EA, Foiles SM. 2010. How grain growth stops: a mechanism for grain-growth stagnation in pure materials. Science 328:1138–41
    [Google Scholar]
  22. 22.
    Thomas SL, Chen KT, Han J, Purohit PK, Srolovitz DJ. 2017. Reconciling grain growth and shear-coupled grain boundary migration. Nat. Comm. 8:1764
    [Google Scholar]
  23. 23.
    Gleiter H. 1969. Mechanism of grain boundary migration. Acta Metall 17:565–73
    [Google Scholar]
  24. 24.
    Gottstein G, Molodov DA, Shvindlerman LS. 2010. Grain-boundary energy and mobility. ASM Handbook Vol. 22B: Metals Process Simulation DU Furrer, SL Semiatin 67–91. Materials Park, OH: ASM Int.
    [Google Scholar]
  25. 25.
    Hirth JP, Balluffi RW. 1973. Grain-boundary dislocations and ledges. Acta Metall 21:929–42
    [Google Scholar]
  26. 26.
    Hirth JP, Pond RC. 1996. Steps, dislocations and disconnections as interface defects relating to structure and phase transformations. Acta Mater 44:4749–63
    [Google Scholar]
  27. 27.
    Chen K, Han J, Srolovitz DJ. 2020. On the temperature dependence of grain boundary mobility. Acta Mater 194:412–21
    [Google Scholar]
  28. 28.
    Thomas SL, Wei CZ, Han J, Xiang Y, Srolovitz DJ. 2019. Disconnection description of triple-junction motion. PNAS 116:8756–65
    [Google Scholar]
  29. 29.
    Admal NC, Ahmed T, Martinez E, Po G. 2022. Interface dislocations and grain boundary disconnections using Smith normal bicrystallography. Acta Mater 241:118340
    [Google Scholar]
  30. 30.
    Combe N, Mompiou F, Legros M. 2016. Disconnections kinks and competing modes in shear-coupled grain boundary migration. Phys. Rev. B 93:024109
    [Google Scholar]
  31. 31.
    Rajabzadeh A, Mompiou F, Legros M, Combe N. 2013. Elementary mechanisms of shear-coupled grain boundary migration. Phys. Rev. Lett. 110:265507
    [Google Scholar]
  32. 32.
    Chen KT, Han J, Pan XQ, Srolovitz DJ. 2020. The grain boundary mobility tensor. PNAS 117:4533–38
    [Google Scholar]
  33. 33.
    Chen KT, Han J, Thomas SL, Srolovitz DJ. 2019. Grain boundary shear coupling is not a grain boundary property. Acta Mater 167:241–47
    [Google Scholar]
  34. 34.
    Trautt ZT, Mishin Y. 2012. Grain boundary migration and grain rotation studied by molecular dynamics. Acta Mater 60:2407–24
    [Google Scholar]
  35. 35.
    Thomas SL, King AH, Srolovitz DJ. 2016. When twins collide: twin junctions in nanocrystalline nickel. Acta Mater 113:301–10
    [Google Scholar]
  36. 36.
    Rabkin E, Srolovitz DJ. 2020. Grain growth stagnation in thin films due to shear-coupled grain boundary migration. Scr. Mater. 180:83–87
    [Google Scholar]
  37. 37.
    Holm EA, Rohrer GS, Foiles SM, Rollett AD, Miller HM, Olmsted DL. 2011. Validating computed grain boundary energies in fcc metals using the grain boundary character distribution. Acta Mater 59:5250–56
    [Google Scholar]
  38. 38.
    Rohrer GS, Holm EA, Rollett AD, Foiles SM, Li J, Olmsted DL. 2010. Comparing calculated and measured grain boundary energies in nickel. Acta Mater 58:5063–69
    [Google Scholar]
  39. 39.
    Molodov KD, Molodov DA. 2018. Grain boundary mediated plasticity: on the evaluation of grain boundary migration - shear coupling. Acta Mater 153:336–53
    [Google Scholar]
  40. 40.
    Cahn JW, Mishin Y, Suzuki A. 2006. Coupling grain boundary motion to shear deformation. Acta Mater 54:4953–75
    [Google Scholar]
  41. 41.
    Taylor JE, Cahn JW. 2007. Shape accommodation of a rotating embedded crystal via a new variational formulation. Interfaces Free Bound 9:493–512
    [Google Scholar]
  42. 42.
    Ren XB, Jin CH. 2020. Grain boundary motion in two-dimensional hexagonal boron nitride. ACS Nano 14:13512–23
    [Google Scholar]
  43. 43.
    Schratt AA, Mohles V. 2020. Efficient calculation of the ECO driving force for atomistic simulations of grain boundary motion. Comp. Mater. Sci. 182:109774
    [Google Scholar]
  44. 44.
    Chesser I, Runnels B, Holm E. 2022. A taxonomy of grain boundary migration mechanisms via displacement texture characterization. Acta Mater 222:117425
    [Google Scholar]
  45. 45.
    Chesser I, Holm E. 2018. Understanding the anomalous thermal behavior of Σ3 grain boundaries in a variety of FCC metals. Scr. Mater. 157:19–23
    [Google Scholar]
  46. 46.
    Homer ER, Holm EA, Foiles SM, Olmsted DL. 2014. Trends in grain boundary mobility: survey of motion mechanisms. JOM 66:114–20
    [Google Scholar]
  47. 47.
    Humberson J, Holm EA. 2017. Anti-thermal mobility in the Σ3 [111] 60° {11 8 5} grain boundary in nickel: mechanism and computational considerations. Scr. Mater. 130:1–6
    [Google Scholar]
  48. 48.
    Olmsted DL, Holm EA, Foiles SM. 2009. Survey of computed grain boundary properties in face-centered cubic metals—II: grain boundary mobility. Acta Mater 57:3704–13
    [Google Scholar]
  49. 49.
    Chen DK, Xu SZ, Kulkarni Y. 2020. Atomistic mechanism for vacancy-enhanced grain boundary migration. Phys. Rev. Mater. 4:033602
    [Google Scholar]
  50. 50.
    Combe N, Mompiou F, Legros M. 2019. Heterogeneous disconnection nucleation mechanisms during grain boundary migration. Phys. Rev. Mater. 3:060601
    [Google Scholar]
  51. 51.
    Koju RK, Mishin Y. 2020. Direct atomistic modeling of solute drag by moving grain boundaries. Acta Mater 198:111–20
    [Google Scholar]
  52. 52.
    Wang MY, Peng Y, Wang HL, Upmanyu M. 2021. Coarsening of polycrystalline patterns in atomically thin surface crystals. Appl. Phys. Lett. 119:123102
    [Google Scholar]
  53. 53.
    Xu M, Chen K, Cao F, Estrada LV, Kaufman TM et al. 2022. Disconnection-mediated twin/twin-junction migration in FCC metals. Acta Mater 240:118339
    [Google Scholar]
  54. 54.
    Chesser I, Holm E, Runnels B. 2021. Optimal transportation of grain boundaries: a forward model for predicting migration mechanisms. Acta Mater 210:116823
    [Google Scholar]
  55. 55.
    Zhang H, Srolovitz DJ, Douglas JF, Warren JA. 2006. Characterization of atomic motion governing grain boundary migration. Phys. Rev. B 74:115404
    [Google Scholar]
  56. 56.
    Berthier L, Biroli G. 2011. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83:587–645
    [Google Scholar]
  57. 57.
    Babcock SE, Balluffi RW. 1989. Grain-boundary kinetics—II. In situ observations of the role of grain boundary dislocations in high-angle boundary migration. Acta Metall 37:2367–76
    [Google Scholar]
  58. 58.
    Merkle KL, Thompson LJ, Phillipp F 2004. In-situ HREM studies of grain boundary migration. Interface Sci 12:277–92
    [Google Scholar]
  59. 59.
    Bowers ML, Ophus C, Gautam A, Lancon F, Dahmen U. 2016. Step coalescence by collective motion at an incommensurate grain boundary. Phys. Rev. Lett. 116:106102
    [Google Scholar]
  60. 60.
    Rajabzadeh A, Legros M, Combe N, Mompiou F, Molodov DA. 2013. Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration. Phil. Mag. 93:1299–316
    [Google Scholar]
  61. 61.
    Wei JK, Feng B, Ishikawa R, Yokoi T, Matsunaga K et al. 2021. Direct imaging of atomistic grain boundary migration. Nat. Mater. 20:951–55
    [Google Scholar]
  62. 62.
    Zhu Q, Cao G, Wang JW, Deng C, Li JX et al. 2019. In situ atomistic observation of disconnection-mediated grain boundary migration. Nat. Comm. 10:156
    [Google Scholar]
  63. 63.
    Mompiou F, Caillard D, Legros M. 2009. Grain boundary shear–migration coupling—I. In situ TEM straining experiments in Al polycrystals. Acta Mater. 57:2198–209
    [Google Scholar]
  64. 64.
    Legros M, Gianola DS, Hemker KJ. 2008. In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56:3380–93
    [Google Scholar]
  65. 65.
    Sternlicht H, Rheinheimer W, Mehlmann A, Rothschild A, Hoffmann MJ, Kaplan WD. 2020. The mechanism of grain growth at general grain boundaries in SrTiO3. Scr. Mater. 188:206–11
    [Google Scholar]
  66. 66.
    Sternlicht H, Rheinheimer W, Dunin-Borkowski RE, Hoffmann MJ, Kaplan WD. 2019. Characterization of grain boundary disconnections in SrTiO3 part I: the dislocation component of grain boundary disconnections. J. Mater. Sci. 54:3694–709
    [Google Scholar]
  67. 67.
    Sternlicht H, Rheinheimer W, Hoffmann MJ, Kaplan WD. 2016. The mechanism of grain boundary motion in SrTiO3. J. Mater. Sci. 51:467–75
    [Google Scholar]
  68. 68.
    Smith CS. 1952. Grain shapes and other metallurgical applications of topology. Metal Interfaces65–133. Cleveland, OH: Am. Soc. Metals
    [Google Scholar]
  69. 69.
    Smith CS. 1964. Some elementary principles of polycrystalline microstructure. Metall. Rev. 9:1–48
    [Google Scholar]
  70. 70.
    Mullins WW. 1956. Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27:900–4
    [Google Scholar]
  71. 71.
    Herring C 1953. The use of classical macroscopic concepts in surface energy problems. Structure and Properties of Solid Surfaces; Proceedings of a Conference Arranged by the National Research Council and Held in September, 1952, in Lake Geneva, Wisconsin, USA R Gomer, CS Smith 5–81. Chicago: Univ. Chicago Press
    [Google Scholar]
  72. 72.
    MacPherson RD, Srolovitz DJ. 2007. The von Neumann relation generalized to coarsening of three-dimensional microstructures. Nature 446:1053–55
    [Google Scholar]
  73. 73.
    Bhattacharya A, Shen YF, Hefferan CM, Li SF, Lind J et al. 2019. Three-dimensional observations of grain volume changes during annealing of polycrystalline Ni. Acta Mater 167:40–50
    [Google Scholar]
  74. 74.
    Patterson BR, DeHoff RT. 2021. Linear relationship between dV/dt and grain volume during grain growth. Metall. Mater. Trans. A 52:3849–59
    [Google Scholar]
  75. 75.
    Shen YF, Maddali S, Menasche D, Bhattacharya A, Rohrer GS, Suter RM. 2019. Importance of outliers: a three-dimensional study of coarsening in α-phase iron. Phys. Rev. Mater. 3:063611
    [Google Scholar]
  76. 76.
    Zhang J, Zhang Y, Ludwig W, Rowenhorst D, Voorhees PW, Poulsen HF. 2018. Three-dimensional grain growth in pure iron. Part I. Statistics on the grain level. Acta Mater 156:76–85
    [Google Scholar]
  77. 77.
    Powers JD, Glaeser AM. 1998. Grain boundary migration in ceramics. Interface Sci 6:23–39
    [Google Scholar]
  78. 78.
    Beladi H, Nuhfer NT, Rohrer GS. 2014. The five-parameter grain boundary character and energy distributions of a fully austenitic high-manganese steel using three dimensional data. Acta Mater 70:281–89
    [Google Scholar]
  79. 79.
    Beladi H, Rohrer GS. 2013. The relative grain boundary area and energy distributions in a ferritic steel determined from three-dimensional electron backscatter diffraction maps. Acta Mater 61:1404–12
    [Google Scholar]
  80. 80.
    Li J, Dillon SJ, Rohrer GS. 2009. Relative grain boundary area and energy distributions in nickel. Acta Mater 57:4304–11
    [Google Scholar]
  81. 81.
    Saylor DM, Morawiec A, Rohrer GS. 2002. Distribution and energies of grain boundaries in magnesia as a function of five degrees of freedom. J. Am. Ceram. Soc. 85:3081–83
    [Google Scholar]
  82. 82.
    Olmsted DL, Foiles SM, Holm EA. 2009. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57:3694–703
    [Google Scholar]
  83. 83.
    Ratanaphan S, Olmsted DL, Bulatov VV, Holm EA, Rollett AD, Rohrer GS. 2015. Grain boundary energies in body-centered cubic metals. Acta Mater 88:346–54
    [Google Scholar]
  84. 84.
    Bulatov VV, Reed BW, Kumar M. 2014. Grain boundary energy function for fcc metals. Acta Mater 65:161–75
    [Google Scholar]
  85. 85.
    Sarochawikasit R, Wang C, Kumam P, Beladi H, Okita T et al. 2021. Grain boundary energy function for alpha iron. Materialia 19:101186
    [Google Scholar]
  86. 86.
    Abdeljawad F, Foiles SM, Moore AP, Hinkle AR, Barr CM et al. 2018. The role of the interface stiffness tensor on grain boundary dynamics. Acta Mater 158:440–53
    [Google Scholar]
  87. 87.
    Moore RD, Beecroft T, Rohrer GS, Barr CM, Homer ER et al. 2021. The grain boundary stiffness and its impact on equilibrium shapes and boundary migration: analysis of the Σ5, 7, 9, and 11 boundaries in Ni. Acta Mater 218:117220
    [Google Scholar]
  88. 88.
    Blixt KH, Hallberg H. 2022. Grain boundary stiffness based on phase field crystal simulations. Mater. Lett. 318:132178
    [Google Scholar]
  89. 89.
    Lin B, Jin Y, Hefferan CM, Li SF, Lind J et al. 2015. Observation of annealing twin nucleation at triple lines in nickel during grain growth. Acta Mater 99:63–68
    [Google Scholar]
  90. 90.
    Taylor JE. 1992. II—Mean curvature and weighted mean curvature. Acta Metall. Mater. 40:1475–85
    [Google Scholar]
  91. 91.
    Anderson MP, Grest GS, Srolovitz DJ. 1989. Computer-simulation of normal grain-growth in 3 dimensions. Phil. Mag. B 59:293–329
    [Google Scholar]
  92. 92.
    Upmanyu M, Srolovitz DJ, Shvindlerman LS, Gottstein G. 1999. Misorientation dependence of intrinsic grain boundary mobility: simulation and experiment. Acta Mater 47:3901–14
    [Google Scholar]
  93. 93.
    Chen L-Q. 2002. Phase-field models for microstructural evolution. Annu. Rev. Mater. Res. 32:113–40
    [Google Scholar]
  94. 94.
    Moelans N. 2022. New phase-field model for polycrystalline systems with anisotropic grain boundary properties. Mater. Des. 217:110592
    [Google Scholar]
  95. 95.
    Merriman B, Bence JK, Osher SJ. 1994. Motion of multiple junctions: a level set approach. J. Comp. Phys. 112:334–63
    [Google Scholar]
  96. 96.
    Merriman B, Bence JK, Osher S. 1992. Diffusion Generated Motion by Mean Curvature Los Angeles: Dep. Math., Univ. Calif.
  97. 97.
    Esedoglu S, Otto F. 2015. Threshold dynamics for networks with arbitrary surface tensions. Comm. Pure Appl. Math. 68:808–64
    [Google Scholar]
  98. 98.
    Kobayashi R, Warren JA, Carter WC. 2000. A continuum model of grain boundaries. Phys. D Nonlinear Phenom. 140:141–50
    [Google Scholar]
  99. 99.
    Admal NC, Segurado J, Marian J 2019. A three-dimensional misorientation axis- and inclination-dependent Kobayashi–Warren–Carter grain boundary model. J. Mech. Phys. Solids 128:32–53
    [Google Scholar]
  100. 100.
    Krill CE, Chen LQ. 2002. Computer simulation of 3-D grain growth using a phase-field model. Acta Mater 50:3057–73
    [Google Scholar]
  101. 101.
    Naghibzadeh SK, Walkington N, Dayal K. 2021. Surface growth in deformable solids using an Eulerian formulation. J. Mech. Phys. Solids 154:104499
    [Google Scholar]
  102. 102.
    Peng X, Bhattacharya A, Naghibzadeh SK, Kinderlehrer D, Suter R et al. 2022. Comparison of simulated and measured grain volume changes during grain growth. Phys. Rev. Mater. 6:033402
    [Google Scholar]
  103. 103.
    Barmak K, Eggeling E, Kinderlehrer D, Sharp R, Ta'asan S et al. 2013. Grain growth and the puzzle of its stagnation in thin films: the curious tale of a tail and an ear. Prog. Mater. Sci. 58:987–1055
    [Google Scholar]
  104. 104.
    Demirel MC, Kuprat AP, George DC, Rollett AD. 2003. Bridging simulations and experiments in microstructure evolution. Phys. Rev. Lett. 90:016106
    [Google Scholar]
  105. 105.
    Gruber J, George DC, Kuprat AP, Rohrer GS, Rollett AD. 2005. Effect of anisotropic grain boundary properties on grain boundary plane distributions during grain growth. Scr. Mater. 53:351–55
    [Google Scholar]
  106. 106.
    Gruber J, Miller HM, Hoffmann TD, Rohrer GS, Rollett AD. 2009. Misorientation texture development during grain growth. Part I: simulation and experiment. Acta Mater 57:6102–12
    [Google Scholar]
  107. 107.
    Salama H, Kundin J, Shchyglo O, Mohles V, Marquardt K, Steinbach I. 2020. Role of inclination dependence of grain boundary energy on the microstructure evolution during grain growth. Acta Mater 188:641–51
    [Google Scholar]
  108. 108.
    Esedoglu S, Jacobs M, Zhang PB. 2017. Kernels with prescribed surface tension & mobility for threshold dynamics schemes. J. Comp. Phys. 337:62–83
    [Google Scholar]
  109. 109.
    Guziewski M, Zapiain DMD, Dingreville R, Coleman SP. 2021. Microscopic and macroscopic characterization of grain boundary energy and strength in silicon carbide via machine-learning techniques. ACS Appl. Mater. Interfaces 13:3311–24
    [Google Scholar]
  110. 110.
    Zhu Q, Samanta A, Li BX, Rudd RE, Frolov T. 2018. Predicting phase behavior of grain boundaries with evolutionary search and machine learning. Nat. Comm. 9:467
    [Google Scholar]
  111. 111.
    Dillon SJ, Rohrer GS. 2009. Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth. Acta Mater 57:1–7
    [Google Scholar]
  112. 112.
    Gottstein G, Molodov DA, Shvindlerman LS, Srolovitz DJ, Winning M. 2001. Grain boundary migration: misorientation dependence. Curr. Opin. Solid State Mater. Sci. 5:9–14
    [Google Scholar]
  113. 113.
    Winning M, Gottstein G, Shvindlerman LS. 2002. On the mechanisms of grain boundary migration. Acta Mater 50:353–63
    [Google Scholar]
  114. 114.
    Winning M, Rollett AD, Gottstein G, Srolovitz DJ, Lim A, Shvindlerman LS. 2010. Mobility of low-angle grain boundaries in pure metals. Phil. Mag. 90:3107–28
    [Google Scholar]
  115. 115.
    Sun RC, Bauer CL. 1970. Tilt boundary migration in NaCl bicrystals. Acta Metall 18:639–47
    [Google Scholar]
  116. 116.
    Gunster C, Molodov DA, Gottstein G. 2013. Migration of grain boundaries in Zn. Acta Mater 61:2363–75
    [Google Scholar]
  117. 117.
    Furtkamp M, Gottstein G, Molodov DA, Semenov VN, Shvindlerman LS. 1998. Grain boundary migration in Fe–3.5% Si bicrystals with [001] tilt boundaries. Acta Mater 46:4103–10
    [Google Scholar]
  118. 118.
    Viswanathan R, Bauer CL. 1973. Kinetics of grain-boundary migration in copper bicrystals with [001] rotation axes. Acta Metall 21:1099–109
    [Google Scholar]
  119. 119.
    Molodov DA, Gunster C, Gottstein G, Shvindlerman LS. 2012. A novel experimental approach to determine the absolute grain boundary energy. Phil. Mag. 92:4588–98
    [Google Scholar]
  120. 120.
    Trenkle A, Syha M, Rheinheimer W, Callahan PG, Nguyen L et al. 2020. Nondestructive evaluation of 3D microstructure evolution in strontium titanate. J. Appl. Cryst. 53:349–59
    [Google Scholar]
  121. 121.
    Patterson BR, DeHoff RT, Sahi CA, Sun J, Oddershede J et al. 2019. Integral mean curvature analysis of 3D grain growth: linearity of dV/dt and grain volume Paper presented at the 40th Risø International Symposium on Materials Science: Metal Microstructures in 2D, 3D and 4D Roskilde, Denmark:
  122. 122.
    Dake JM, Oddershede J, Sorensen HO, Werz T, Shatto JC et al. 2016. Direct observation of grain rotations during coarsening of a semisolid Al–Cu alloy. PNAS 113:E5998–6006
    [Google Scholar]
  123. 123.
    Dake JM. 2019. Experimental investigations of microstructural coarsening in 3D using X-ray microscopy PhD Diss., Univ. Ulm Ulm, Ger:.
/content/journals/10.1146/annurev-matsci-080921-091511
Loading
/content/journals/10.1146/annurev-matsci-080921-091511
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error