1932

Abstract

Piezoelectric materials possess the capability to interchangeably convert electrical energy into a mechanical response. While current piezoelectric materials exhibit strong properties, known limitations have inhibited further development. This review describes the ability to combine different piezoelectric materials into a composite to create well-rounded properties. The different types of connectivity classes are described as well as important design considerations and theoretical models. The contributions from the active and passive phases are outlined, focusing primarily on ferroelectric ceramics and polymer-based composites. The key advantage of piezoelectric composites is their ability to combine the flexibility of polymers with the high electromechanical coupling and piezoelectric coefficients of ferroelectric ceramics or single crystals appropriate for a variety of applications. Composites are prominent in medical ultrasound imaging and therapy, underwater acoustic sensing, industrial structural health monitoring, energy harvesting, and numerous other emerging applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080921-092839
2023-07-03
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-080921-092839.html?itemId=/content/journals/10.1146/annurev-matsci-080921-092839&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Curie J, Curie P. 1880. Development, via compression, of electric polarization in hemihedral crystals with inclined faces. Bull. Soc. Minerol. Fr. 3:90–93
    [Google Scholar]
  2. 2.
    Jaffe B, Cook W, Jaffe H. 1971. Piezoelectric Ceramics London: Academic
    [Google Scholar]
  3. 3.
    Valasek J. 1921. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17:475–81
    [Google Scholar]
  4. 4.
    Wainer E. 1946. High titania dielectrics. Trans. Electrochem. Soc. 89:331–56
    [Google Scholar]
  5. 5.
    Sawaguchi E. 1953. Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. J. Phys. Soc. Jpn. 8:615–29
    [Google Scholar]
  6. 6.
    Cohen RE. 1992. Origin of ferroelectricity in perovskite oxides. Nature 358:136–38
    [Google Scholar]
  7. 7.
    Davis M, Damjanovic D, Setter N. 2006. Temperature dependence of the direct piezoelectric effect in relaxor-ferroelectric single crystals: intrinsic and extrinsic contributions. J. Appl. Phys. 100:084103
    [Google Scholar]
  8. 8.
    Park SE, Shrout TR. 1997. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82:1804–11
    [Google Scholar]
  9. 9.
    Fukada E. 1968. Piezoelectricity in polymers and biological materials. Ultrasonics 6:229–34
    [Google Scholar]
  10. 10.
    Fukada E. 1955. Piezoelectricity of wood. J. Phys. Soc. Jpn. 10:149–54
    [Google Scholar]
  11. 11.
    Kawai H. 1969. The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8:975–76
    [Google Scholar]
  12. 12.
    Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X. 2015. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers – a review. Prog. Mater. Sci. 68:1–66
    [Google Scholar]
  13. 13.
    You YM, Liao WQ, Zhao D, Ye HY, Zhang Y et al. 2017. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 357:306–9
    [Google Scholar]
  14. 14.
    Liao WQ, Zhao D, Tang YY, Zhang Y, Li PF et al. 2019. A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate. Science 363:1206–10
    [Google Scholar]
  15. 15.
    Yamada T, Iwasaki H, Niizeki N. 1969. Piezoelectric and elastic properties of LiTaO3 temperature characteristics. Jpn. J. Appl. Phys. 8:1127–32
    [Google Scholar]
  16. 16.
    Aurivillius B. 1949. Mixed bismuth oxides with layer lattices. II. Structure of Bi4Ti3O12. Ark. Kemi 1:463–80
    [Google Scholar]
  17. 17.
    Li F, Cabral MJ, Xu B, Cheng Z, Dickey EC et al. 2019. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 364:264–68
    [Google Scholar]
  18. 18.
    Li F, Zhang S, Yang T, Xu Z, Zhang N et al. 2016. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7:13807
    [Google Scholar]
  19. 19.
    Davis M, Damjanovic D, Hayem D, Setter N. 2005. Domain engineering of the transverse piezoelectric coefficient in perovskite ferroelectrics. J. Appl. Phys. 98:014102
    [Google Scholar]
  20. 20.
    Ochiai T, Fukada E. 1998. Electromechanical properties of poly-L-lactic acid. Jpn. J. Appl. Phys. 37:3374–76
    [Google Scholar]
  21. 21.
    Sappati KK, Bhadra S. 2018. Piezoelectric polymer and paper substrates: a review. Sensors 18:3605
    [Google Scholar]
  22. 22.
    Uchino K. 2017. The development of piezoelectric materials and the new perspective. Advanced Piezoelectric Materials K Uchino 1–92. Duxford, UK: Woodhead Publ. , 2nd ed..
    [Google Scholar]
  23. 23.
    Sharma S. 2021. Composite Materials: Mechanics, Manufacturing and Modeling Boca Raton, FL: CRC Press
    [Google Scholar]
  24. 24.
    Kitayama T, Sugawara S. 1972. Piezoelectric and pyroelectric properties of polymer-ferroelectric composites Prof. Rep. CPM72-17 Gr. Inst. Elec. Comp. Eng. Jpn. Tokyo, Japan:
    [Google Scholar]
  25. 25.
    Takeuchi H, Nakaya C, Katakura K. 1984. Medical ultrasonic probe using PZT/polymer composite. IEEE 1984 Ultrasonics Symposium Proceedings BR McAvoy 507–10. Piscataway, NJ: IEEE
    [Google Scholar]
  26. 26.
    Newnham RE, Skinner DP, Cross LE. 1978. Connectivity and piezoelectric-pyroelectric composites. Mat. Res. Bull. 13:525–36
    [Google Scholar]
  27. 27.
    Suchtelen JV. 1972. Product properties: a new application of composite materials. Philips Res. Rep. 27:28–37
    [Google Scholar]
  28. 28.
    Zhang S, Li F. 2012. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J. Appl. Phys. 111:031301
    [Google Scholar]
  29. 29.
    Smith WA, Auld BA. 1991. Modeling 1–3 Composite piezoelectrics: thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 38:40–47
    [Google Scholar]
  30. 30.
    Zhou D, Cheung KF, Lam KH, Chen Y, Chiu YC et al. 2011. Broad-band and high-temperature ultrasonic transducer fabricated using a Pb(In1/2Nb1/2)-Pb(Mg1/3Nb2/3)-PbTiO3 single crystal/epoxy 1–3 composite. Rev. Sci. Instrum. 82:055110
    [Google Scholar]
  31. 31.
    Smith WA, Shaulov A, Auld BA. 1985. Tailoring the properties of composite piezoelectric materials for medical ultrasonic transducers. IEEE 1985 Ultrasonics Symposium Proceedings BR McAvoy 642–47. Piscataway, NJ: IEEE
    [Google Scholar]
  32. 32.
    Zhang QM, Cao W, Zhao J, Cross LE. 1994. Piezoelectric performance of piezoceramic-polymer composites with 2-2 connectivity - a combined theoretical and experimental study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41:556–64
    [Google Scholar]
  33. 33.
    Cao W, Zhang QM, Cross LE. 1993. Theoretical study on the static performance of piezoelectric ceramic-polymer composites with 2-2 connectivity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40:103–9
    [Google Scholar]
  34. 34.
    Wang Y, Auld BA. 1985. Acoustic wave propagation in one-dimensional periodic composites. IEEE 1985 Ultrasonics Symposium Proceedings BR McAvoy 637–41. Piscataway, NJ: IEEE
    [Google Scholar]
  35. 35.
    Auld BA, Wang Y. 1984. Acoustic wave vibrations in periodic composite plates. IEEE 1984 Ultrasonics Symposium Proceedings BR McAvoy 528–32. Piscataway, NJ: IEEE
    [Google Scholar]
  36. 36.
    Hashimoto KY, Yamaguchi M. 1986. Elastic piezoelectric and dielectric properties of composite materials. IEEE 1986 Ultrasonics Symposium Proceedings BR McAvoy 697–702. Piscataway, NJ: IEEE
    [Google Scholar]
  37. 37.
    Wilm M, Khelif A, Laude V, Ballandras S. 2007. Design guidelines of 1-3 piezoelectric composites dedicated to ultrasound imaging transducers, based on frequency band-gap considerations. J. Acoust. Soc. Am. 122:786–93
    [Google Scholar]
  38. 38.
    Berger H, Kari S, Gabbert U, Rodríguez-Ramos R, Bravo-Castillero J, Guinovart-Díaz R. 2005. A comprehensive numerical homogenisation technique for calculating effective coefficients of uniaxial piezoelectric fibre composites. Mater. Sci. Eng. A 412:53–60
    [Google Scholar]
  39. 39.
    Bezus SV, Topolov VY, Bowen CR. 2006. High-performance 1–3-type composites based on (1−x)Pb(A1/3Nb2/3)O3xPbTiO3 single crystals (A = Mg, Zn). J. Phys. D Appl. Phys. 39:1919–25
    [Google Scholar]
  40. 40.
    Topolov VY. 2004. The remarkable orientation and concentration dependences of the electromechanical properties of 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J. Phys. Condens. Matter 16:2115–28
    [Google Scholar]
  41. 41.
    Furukawa T, Fujino K, Fukada E. 1976. Electromechanical properties in the composites of epoxy resin and PZT ceramics. Jpn. J. Appl. Phys. 15:2119–29
    [Google Scholar]
  42. 42.
    Hashin Z, Shtrikman S. 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11:127–40
    [Google Scholar]
  43. 43.
    Levassort F, Lethiecq M, Certon D, Patat F. 1997. A matrix method for modeling electroelastic moduli of 0-3 piezo-composites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44:445–52
    [Google Scholar]
  44. 44.
    Levassort F, Lethiecq M. 1998. Modeling of highly loaded 0-3 piezoelectric composites using a matrix method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45:1497–505
    [Google Scholar]
  45. 45.
    Yue Q, Liu D, Deng J, Zhao X, Lin D et al. 2015. Design and fabrication of relaxor-ferroelectric single crystal PIN–PMN–PT/epoxy 2–2 composite based array transducer. Sens. Actuator A Phys. 234:34–42
    [Google Scholar]
  46. 46.
    Topolov VY, Krivoruchko AV, Bowen CR, Panich AA. 2019. Domain orientations and piezoelectric properties in novel 2–2-type composites with two single-crystal components. Ferroelectrics 543:115–29
    [Google Scholar]
  47. 47.
    Or SW, Chan HLW. 2001. Mode coupling in lead zirconate titanate/epoxy 1–3 piezocomposite rings. J. Appl. Phys. 90:4122–29
    [Google Scholar]
  48. 48.
    Wang W, Or SW, Yue Q, Zhang Y, Jiao J et al. 2013. Ternary piezoelectric single-crystal PIMNT based 2-2 composite for ultrasonic transducer applications. Sens. Actuator A Phys. 196:70–77
    [Google Scholar]
  49. 49.
    Kim M, Kim J, Cao W. 2005. Aspect ratio dependence of electromechanical coupling coefficient of piezoelectric resonators. Appl. Phys. Lett. 87:132901
    [Google Scholar]
  50. 50.
    Lee HJ, Zhang S. 2012. Design of low-loss 1-3 piezoelectric composites for high-power transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59:1969–75
    [Google Scholar]
  51. 51.
    Klicker KA, Biggers JV, Newnham RE. 1981. Composites of PZT and epoxy for hydrostatic transducer applications. J. Am. Ceram. Soc. 64:5–9
    [Google Scholar]
  52. 52.
    Sun P, Zhou Q, Zhu B, Wu D, Hu C et al. 2009. Design and fabrication of PIN-PMN-PT single-crystal high-frequency ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56:2760–63
    [Google Scholar]
  53. 53.
    Lee HJ, Zhang S, Shrout TR. 2010. Scaling effects of relaxor-PbTiO3 crystals and composites for high frequency ultrasound. J. Appl. Phys. 107:124107
    [Google Scholar]
  54. 54.
    Ritter TA, Shrout TR, Tutwiler R, Shung KK. 2002. A 30-MHz piezo-composite ultrasound array for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49:217–30
    [Google Scholar]
  55. 55.
    Jian X, Li S, Huang W, Cui Y, Jiang X. 2014. Electromechanical response of micromachined 1–3 piezoelectric composites: effect of etched piezo-pillar slope. J. Intell. Mater. Syst. Struct. 26:2011–19
    [Google Scholar]
  56. 56.
    Jiang X, Yuan JR, Cheng A, Snook K, Cao PJ et al. 2006. Microfabrication of piezoelectric composite ultrasound transducers (PC-MUT). 2006 IEEE Ultrasonics Symposium Proceedings MP Yuhas 918–21. Piscataway, NJ: IEEE
    [Google Scholar]
  57. 57.
    Peng J, Chao C, Dai J, Chan HLW, Luo H. 2008. Micro-patterning of 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystals by ultrasonic wet chemical etching. Mater. Lett. 62:3127–30
    [Google Scholar]
  58. 58.
    Gomez Alvarez-Arenas TE, Shrout TR, Zhang SJ, Lee HJ 2012. Air-coupled transducers based on 1-3 connectivity single crystal piezocomposites. 2012 IEEE International Ultrasonics Symposium2230–33. Piscataway, NJ: IEEE
    [Google Scholar]
  59. 59.
    Kim T, Cui Z, Chang WY, Kim H, Zhu Y, Jiang X. 2020. Flexible 1–3 composite ultrasound transducers with silver-nanowire-based stretchable electrodes. IEEE Trans. Ind. Electron. 67:6955–62
    [Google Scholar]
  60. 60.
    Xu Z, Chen F, Xi Z, Li Z, Cao L et al. 2004. The studies of single crystal PMN-PT68/32/polymer 1–3 composites. Ceram. Int. 30:1777–80
    [Google Scholar]
  61. 61.
    Liu D, Yao W, Zhou C, Zhang J. 2019. Electromechanical properties and temperature stability of 1-3 type PZT/epoxy piezoelectric composite. IOP Conf. Ser. Mater. Sci. Eng. 678:012136
    [Google Scholar]
  62. 62.
    Jain A, P KJ, Sharma AK, Jain A, R PN 2015. Dielectric and piezoelectric properties of PVDF/PZT composites: a review. Polym. Eng. Sci. 55:1589–616
    [Google Scholar]
  63. 63.
    Su J, Zhang J. 2018. Recent development on modification of synthesized barium titanate (BaTiO3) and polymer/BaTiO3 dielectric composites. J. Mater. Sci. Mater. Electron. 30:1957–75
    [Google Scholar]
  64. 64.
    Xie L, Wang G, Jiang C, Yu F, Zhao X. 2021. Properties and applications of flexible poly(vinylidene fluoride)-based piezoelectric materials. Crystals 11:644
    [Google Scholar]
  65. 65.
    Wang T, Zhao X, Du H, Xia S, Li G et al. 2021. Large-area piezoelectric single crystal composites via 3-D-printing-assisted dice-and-insert technology for hydrophone applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68:3241–48
    [Google Scholar]
  66. 66.
    Carbone C, Benwadih M, D'Ambrogio G, Le MQ, Capsal JF, Cottinet PJ 2021. Influence of matrix and surfactant on piezoelectric and dielectric properties of screen-printed BaTiO3/PVDF composites. Polymers 13:2166
    [Google Scholar]
  67. 67.
    Della CN, Shu D. 2007. On the performance of 1–3 piezoelectric composites with a passive and active matrix. Sens. Actuator A Phys. 140:200–6
    [Google Scholar]
  68. 68.
    Carbas RJC, da Silva LFM, Marques EAS, Lopes AM. 2013. Effect of post-cure on the glass transition temperature and mechanical properties of epoxy adhesives. J. Adhes. Sci. Technol. 27:2542–57
    [Google Scholar]
  69. 69.
    Kara H, Perry A, Stevens R, Bowen CR. 2002. Modelling of 3–3 piezocomposites for hydrophones. Br. Ceram. Trans. 101:139–42
    [Google Scholar]
  70. 70.
    Avellaneda M, Swart PJ. 1998. Calculating the performance of 1–3 piezoelectric composites for hydrophone applications: an effective medium approach. J. Acoust. Soc. Am. 103:1449–67
    [Google Scholar]
  71. 71.
    Varadan VV, Wang H, Zhang QM, Cross LE, Trottier CM 1995. Transverse piezoelectric mode composites: a new design approach for smart material applications. Smart Structures and Materials 1995: Mathematics and Control in Smart Structures VV Varadan 133–42. Bellingham, WA: SPIE
    [Google Scholar]
  72. 72.
    Rybyanets A, Nasedkin A, Domashenkina T, Rybyanets A, Lugovaya M. 2009. Ceramic piezocomposites modeling and fabrication. 2009 IEEE International Ultrasonics Symposium Proceedings MP Yuhas 1699–702. Piscataway, NJ: IEEE
    [Google Scholar]
  73. 73.
    Lee HJ, Zhang S, Bar-Cohen Y, Sherrit S. 2014. High temperature, high power piezoelectric composite transducers. Sensors 14:14526–52
    [Google Scholar]
  74. 74.
    Li L, Zhang S, Xu Z, Geng X, Wen F et al. 2014. Hydrostatic piezoelectric properties of [011]poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals and 2-2 lamellar composites. Appl. Phys. Lett. 104:032909
    [Google Scholar]
  75. 75.
    Cao W, Zhao QM, Cross LE. 1995. Effects of face plates on surface displacement profile in 2-2 piezoelectric composites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42:37–41
    [Google Scholar]
  76. 76.
    Mishra S, Unnikrishnan L, Nayak SK, Mohanty S. 2019. Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromol. Mater. Eng. 304:1800463
    [Google Scholar]
  77. 77.
    Della CN, Shu D. 2008. The performance of 1–3 piezoelectric composites with a porous non-piezoelectric matrix. Acta Mater 56:754–61
    [Google Scholar]
  78. 78.
    Herrera-Ramírez LC, Cano M, de Villoria RG. 2017. Low thermal and high electrical conductivity in hollow glass microspheres covered with carbon nanofiber–polymer composites. Compos. Sci. Technol. 151:211–18
    [Google Scholar]
  79. 79.
    Xing Z, Ke H, Wang X, Zheng T, Qiao Y et al. 2020. Investigation of the thermal conductivity of resin-based lightweight composites filled with hollow glass microspheres. Polymers 12:518
    [Google Scholar]
  80. 80.
    Peddigari M, Kim GY, Park CH, Min Y, Kim JW et al. 2019. A comparison study of fatigue behavior of hard and soft piezoelectric single crystal macro-fiber composites for vibration energy harvesting. Sensors 19:2196
    [Google Scholar]
  81. 81.
    Peddigari M, Kwak MS, Min Y, Ahn CW, Choi JJ et al. 2021. Lifetime estimation of single crystal macro-fiber composite-based piezoelectric energy harvesters using accelerated life testing. Nano Energy 88:106279
    [Google Scholar]
  82. 82.
    Li L, Zhang S, Xu Z, Geng X, Shrout TR. 2013. 1-3 ceramic/polymer composites for high-temperature transducer applications. Phys. Status Solidi A 210:1888–91
    [Google Scholar]
  83. 83.
    Qin L, Wang LK, Long D, Zhong C, Zhang B, Liu JJ. 2014. The study of 1-1-3 piezoelectric composite based on relaxor ferroelectric single crystal. 2014 Joint IEEE International Symposium on the Applications of Ferroelectrics, International Workshop on Acoustic Transduction Materials and Devices & Workshop on Piezoresponse Force Microscopy Piscataway, NJ: IEEE https://doi.org/10.1109/ISAF.2014.6923000
    [Google Scholar]
  84. 84.
    Topolov VY, Kamlah M. 2004. Piezoelectric properties of PbTiO3-based 0–3 and 0–1–3 composites. J. Phys. D 37:1576–85
    [Google Scholar]
  85. 85.
    Topolov VY, Bowen CR, Isaeva AN. 2018. Anisotropy factors and electromechanical coupling in lead-free 1–3-type composites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65:1278–86
    [Google Scholar]
  86. 86.
    Topolov VY, Bowen CR, Bisegna P. 2015. New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sens. Actuator A Phys. 229:94–103
    [Google Scholar]
  87. 87.
    Chen Y, Lam KH, Zhou D, Cheng WF, Dai JY et al. 2012. High-frequency PIN–PMN–PT single crystal ultrasonic transducer for imaging applications. Appl. Phys. A 108:987–91
    [Google Scholar]
  88. 88.
    Parr ACS, O'Leary RL, Hayward G 2005. Improving the thermal stability of 1-3 piezoelectric composite transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52:550–63
    [Google Scholar]
  89. 89.
    Parr ACS, O'Leary RL, Hayward G, Benny S, Ewing H, Mackintosh AR 2002. Investigating the thermal stability of 1-3 piezoelectric composite transducers by varying the thermal conductivity and glass transition temperature of the polymeric filler material. 2002 IEEE Ultrasonics Symposium Proceedings DE Yuhas, SC Schneider 1173–76. Piscataway, NJ: IEEE
    [Google Scholar]
  90. 90.
    Huang C, Qian X, Yang R 2018. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R Rep. 132:1–22
    [Google Scholar]
  91. 91.
    Li L, Zhang S, Xu Z, Wen F, Geng X et al. 2013. 1–3 piezoelectric composites for high-temperature transducer applications. J. Phys. D Appl. Phys. 46:165306
    [Google Scholar]
  92. 92.
    Uchino K, Hirose S. 2001. Loss mechanisms in piezoelectrics: how to measure different losses separately. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48:307–21
    [Google Scholar]
  93. 93.
    Geng X, Zhang QM. 1999. Resonance modes and losses in 1-3 piezocomposites for ultrasonic transducer applications. J. Appl. Phys. 85:1342–50
    [Google Scholar]
  94. 94.
    Song J, Zhao G, Li B, Wang J. 2017. Design optimization of PVDF-based piezoelectric energy harvesters. Heliyon 3:e00377
    [Google Scholar]
  95. 95.
    Brown LF, Mason JL. 1996. Disposable PVDF ultrasonic transducers for nondestructive testing applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43:560–68
    [Google Scholar]
  96. 96.
    Zhao J, Tan AC, Green PF. 2017. Thermally induced chain orientation for improved thermal conductivity of P(VDF-TrFE) thin films. J. Mater. Chem. C 5:10834–38
    [Google Scholar]
  97. 97.
    He H, Fu R, Han Y, Shen Y, Song X. 2007. Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions. J. Mater. Sci. 42:6749–54
    [Google Scholar]
  98. 98.
    Guan X, Zhang Y, Li H, Ou J. 2013. PZT/PVDF composites doped with carbon nanotubes. Sens. Actuator A Phys. 194:228–31
    [Google Scholar]
  99. 99.
    Tognana S, Salgueiro W, Somoza A, Pomarico JA, Ranea-Sandoval HF. 2009. Influence of the filler content on the thermal expansion behavior of an epoxy matrix particulate composite. Mater. Sci. Eng. B 157:26–31
    [Google Scholar]
  100. 100.
    Jae Lee H, Zhang S, Meyer RJ Jr., Sherlock NP, Shrout TR 2012. Characterization of piezoelectric ceramics and 1-3 composites for high power transducers. Appl. Phys. Lett. 101:32902
    [Google Scholar]
  101. 101.
    Lebrun L, Sebald G, Guiffard B, Richard C, Guyomar D, Pleska E. 2004. Investigations on ferroelectric PMN–PT and PZN–PT single crystals ability for power or resonant actuators. Ultrasonics 42:501–5
    [Google Scholar]
  102. 102.
    Kei-Yu Z, Xing-Yun J, Bao-Song W. 1986. Study on the stress stability of PZT composites. Proceedings of the Sixth IEEE International Symposium on Applications of Ferroelectrics V Wood 246–48. Piscataway, NJ: IEEE
    [Google Scholar]
  103. 103.
    Gao J, Xu Z, Li F, Zhang C, Liu Y et al. 2012. The hydrostatic piezoelectricity of relaxor-PbTiO3 ferroelectric ceramics and crystals. J. Adv. Dielectr. 2:1250018
    [Google Scholar]
  104. 104.
    Ma Y, Cheng X, Jiang Q, Li Y. 2018. A cement-based 1−3 piezoelectric composite sensor working in d15 mode for the characterization of shear stress in civil engineering structures. Smart Mater. Struct. 27:115013
    [Google Scholar]
  105. 105.
    Li ZJ, Zhang D, Wu KR. 2001. Cement matrix 2-2 piezoelectric composite—Part 1. Sensory effect. Mater. Struct. 34:506–12
    [Google Scholar]
  106. 106.
    Li H, Tian C, Deng ZD. 2014. Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 1:041301
    [Google Scholar]
  107. 107.
    Fernandez JF, Dogan A, Zhang QM, Tressler JF, Newnham RE 1996. Hollow piezoelectric composites. Sens. Actuator A Phys. 51:183–92
    [Google Scholar]
  108. 108.
    Lam KH, Chan HLW, Luo HS, Yin QR, Yin ZW, Choy CL. 2001. Cymbal actuators fabricated using PMN-PT single crystal. Ferroelectrics 263:235–40
    [Google Scholar]
  109. 109.
    Lee HJ, Zhang S. 2019. Manufacturing technologies for electroactive composite actuators and sensors. Advances in Manufacturing and Processing of Materials and Structures Y Bar-Cohen 359–73. Boca Raton, FL: CRC Press
    [Google Scholar]
  110. 110.
    Ritter T, Geng X, Shung K, Lopath PD, Park SE, Shrout TR. 2000. Single crystal PZN/PT-polymer composites for ultrasound transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47:792–800
    [Google Scholar]
  111. 111.
    Jiang X, Snook K, Hackenberger WS, Geng X. 2007. Single crystal piezoelectric composites for advanced NDT ultrasound. SPIE Proc 6531:65310F
    [Google Scholar]
  112. 112.
    Agnus J, Ivan IA, Queste S. 2011. Dry etching of single crystal PMN-PT piezoelectric material. IEEE 24th International Conference on Micro Electro Mechanical Systems237–40. Piscataway, NJ: IEEE
    [Google Scholar]
  113. 113.
    Piredda G, Stroj S, Ziss D, Stangl J, Trotta R et al. 2019. Micro-machining of PMN-PT crystals with ultrashort laser pulses. Appl. Phys. A 125:201
    [Google Scholar]
  114. 114.
    Jiang X, Snook K, Walker T, Portune A, Haber R et al. 2008. Single crystal piezoelectric composite transducers for ultrasound NDE applications. SPIE Proc. 6934:69340D
    [Google Scholar]
  115. 115.
    French JD, Weitz GE, Luke JE, Cass RB, Jadidian B et al. 1996. Production of continuous piezoelectric fibers for sensor/actuator applications. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics BM Kulwicki, A Amin, A Safari 867–70. Piscataway, NJ: IEEE
    [Google Scholar]
  116. 116.
    Bowen LJ, Gentilman RL, Pham HT, Fiore DF, French KW. 1993. Injection molded fine-scale piezoelectric composite transducers. 1993 IEEE Ultrasonics Symposium Proceedings499–503. Piscataway, NJ: IEEE
    [Google Scholar]
  117. 117.
    Cui H, Hensleigh R, Yao D, Maurya D, Kumar P et al. 2019. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 18:234–41
    [Google Scholar]
  118. 118.
    Porter MM, McKittrick J, Meyers MA. 2013. Biomimetic materials by freeze casting. JOM 65:720–27
    [Google Scholar]
  119. 119.
    Xie M, Zhang Y, Krasny MJ, Bowen C, Khanbareh H, Gathercole N. 2018. Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic-polymer composites. Energy Environ. Sci. 11:2919–27
    [Google Scholar]
  120. 120.
    Petrossian G, Hohimer CJ, Ameli A. 2019. Highly-loaded thermoplastic polyurethane/lead zirconate titanate composite foams with low permittivity fabricated using expandable microspheres. Polymers 11:280
    [Google Scholar]
  121. 121.
    Zhang G, Zhao P, Zhang X, Han K, Zhao T et al. 2018. Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting. Energy Environ. Sci. 11:2046–56
    [Google Scholar]
  122. 122.
    Zhang Y, Jeong CK, Wang J, Sun H, Li F et al. 2018. Flexible energy harvesting polymer composites based on biofibril-templated 3-dimensional interconnected piezoceramics. Nano Energy 50:35–42
    [Google Scholar]
  123. 123.
    Ji B, Hong L, Lan Y. 2021. Ultra-wide operation band of the high-frequency underwater acoustic transducer realized by two-layer 1–3 piezoelectric composite. J. Acoust. Soc. Am. 150:3474
    [Google Scholar]
  124. 124.
    Ting RY. 1992. A review on the development of piezoelectric composites for underwater acoustic transducer applications. IEEE Trans. Instrum. Meas. 41:64–67
    [Google Scholar]
  125. 125.
    Wang J, Zhong C, Hao S, Lv N, Wang L. 2021. Design of planar array transducers based on connected 1–3 piezoelectric composites. Micromachines 12:1417
    [Google Scholar]
  126. 126.
    Zhang Y, Wang L, Qin L, Zhong C. 2021. Wideband and wide beam piezoelectric composite spherical cap transducer for underwater acoustics. Ferroelectrics 583:295–305
    [Google Scholar]
  127. 127.
    Peng C, Chen M, Sim HK, Zhu Y, Jiang X. 2021. Noninvasive and nonocclusive blood pressure monitoring via a flexible piezo-composite ultrasonic sensor. IEEE Sens. J. 21:2642–50
    [Google Scholar]
  128. 128.
    Harvey G, Gachagan A, Mackersie JW, McCunnie T, Banks R. 2009. Flexible ultrasonic transducers incorporating piezoelectric fibres. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56:1999–2009
    [Google Scholar]
  129. 129.
    Zhuang X, Der-Song L, Oralkan O, Khuri-Yakub BT. 2008. Fabrication of flexible transducer arrays with through-wafer electrical interconnects based on trench refilling with PDMS. J. Microelectromech. Syst. 17:446–52
    [Google Scholar]
  130. 130.
    Loonen RCGM, Favoino F, Hensen JLM, Overend M. 2016. Review of current status, requirements and opportunities for building performance simulation of adaptive facades. J. Build. Perform. Simul. 10:205–23
    [Google Scholar]
  131. 131.
    Schulz MJ, Pai PF, Inman DJ. 1999. Health monitoring and active control of composite structures using piezoelectric patches. Compos. B 30:713–25
    [Google Scholar]
  132. 132.
    Lin Y, Shaffer JW, Sodano HA. 2010. Electrolytic deposition of PZT on carbon fibers for fabricating multifunctional composites. Smart Mater. Struct. 19:124004
    [Google Scholar]
  133. 133.
    Chen Y, Xue X. 2018. Advances in the structural health monitoring of bridges using piezoelectric transducers. Sensors 18:4312
    [Google Scholar]
  134. 134.
    Sanches AO, Teixeira GF, Zaghete MA, Longo E, Malmonge JA et al. 2019. Influence of polymer insertion on the dielectric, piezoelectric and acoustic properties of 1-0-3 polyurethane/cement-based piezo composite. Mater. Res. Bull. 119:110541
    [Google Scholar]
  135. 135.
    Zheng F, Hu C, Zhang L, Snook K, Liang Y et al. 2011. Development of a C-scan phased array ultrasonic imaging system using a 64-element 35MHz transducer. Proc. SPIE 7983:79833E
    [Google Scholar]
  136. 136.
    Kim HS, Kim JH, Kim J. 2011. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12:1129–41
    [Google Scholar]
  137. 137.
    Aabid A, Raheman MA, Ibrahim YE, Anjum A, Hrairi M et al. 2021. A systematic review of piezoelectric materials and energy harvesters for industrial applications. Sensors 21:4145
    [Google Scholar]
  138. 138.
    Karami MA, Bilgen O, Inman DJ, Friswell MI. 2011. Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting. IEEE Trans. Ultrason. Ferroelectr Freq. Control 58:1508–20
    [Google Scholar]
  139. 139.
    Yang Z, Zu J. 2016. Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting. Energy Convers. Manag. 122:321–29
    [Google Scholar]
  140. 140.
    Topolov VY, Turik AV. 2001. Porous piezoelectric composites with extremely high reception parameters. Tech. Phys. 46:26–32
    [Google Scholar]
  141. 141.
    Wang J, Zhong C, Hao S, Wang L. 2021. Design and properties analysis of novel modified 1-3 piezoelectric composite. Materials 14:1749
    [Google Scholar]
  142. 142.
    Stuber VL, Deutz DB, Bennett J, Cannel D, deLeeuw DM et al. 2019. Flexible lead-free piezoelectric composite materials for energy harvesting applications. Energy Technol 7:177–85
    [Google Scholar]
  143. 143.
    Zhang QM, Geng X. 1994. Dynamic modeling of piezoceramic polymer composite with 2-2 connectivity. J. Appl. Phys. 76:6014–16
    [Google Scholar]
  144. 144.
    Zhang S, Lee SM, Kim DH, Lee HY, Shrout TR. 2008. Elastic, piezoelectric, and dielectric properties of 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 crystals obtained by solid-state crystal growth. J. Am. Ceram. Soc. 91:683–86
    [Google Scholar]
  145. 145.
    Sun Y, Karaki T, Yamashita Y. 2021. Recent progress on AC poling of relaxor-PbTiO3 ferroelectric single crystals: a review. Jpn. J. Appl. Phys. 61:SB0802
    [Google Scholar]
  146. 146.
    Zhou Q, Lam KH, Zheng H, Qiu W, Shung KK. 2014. Piezoelectric single crystals for ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 66:87–111
    [Google Scholar]
  147. 147.
    Liu X, Zhang S, Luo J, Shrout TR, Cao W. 2009. Complete set of material constants of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal with morphotropic phase boundary composition. J. Appl. Phys. 106:74112
    [Google Scholar]
  148. 148.
    Kim J, Roh Y. 2011. Equivalent properties of 1-3 piezocomposites made of PMN-PT single crystals for underwater sonar transducers. Proc. SPIE 7978:797826
    [Google Scholar]
  149. 149.
    Wang W, Or SW, Luo H. 2017. Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 piezoelectric single-crystal rectangular beams: mode-coupling effect and its application to ultrasonic array transducers. Crystals 7:101
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080921-092839
Loading
/content/journals/10.1146/annurev-matsci-080921-092839
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error