1932

Abstract

Owing to its unique structure, morphology, and crystal quality, low-dimensional (L-D) ice has attracted increasing attention in recent years. With a size (at least in one dimension) between that of a single water molecule and a snowflake, L-D ice does not only appear as an intermediate state during the dimensional change but can also manifest extraordinary characteristics, from its molecular structures to its physical properties, which offer exciting opportunities for a better understanding and utilization of ice. In this article, we start with a brief introduction to the crystal growth, structure, and typical characterization techniques of ice and then review recent progress in the study of crystal growth, molecular structures, phase morphologies, and physical properties of zero-, one-, and two-dimensional (0-, 1-, and 2D) ice. Extraordinary behaviors of ice in low dimensions and extreme conditions are highlighted. Finally, the future outlook for the physical study and technological applications of L-D ice is briefly discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080921-101821
2023-07-03
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-080921-101821.html?itemId=/content/journals/10.1146/annurev-matsci-080921-101821&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Petrenko V, Whitworth RW. 2002. Physics of Ice Oxford, UK: Oxford Univ. Press
  2. 2.
    Bartels-Rausch T, Bergeron V, Cartwright JHE, Escribano R, Finney JL et al. 2012. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84:2885–944
    [Google Scholar]
  3. 3.
    Hoose C, Möhler O. 2012. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys. 12:209817–54
    [Google Scholar]
  4. 4.
    O'Rourke L, Heinisch P, Blum J, Fornasier S, Filacchione G et al. 2020. The Philae lander reveals low-strength primitive ice inside cometary boulders. Nature 586:7831697–701
    [Google Scholar]
  5. 5.
    Kepler J. 1966 (1611). The Six-Cornered Snowflake Oxford, UK: Oxford Clarendon Press
  6. 6.
    Zawidzki TW, Papée HM. 1962. Pseudo-whiskers of ice, grown from clouds of supercooled water in an electric field. Nature 196:4854568–69
    [Google Scholar]
  7. 7.
    Schulson EM, Duval P. 2009. Creep and Fracture of Ice Cambridge, UK: Cambridge Univ. Press
  8. 8.
    Carrasco J, Michaelides A, Forster M, Haq S, Raval R, Hodgson A. 2009. A one-dimensional ice structure built from pentagons. Nat. Mater. 8:5427–31
    [Google Scholar]
  9. 9.
    Libbrecht KG. 2005. The physics of snow crystals. Rep. Prog. Phys. 68:4855–95
    [Google Scholar]
  10. 10.
    Libbrecht KG. 2017. Physical dynamics of ice crystal growth. Annu. Rev. Mater. Res. 47:271–95
    [Google Scholar]
  11. 11.
    Xu P, Cui B, Bu Y, Wang H, Guo X et al. 2021. Elastic ice microfibers. Science 373:6551187–92
    [Google Scholar]
  12. 12.
    Joukhdar H, Seifert A, Jüngst T, Groll J, Lord MS, Rnjak-Kovacina J. 2021. Ice templating soft matter: fundamental principles and fabrication approaches to tailor pore structure and morphology and their biomedical applications. Adv. Mater. 33:342100091
    [Google Scholar]
  13. 13.
    Zhao D, Han A, Qiu M. 2019. Ice lithography for 3D nanofabrication. Sci. Bull. 64:12865–71
    [Google Scholar]
  14. 14.
    Xie P, Zhao C, Liang X, Huang W, Chen Y, Cai Z. 2020. Preparation of frozen sections of multicellular tumor spheroids coated with ice for mass spectrometry imaging. Anal. Chem. 92:117413–18
    [Google Scholar]
  15. 15.
    Bartels-Rausch T. 2013. Ten things we need to know about ice and snow. Nature 494:743527–29
    [Google Scholar]
  16. 16.
    Millot M, Coppari F, Rygg JR, Correa Barrios A, Hamel S et al. 2019. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569:7755251–55
    [Google Scholar]
  17. 17.
    Ma R, Cao D, Zhu C, Tian Y, Peng J et al. 2020. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 577:778860–63
    [Google Scholar]
  18. 18.
    Dash JG, Fu H, Wettlaufer JS. 1995. The premelting of ice and its environmental consequences. Rep. Prog. Phys. 58:1115–67
    [Google Scholar]
  19. 19.
    Bampoulis P, Sotthewes K, Dollekamp E, Poelsema B. 2018. Water confined in two-dimensions: fundamentals and applications. Surf. Sci. Rep. 73:6233–64
    [Google Scholar]
  20. 20.
    Slater B, Michaelides A. 2019. Surface premelting of water ice. Nat. Rev. Chem. 3:3172–88
    [Google Scholar]
  21. 21.
    Schulson EM, Renshaw CE. 2022. Fracture, friction, and permeability of ice. Annu. Rev. Earth Planet. Sci. 50:323–43
    [Google Scholar]
  22. 22.
    Peng J, Guo J, Ma R, Jiang Y. 2022. Water-solid interfaces probed by high-resolution atomic force microscopy. Surf. Sci. Rep. 77:1100549
    [Google Scholar]
  23. 23.
    Maeda N. 2021. Brief overview of ice nucleation. Molecules 26:2392
    [Google Scholar]
  24. 24.
    Zhang Z, Liu X. 2018. Control of ice nucleation: freezing and antifreeze strategies. Chem. Soc. Rev. 47:187116–39
    [Google Scholar]
  25. 25.
    Kanji ZA, Ladino LA, Wex H, Boose Y, Burkert-Kohn M et al. 2017. Overview of ice nucleating particles. Meteor. Monogr. 58: https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1
    [Google Scholar]
  26. 26.
    Pruppacher HR, Klett JD. 2010. Microphysics of Clouds and Precipitation Dordrecht, Neth: Springer. , 2nd ed..
  27. 27.
    Liu XY. 2001. Interfacial effect of molecules on nucleation kinetics. J. Phys. Chem. B 105:4711550–58
    [Google Scholar]
  28. 28.
    Dalvi-Isfahan M, Hamdami N, Xanthakis E, Le-Bail A. 2017. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. J. Food Eng. 195:222–34
    [Google Scholar]
  29. 29.
    Gerrard N, Mistry K, Darling GR, Hodgson A. 2020. Formation of linear water chains on Ni(110). J. Phys. Chem. Lett. 11:62121–26
    [Google Scholar]
  30. 30.
    Laaksonen A, Talanquer V, Oxtoby DW. 1995. Nucleation: measurements, theory, and atmospheric applications. Annu. Rev. Phys. Chem. 46:1489–524
    [Google Scholar]
  31. 31.
    Sear RP. 2012. The non-classical nucleation of crystals: microscopic mechanisms and applications to molecular crystals, ice and calcium carbonate. Int. Mater. Rev. 57:6328–56
    [Google Scholar]
  32. 32.
    Buck U, Huisken F. 2000. Infrared spectroscopy of size-selected water and methanol clusters. Chem. Rev. 100:113863–90
    [Google Scholar]
  33. 33.
    Salzmann CG. 2019. Advances in the experimental exploration of water's phase diagram. J. Chem. Phys. 150:6060901
    [Google Scholar]
  34. 34.
    Arsiccio A, Pisano R. 2020. The ice-water interface and protein stability: a review. J. Pharm. Sci. 109:72116–30
    [Google Scholar]
  35. 35.
    Chen J, Schusteritsch G, Pickard CJ, Salzmann CG, Michaelides A. 2016. Two dimensional ice from first principles: structures and phase transitions. Phys. Rev. Lett. 116:2025501
    [Google Scholar]
  36. 36.
    Pugliese P, Conde MM, Rovere M, Gallo P. 2017. Freezing temperatures, ice nanotubes structures, and proton ordering of TIP4P/ICE water inside single wall carbon nanotubes. J. Phys. Chem. B 121:4510371–81
    [Google Scholar]
  37. 37.
    Mayer E, Brüggeller P. 1982. Vitrification of pure liquid water by high pressure jet freezing. Nature 298:5876715–18
    [Google Scholar]
  38. 38.
    Burton EF, Oliver WF, McLennan JC. 1935. The crystal structure of ice at low temperatures. Proc. R. Soc. Lond. A 153:878166–72
    [Google Scholar]
  39. 39.
    Loerting T, Salzmann C, Kohl I, Mayer E, Hallbrucker A 2001. A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar. Phys. Chem. Chem. Phys. 3:245355–57
    [Google Scholar]
  40. 40.
    Mishima O, Calvert LD, Whalley E. 1984.. ‘ Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310:5976393–95
    [Google Scholar]
  41. 41.
    Alexander RF, Davies MB, Amon A, Wu H, Sella A et al. 2023. Medium-density amorphous ice. Science 379:6631474–78
    [Google Scholar]
  42. 42.
    Mishima O, Calvert LD, Whalley E. 1985. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314:600676–78
    [Google Scholar]
  43. 43.
    Liu Y, Ojamäe L. 2018. Clathrate ice sL: a new crystalline phase of ice with ultralow density predicted by first-principles phase diagram computations. Phys. Chem. Chem. Phys. 20:128333–40
    [Google Scholar]
  44. 44.
    Huang Y, Zhu C, Wang L, Zhao J, Zeng X. 2017. Prediction of a new ice clathrate with record low density: a potential candidate as ice XIX in guest-free form. Chem. Phys. Lett. 671:186–91
    [Google Scholar]
  45. 45.
    Gerrard DL, Birnie J. 1990. Infrared spectrometry. Anal. Chem. 62:223–55
    [Google Scholar]
  46. 46.
    Salzmann CG, Hallbrucker A, Finney JL, Mayer E 2006. Raman spectroscopic features of hydrogen-ordering in ice XII. Chem. Phys. Lett. 429:4–6469–73
    [Google Scholar]
  47. 47.
    Men Z, Fang W, Wang S, Li Z, Sun C, Wang X. 2015. Raman spectra of proton order of thin ice Ih film: proton order of thin ice Ih film. J. Raman Spectrosc. 46:4388–91
    [Google Scholar]
  48. 48.
    Cai F, Xu C, Zheng J. 2014. Distinct properties of nanofibrous amorphous ice. Materials 7:127653–61
    [Google Scholar]
  49. 49.
    Dong X, Qin X, Wang X, Cao J, Liu X et al. 2022. Computer simulation of hypothetical hydrogen ordered structure of ice XIX. Phys. Chem. Chem. Phys. 24:1811023–29
    [Google Scholar]
  50. 50.
    Aoki K, Yamawaki H, Sakashita M, Fujihisa H. 1996. Infrared absorption study of the hydrogen-bond symmetrization in ice to 110 GPa. Phys. Rev. B 54:2215673–77
    [Google Scholar]
  51. 51.
    Song M, Yamawaki H, Fujihisa H, Sakashita M, Aoki K. 2003. Infrared investigation on ice VIII and the phase diagram of dense ices. Phys. Rev. B 68:1014106
    [Google Scholar]
  52. 52.
    Devlin JP, Joyce C, Buch V 2000. Infrared spectra and structures of large water clusters. J. Phys. Chem. A 104:101974–77
    [Google Scholar]
  53. 53.
    Devlin JP, Sadlej J, Buch V. 2001. Infrared spectra of large H2O clusters: new understanding of the elusive bending mode of ice. J. Phys. Chem. A 105:6974–83
    [Google Scholar]
  54. 54.
    Richardson HH. 2006. 2D-IR correlation and principle component analysis of interfacial melting of thin ice films. J. Mol. Struct. 799:1–356–60
    [Google Scholar]
  55. 55.
    Byl O, Liu J, Wang Y, Yim W, Johnson JK, Yates JT. 2006. Unusual hydrogen bonding in water-filled carbon nanotubes. J. Am. Chem. Soc. 128:3712090–97
    [Google Scholar]
  56. 56.
    Shen YR. 1989. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337:6207519–25
    [Google Scholar]
  57. 57.
    Wei X, Miranda PB, Shen YR. 2001. Surface vibrational spectroscopic study of surface melting of ice. Phys. Rev. Lett. 86:81554–57
    [Google Scholar]
  58. 58.
    Smit WJ, Tang F, Sánchez MA, Backus EHG, Xu L et al. 2017. Excess hydrogen bond at the ice-vapor interface around 200 K. Phys. Rev. Lett. 119:13133003
    [Google Scholar]
  59. 59.
    Sánchez MA, Kling T, Ishiyama T, van Zadel M-J, Bisson PJ et al. 2017. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. PNAS 114:2227–32
    [Google Scholar]
  60. 60.
    Warren SG. 1984. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 23:81206–25
    [Google Scholar]
  61. 61.
    Warren SG, Brandt RE. 2008. Optical constants of ice from the ultraviolet to the microwave: a revised compilation. J. Geophys. Res. Atmos. 113:D14D14220
    [Google Scholar]
  62. 62.
    Sazaki G, Matsui T, Tsukamoto K, Usami N, Ujihara T et al. 2004. In situ observation of elementary growth steps on the surface of protein crystals by laser confocal microscopy. J. Cryst. Growth. 262:1–4536–42
    [Google Scholar]
  63. 63.
    Sazaki G, Zepeda S, Nakatsubo S, Yokomine M, Furukawa Y. 2012. Quasi-liquid layers on ice crystal surfaces are made up of two different phases. PNAS 109:41052–55
    [Google Scholar]
  64. 64.
    Nie S, Bartelt NC, Thürmer K. 2009. Observation of surface self-diffusion on ice. Phys. Rev. Lett. 102:13136101
    [Google Scholar]
  65. 65.
    Zhang X, Xu J, Tu Y, Sun K, Tao M et al. 2018. Hexagonal monolayer ice without shared edges. Phys. Rev. Lett. 121:25256001
    [Google Scholar]
  66. 66.
    Lee J, Sorescu DC, Deng X, Jordan KD. 2013. Water chain formation on TiO2(110). J. Phys. Chem. Lett. 4:153–57
    [Google Scholar]
  67. 67.
    Guo J, Meng X, Chen J, Peng J, Sheng J et al. 2014. Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 13:2184–89
    [Google Scholar]
  68. 68.
    Shiotari A, Sugimoto Y, Kamio H. 2019. Characterization of two- and one-dimensional water networks on Ni(111) via atomic force microscopy. Phys. Rev. Mater. 3:9093001
    [Google Scholar]
  69. 69.
    Bluhm H, Inoue T, Salmeron M. 2000. Friction of ice measured using lateral force microscopy. Phys. Rev. B 61:117760–65
    [Google Scholar]
  70. 70.
    Tai K, Liu Y, Dillon SJ. 2014. In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems. Microsc. Microanal. 20:2330–37
    [Google Scholar]
  71. 71.
    Zimmermann F, Ebert M, Worringen A, Schütz L, Weinbruch S. 2007. Environmental scanning electron microscopy (ESEM) as a new technique to determine the ice nucleation capability of individual atmospheric aerosol particles. Atmos. Environ. 41:378219–27
    [Google Scholar]
  72. 72.
    Kiselev A, Bachmann F, Pedevilla P, Cox SJ, Michaelides A et al. 2017. Active sites in heterogeneous ice nucleation—the example of K-rich feldspars. Science 355:6323367–71
    [Google Scholar]
  73. 73.
    Baker I. 2003. Imaging dislocations in ice. Microsc. Res. Tech. 62:170–82
    [Google Scholar]
  74. 74.
    Suzuki Y, Duran H, Steinhart M, Kappl M, Butt H-J, Floudas G. 2015. Homogeneous nucleation of predominantly cubic ice confined in nanoporous alumina. Nano Lett 15:31987–92
    [Google Scholar]
  75. 75.
    Domin K, Chan K-Y, Yung H, Gubbins KE, Jarek M et al. 2016. Structure of ice in confinement: water in mesoporous carbons. J. Chem. Eng. Data 61:124252–60
    [Google Scholar]
  76. 76.
    Okada T, Izumi K, Kawaguchi S, Moriyoshi C, Fujimura T et al. 2021. Important roles of water clusters confined in a nanospace as revealed by a synchrotron X-ray diffraction study. Langmuir 37:3510469–80
    [Google Scholar]
  77. 77.
    Ahmad S, Whitworth RW. 1988. Dislocation motion in ice: a study by synchrotron X-ray topography. Philos. Mag. A 57:5749–66
    [Google Scholar]
  78. 78.
    Zakharov B, Fisyuk A, Fitch A, Watier Y, Kostyuchenko A et al. 2016. Ice recrystallization in a solution of a cryoprotector and its inhibition by a protein: synchrotron X-ray diffraction study. J. Pharm. Sci. 105:72129–38
    [Google Scholar]
  79. 79.
    Isnard O. 2007. A review of in situ and/or time resolved neutron scattering. C. R. Phys. 8:7789–805
    [Google Scholar]
  80. 80.
    Salzmann CG, Radaelli PG, Mayer E, Finney JL 2009. Ice XV: a new thermodynamically stable phase of ice. Phys. Rev. Lett. 103:10105701
    [Google Scholar]
  81. 81.
    del Rosso L, Celli M, Ulivi L. 2016. New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice. Nat. Commun. 7:113394
    [Google Scholar]
  82. 82.
    Gasser TM, Thoeny AV, Fortes AD, Loerting T. 2021. Structural characterization of ice XIX as the second polymorph related to ice VI. Nat. Commun. 12:11128
    [Google Scholar]
  83. 83.
    Jażdżewska M, Śliwińska-Bartkowiak M, Domin K, Chudoba DM, Beskrovnyi AI et al. 2019. Structure of ice confined in carbon and silica nanopores. Bull. Mater. Sci. 42:4184
    [Google Scholar]
  84. 84.
    Yamamoto K. 1980. Supercooling of the coexisting state of ice VII and water within ice VI region observed in diamond-anvil pressure cells. Jpn. J. Appl. Phys. 19:101841–45
    [Google Scholar]
  85. 85.
    Lee GW, Evans WJ, Yoo C-S. 2006. Crystallization of water in a dynamic diamond-anvil cell: evidence for ice VII-like local order in supercompressed water. Phys. Rev. B 74:13134112
    [Google Scholar]
  86. 86.
    Yoshimura Y, Mao H, Hemley RJ. 2007. In situ Raman spectroscopy of reversible low-temperature transition between low-density and high-density amorphous ices. J. Phys. Condens. Matter. 19:42425214
    [Google Scholar]
  87. 87.
    Gold LW. 1958. Some observations on the dependence of strain on stress for ice. Can. J. Phys. 36:101265–75
    [Google Scholar]
  88. 88.
    Lee RW, Schulson EM. 1988. The strength and ductility of ice under tension. J. Offshore Mech. Arct. Eng. 110:2187–91
    [Google Scholar]
  89. 89.
    Druez J, McComber P, Tremblay C. 1989. Experimental results on the tensile strength of atmospheric ice. Trans. Can. Soc. Mech. Eng. 13:359–64
    [Google Scholar]
  90. 90.
    Zimbitas G, Haq S, Hodgson A. 2005. The structure and crystallization of thin water films on Pt(111). J. Chem. Phys. 123:17174701
    [Google Scholar]
  91. 91.
    Glebov A, Graham AP, Menzel A, Toennies JP, Senet P. 2000. A helium atom scattering study of the structure and phonon dynamics of the ice surface. J. Chem. Phys. 112:2411011–22
    [Google Scholar]
  92. 92.
    Liu K, Cruzan JD, Saykally RJ. 1996. Water clusters. Science 271:5251929–33
    [Google Scholar]
  93. 93.
    Michaelides A, Morgenstern K. 2007. Ice nanoclusters at hydrophobic metal surfaces. Nat. Mater. 6:8597–601
    [Google Scholar]
  94. 94.
    Buch V, Sigurd B, Devlin JP, Buck U, Kazimirski JK. 2004. Solid water clusters in the size range of tens-thousands of H2O: a combined computational/spectroscopic outlook. Int. Rev. Phys. Chem. 23:3375–433
    [Google Scholar]
  95. 95.
    Bai G, Gao D, Liu Z, Zhou X, Wang J. 2019. Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 576:7787437–41
    [Google Scholar]
  96. 96.
    Meng X, Guo J, Peng J, Chen J, Wang Z et al. 2015. Direct visualization of concerted proton tunnelling in a water nanocluster. Nat. Phys. 11:3235–39
    [Google Scholar]
  97. 97.
    Pradzynski CC, Forck RM, Zeuch T, Slavíček P, Buck U. 2012. A fully size-resolved perspective on the crystallization of water clusters. Science 337:61011529–32
    [Google Scholar]
  98. 98.
    Buch V, Devlin JP. 2003. Water in Confining Geometries Berlin: Springer
  99. 99.
    Firanescu G, Hermsdorf D, Ueberschaer R, Signorell R. 2006. Large molecular aggregates: from atmospheric aerosols to drug nanoparticles. Phys. Chem. Chem. Phys. 8:364149–65
    [Google Scholar]
  100. 100.
    Medcraft C, McNaughton D, Thompson CD, Appadoo DRT, Bauerecker S, Robertson EG. 2013. Water ice nanoparticles: size and temperature effects on the mid-infrared spectrum. Phys. Chem. Chem. Phys. 15:103630
    [Google Scholar]
  101. 101.
    Buch V, Milet A, Vácha R, Jungwirth P, Devlin JP. 2007. Water surface is acidic. PNAS 104:187342–47
    [Google Scholar]
  102. 102.
    Delzeit L, Blake D. 2001. A characterization of crystalline ice nanoclusters using transmission electron microscopy. J. Geophys. Res. Planets 106:E1233371–79
    [Google Scholar]
  103. 103.
    Prakapenka VB, Holtgrewe N, Lobanov SS, Goncharov AF. 2021. Structure and properties of two superionic ice phases. Nat. Phys. 17:111233–38
    [Google Scholar]
  104. 104.
    Koga K, Gao GT, Tanaka H, Zeng XC. 2001. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412:6849802–5
    [Google Scholar]
  105. 105.
    Mashl RJ, Joseph S, Aluru NR, Jakobsson E. 2003. Anomalously immobilized water: a new water phase induced by confinement in nanotubes. Nano Lett 3:5589–92
    [Google Scholar]
  106. 106.
    Kolesnikov AI, Zanotti J-M, Loong C-K, Thiyagarajan P, Moravsky AP et al. 2004. Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys. Rev. Lett. 93:3035503
    [Google Scholar]
  107. 107.
    Bai J, Wang J, Zeng XC. 2006. Multiwalled ice helixes and ice nanotubes. PNAS 103:5219664–67
    [Google Scholar]
  108. 108.
    Shiomi J, Kimura T, Maruyama S. 2007. Molecular dynamics of ice-nanotube formation inside carbon nanotubes. J. Phys. Chem. C 111:3312188–93
    [Google Scholar]
  109. 109.
    Takaiwa D, Hatano I, Koga K, Tanaka H. 2008. Phase diagram of water in carbon nanotubes. PNAS 105:139–43
    [Google Scholar]
  110. 110.
    Kyakuno H, Matsuda K, Yahiro H, Inami Y, Fukuoka T et al. 2011. Confined water inside single-walled carbon nanotubes: global phase diagram and effect of finite length. J. Chem. Phys. 134:24244501
    [Google Scholar]
  111. 111.
    Pascal TA, Goddard WA, Jung Y. 2011. Entropy and the driving force for the filling of carbon nanotubes with water. PNAS 108:2911794–98
    [Google Scholar]
  112. 112.
    Maier S, Stass I, Cerdá JI, Salmeron M. 2014. Unveiling the mechanism of water partial dissociation on Ru(0001). Phys. Rev. Lett. 112:12126101
    [Google Scholar]
  113. 113.
    Yamada T, Tamamori S, Okuyama H, Aruga T. 2006. Anisotropic water chain growth on Cu(110) observed with scanning tunneling microscopy. Phys. Rev. Lett. 96:3036105
    [Google Scholar]
  114. 114.
    Shiotari A, Sugimoto Y. 2017. Ultrahigh-resolution imaging of water networks by atomic force microscopy. Nat. Commun. 8:114313
    [Google Scholar]
  115. 115.
    Libbrecht KG, Tanusheva VM. 1998. Electrically induced morphological instabilities in free dendrite growth. Phys. Rev. Lett. 81:1176–79
    [Google Scholar]
  116. 116.
    Hofmann D, Preuss G, Mätzler C. 2015. Evidence for biological shaping of hair ice. Biogeosciences 12:144261–73
    [Google Scholar]
  117. 117.
    Karahka M, Kreuzer HJ. 2011. Water whiskers in high electric fields. Phys. Chem. Chem. Phys. 13:2311027–33
    [Google Scholar]
  118. 118.
    Bai Y, He H-M, Li Y, Li Z-R, Zhou Z-J et al. 2015. Electric field effects on the intermolecular interactions in water whiskers: insight from structures, energetics, and properties. J. Phys. Chem. A 119:102083–90
    [Google Scholar]
  119. 119.
    Libbrecht KG, Crosby T, Swanson M. 2002. Electrically enhanced free dendrite growth in polar and non-polar systems. J. Cryst. Growth. 240:1–2241–54
    [Google Scholar]
  120. 120.
    Libbrecht KG. 2015. Incorporating surface diffusion into a cellular automata model of ice growth from water vapor. arXiv: 1509.08543 [cond-mat.mtrl-sci]
  121. 121.
    Libbrecht KG, Tanusheva VM. 1999. Cloud chambers and crystal growth: effects of electrically enhanced diffusion on dendrite formation from neutral molecules. Phys. Rev. E 59:33253–61
    [Google Scholar]
  122. 122.
    Banerjee A, Bernoulli D, Zhang H, Yuen M-F, Liu J et al. 2018. Ultralarge elastic deformation of nanoscale diamond. Science 360:6386300–2
    [Google Scholar]
  123. 123.
    Nie A, Bu Y, Li P, Zhang Y, Jin T et al. 2019. Approaching diamond's theoretical elasticity and strength limits. Nat. Commun. 10:15533
    [Google Scholar]
  124. 124.
    Dang C, Chou J-P, Dai B, Chou C-T, Yang Y et al. 2021. Achieving large uniform tensile elasticity in microfabricated diamond. Science 371:652476–78
    [Google Scholar]
  125. 125.
    Tong L, Gattass RR, Ashcom JB, He S, Lou J et al. 2003. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426:6968816–19
    [Google Scholar]
  126. 126.
    Brambilla G, Payne DN. 2009. The ultimate strength of glass silica nanowires. Nano Lett 9:2831–35
    [Google Scholar]
  127. 127.
    Lee C, Wei X, Kysar JW, Hone J. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:5887385–88
    [Google Scholar]
  128. 128.
    Zhu T, Li J. 2010. Ultra-strength materials. Prog. Mater. Sci. 55:7710–57
    [Google Scholar]
  129. 129.
    Jendi ZM, Servio P, Rey AD. 2015. Ideal strength of methane hydrate and ice Ih from first-principles. Cryst. Growth Des. 15:115301–9
    [Google Scholar]
  130. 130.
    Santos-Flórez PA, Ruestes CJ, de Koning M. 2018. Uniaxial-deformation behavior of ice Ih as described by the TIP4P/Ice and mW water models. J. Chem. Phys. 149:16164711
    [Google Scholar]
  131. 131.
    Lawn BR. 1993. Fracture of Brittle Solids Cambridge, UK: Cambridge Univ. Press
  132. 132.
    Petrovic JJ. 2003. Review: mechanical properties of ice and snow. J. Mater. Sci. 38:11–6
    [Google Scholar]
  133. 133.
    Schulson EM. 2001. Brittle failure of ice. Eng. Fract. Mech. 68:171839–87
    [Google Scholar]
  134. 134.
    Hiki Y, Granato AV. 1966. Anharmonicity in noble metals; higher order elastic constants. Phys. Rev. 144:2411–19
    [Google Scholar]
  135. 135.
    Hiki Y. 1981. Higher order elastic constants of solids. Annu. Rev. Mater. Sci. 11:51–73
    [Google Scholar]
  136. 136.
    Lee C, Wei X, Kysar JW, Hone J. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:5887385–88
    [Google Scholar]
  137. 137.
    Lang JM, Gupta YM. 2011. Experimental determination of third-order elastic constants of diamond. Phys. Rev. Lett. 106:12125502
    [Google Scholar]
  138. 138.
    Seki M, Kobayashi K, Nakahara J. 1981. Optical spectra of hexagonal ice. J. Phys. Soc. Jpn. 50:82643–48
    [Google Scholar]
  139. 139.
    Petrenko VF, Ryzhkin IA. 1993. Electron energy spectrum of ice. Phys. Rev. Lett. 71:162626–29
    [Google Scholar]
  140. 140.
    Philipp HR. 1973. Optical properties of silicon nitride. J. Electrochem. Soc. 120:2295
    [Google Scholar]
  141. 141.
    Aslan MM, Webster NA, Byard CL, Pereira MB, Hayes CM et al. 2010. Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition. Thin Solid Films 518:174935–40
    [Google Scholar]
  142. 142.
    West GN, Loh W, Kharas D, Sorace-Agaskar C, Mehta KK et al. 2019. Low-loss integrated photonics for the blue and ultraviolet regime. APL Photonics 4:2026101
    [Google Scholar]
  143. 143.
    Kitamura R, Pilon L, Jonasz M. 2007. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 46:338118–33
    [Google Scholar]
  144. 144.
    Abbatt JPD. 2003. Interactions of atmospheric trace gases with ice surfaces: adsorption and reaction. Chem. Rev. 103:124783–800
    [Google Scholar]
  145. 145.
    Koga K, Zeng XC, Tanaka H. 1997. Freezing of confined water: a bilayer ice phase in hydrophobic nanopores. Phys. Rev. Lett. 79:265262–65
    [Google Scholar]
  146. 146.
    Zangi R, Mark AE. 2003. Monolayer ice. Phys. Rev. Lett. 91:2025502
    [Google Scholar]
  147. 147.
    Bai J, Angell CA, Zeng XC. 2010. Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice. PNAS 107:135718–22
    [Google Scholar]
  148. 148.
    Koga K, Tanaka H. 2005. Phase diagram of water between hydrophobic surfaces. J. Chem. Phys. 122:10104711
    [Google Scholar]
  149. 149.
    Zhu Y, Wang F, Wu H. 2017. Structural and dynamic characteristics in monolayer square ice. J. Chem. Phys. 147:4044706
    [Google Scholar]
  150. 150.
    Zhu Y, Wang F, Wu H. 2017. Superheating of monolayer ice in graphene nanocapillaries. J. Chem. Phys. 146:13134703
    [Google Scholar]
  151. 151.
    Bai J, Zeng XC. 2012. Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure. PNAS 109:5221240–45
    [Google Scholar]
  152. 152.
    Koga K, Tanaka H, Zeng XC. 2000. First-order transition in confined water between high-density liquid and low-density amorphous phases. Nature 408:6812564–67
    [Google Scholar]
  153. 153.
    Jiang J, Gao Y, Zhu W, Liu Y, Zhu C et al. 2021. First-principles molecular dynamics simulations of the spontaneous freezing transition of 2D water in a nanoslit. J. Am. Chem. Soc. 143:218177–83
    [Google Scholar]
  154. 154.
    Giovambattista N, Rossky PJ, Debenedetti PG. 2009. Phase transitions induced by nanoconfinement in liquid water. Phys. Rev. Lett. 102:5050603
    [Google Scholar]
  155. 155.
    Zhu Y, Wang F, Bai J, Zeng XC, Wu H. 2016. Formation of trilayer ices in graphene nanocapillaries under high lateral pressure. J. Phys. Chem. C 120:158109–15
    [Google Scholar]
  156. 156.
    Algara-Siller G, Lehtinen O, Wang FC, Nair RR, Kaiser U et al. 2015. Square ice in graphene nanocapillaries. Nature 519:7544443–45
    [Google Scholar]
  157. 157.
    Kimmel GA, Matthiesen J, Baer M, Mundy CJ, Petrik NG et al. 2009. No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 131:3512838–44
    [Google Scholar]
  158. 158.
    Glebov A, Graham AP, Menzel A, Toennies JP. 1997. Orientational ordering of two-dimensional ice on Pt(111). J. Chem. Phys. 106:229382–85
    [Google Scholar]
  159. 159.
    Nie S, Feibelman PJ, Bartelt NC, Thuermer K. 2010. Pentagons and heptagons in the first water layer on Pt(111). Phys. Rev. Lett. 105:2026102
    [Google Scholar]
  160. 160.
    Maier S, Lechner BAJ, Somorjai GA, Salmeron M. 2016. Growth and structure of the first layers of ice on Ru(0001) and Pt(111). J. Am. Chem. Soc. 138:93145–51
    [Google Scholar]
  161. 161.
    Yang P, Zhang C, Sun W, Dong J, Cao D et al. 2022. Robustness of bilayer hexagonal ice against surface symmetry and corrugation. Phys. Rev. Lett. 129:4046001
    [Google Scholar]
  162. 162.
    Faraday M. 1850. On certain conditions of freezing water. Athenaeum 1181:640–41
    [Google Scholar]
  163. 163.
    Fletcher NH. 1962. Surface structure of water and ice. Philos. Mag. 7:74255–69
    [Google Scholar]
  164. 164.
    Beaglehole D, Nason D. 1980. Transition layer on the surface on ice. Surf. Sci. 96:357–63
    [Google Scholar]
  165. 165.
    Elbaum M, Schick M. 1991. Application of the theory of dispersion forces to the surface melting of ice. Phys. Rev. Lett. 66:131713–16
    [Google Scholar]
  166. 166.
    Elbaum M, Lipson SG, Dash JG. 1993. Optical study of surface melting on ice. J. Cryst. Growth. 129:3–4491–505
    [Google Scholar]
  167. 167.
    Bluhm H, Ogletree DF, Fadley CS, Hussain Z, Salmeron M. 2002. The premelting of ice studied with photoelectron spectroscopy. J. Phys. Condens. Matter 14:8L227–33
    [Google Scholar]
  168. 168.
    Goertz M, Zhu X, Houston J. 2009. Exploring the liquid-like layer on the ice surface. Langmuir 25:126905–8
    [Google Scholar]
  169. 169.
    Murata K, Asakawa H, Nagashima K, Furukawa Y, Sazaki G. 2015. In situ determination of surface tension-to-shear viscosity ratio for quasi liquid layers on ice crystal surfaces. Phys. Rev. Lett. 115:25256103
    [Google Scholar]
  170. 170.
    Murata K, Asakawa H, Nagashima K, Furukawa Y, Sazaki G. 2016. Thermodynamic origin of surface melting on ice crystals. PNAS 113:44E6741–48
    [Google Scholar]
  171. 171.
    Sazaki G, Asakawa H, Nagashima K, Nakatsubo S, Furukawa Y. 2013. How do quasi-liquid layers emerge from ice crystal surfaces?. Cryst. Growth Des. 13:41761–66
    [Google Scholar]
  172. 172.
    Buch V, Sadlej J, Aytemiz-Uras N, Devlin JP. 2002. Solvation and ionization stages of HCl on ice nanocrystals. J. Phys. Chem. A 106:419374–89
    [Google Scholar]
  173. 173.
    Andreas EL 2007. New estimates for the sublimation rate for ice on the Moon. Icarus 186:124–30
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080921-101821
Loading
/content/journals/10.1146/annurev-matsci-080921-101821
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error