1932

Abstract

Advanced experimental and numerical approaches are being developed to capture the localization of plasticity at the nanometer scale as a function of the multiscale and heterogeneous microstructure present in metallic materials. These innovative approaches promise new avenues to understand microstructural effects on mechanical properties, accelerate alloy design, and enable more accurate mechanical property prediction. This article provides an overview of emerging approaches with a focus on the localization of plasticity by crystallographic slip. New insights into the mechanisms and mechanics of strain localization are addressed. The consequences of the localization of plasticity by deformation slip for mechanical properties of metallic materials are also detailed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080921-102621
2023-07-03
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-080921-102621.html?itemId=/content/journals/10.1146/annurev-matsci-080921-102621&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Tatschl A, Kolednik O. 2003. A new tool for the experimental characterization of micro-plasticity. Mater. Sci. Eng. A 339:265–80
    [Google Scholar]
  2. 2.
    Stinville JC, Echlin MP, Texier D, Bridier F, Bocher P, Pollock TM. 2016. Sub-grain scale digital image correlation by electron microscopy for polycrystalline materials during elastic and plastic deformation. Exp. Mech. 56:197–216
    [Google Scholar]
  3. 3.
    Magazzeni CM, Gardner HM, Howe I, Gopon P, Waite JC et al. 2021. Nanoindentation in multi-modal map combinations: a correlative approach to local mechanical property assessment. J. Mater. Res. 36:2235–50
    [Google Scholar]
  4. 4.
    Jelinek A, Zak S, Alfreider M, Kiener D. 2022. High-throughput micromechanical testing enabled by optimized direct laser writing. Adv. Eng. Mater. 25:2200288
    [Google Scholar]
  5. 5.
    Zhang X, Xiang Y. 2017. Combinatorial approaches for high-throughput characterization of mechanical properties. J. Materiomics 3:209–20
    [Google Scholar]
  6. 6.
    Eastman DW, Shade PA, Uchic MD, Hemker KJ 2020. Microscale testing and characterization techniques for benchmarking crystal plasticity models at microstructural length scales. Integrated Computational Materials Engineering (ICME) S Ghosh, C Woodward, C Przybyla 91–125. Cham, Switz: Springer Int.
    [Google Scholar]
  7. 7.
    Moore S, Burrows R, Kumar D, Kloucek MB, Warren AD et al. 2021. Observation of stress corrosion cracking using real-time in situ high-speed atomic force microscopy and correlative techniques. NPJ Mater. Degrad. 5:3
    [Google Scholar]
  8. 8.
    Proudhon H, Guéninchault N, Forest S, Ludwig W. 2018. Incipient bulk polycrystal plasticity observed by synchrotron in-situ topotomography. Materials 11: https://doi.org/10.3390/ma11102018
    [Google Scholar]
  9. 9.
    Stinville J, Ludwig W, Callahan P, Echlin M, Valle V et al. 2022. Observation of bulk plasticity in a polycrystalline titanium alloy by diffraction contrast tomography and topotomography. Mater. Charact. 188:111891
    [Google Scholar]
  10. 10.
    Jakobsen A, Simons H, Ludwig W, Yildirim C, Leemreize H et al. 2019. Mapping of individual dislocations with dark-field X-ray microscopy. J. Appl. Crystallogr. 52:122–32
    [Google Scholar]
  11. 11.
    Stinville J, Vanderesse N, Bridier F, Bocher P, Pollock T. 2015. High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy. Acta Mater 98:29–42
    [Google Scholar]
  12. 12.
    Boyce BL, Uchic MD. 2019. Progress toward autonomous experimental systems for alloy development. MRS Bull 44:273–80
    [Google Scholar]
  13. 13.
    Marano A, Gélébart L, Forest S. 2019. Intragranular localization induced by softening crystal plasticity: analysis of slip and kink bands localization modes from high resolution FFT-simulations results. Acta Mater 175:262–75
    [Google Scholar]
  14. 14.
    Burnett TL, Withers PJ. 2019. Completing the picture through correlative characterization. Nat. Mater. 18:1041–49
    [Google Scholar]
  15. 15.
    Lenthe WC, Echlin MP, Trenkle A, Syha M, Gumbsch P, Pollock TM. 2015. Quantitative voxel-to-voxel comparison of TriBeam and DCT strontium titanate three-dimensional data sets. J. Appl. Crystallogr. 48:1034–46
    [Google Scholar]
  16. 16.
    Polonsky AT, Pandey A. 2021. Advances in multimodal characterization of structural materials. JOM 73:3228–29
    [Google Scholar]
  17. 17.
    Kalidindi SR, Buzzy M, Boyce BL, Dingreville R. 2022. Digital twins for materials. Front. Mater. 9:818535
    [Google Scholar]
  18. 18.
    Allison J, Backman D, Christodoulou L. 2006. Integrated computational materials engineering: a new paradigm for the global materials profession. JOM 58:25–27
    [Google Scholar]
  19. 19.
    Stinville JC, Charpagne MA, Cervellon A, Hemery S, Wang F et al. 2022. On the origins of fatigue strength in crystalline metallic materials. Science 377:1065–71
    [Google Scholar]
  20. 20.
    Dawson PR, Miller MP, Pollock TM, Wendorf J, Mills LH et al. 2021. Mechanical metrics of virtual polycrystals (MechMet). Integrat. Mater. Manuf. Innov. 10:265–85
    [Google Scholar]
  21. 21.
    Harte A, Atkinson M, Smith A, Drouven C, Zaefferer S et al. 2020. The effect of solid solution and gamma prime on the deformation modes in Ni-based superalloys. Acta Mater 194:257–75
    [Google Scholar]
  22. 22.
    Weidner A, Biermann H. 2021. Review on strain localization phenomena studied by high-resolution digital image correlation. Adv. Eng. Mater. 23:2001409
    [Google Scholar]
  23. 23.
    Montgomery C, Koohbor B, Sottos N. 2019. A robust patterning technique for electron microscopy-based digital image correlation at sub-micron resolutions. Exp. Mech. 59:1063–73
    [Google Scholar]
  24. 24.
    Hoefnagels J, van Maris M, Vermeij T 2019. One-step deposition of nano-to-micron-scalable, high-quality digital image correlation patterns for high-strain in-situ multi-microscopy testing. Strain 55:e12330
    [Google Scholar]
  25. 25.
    Kammers A, Daly S. 2013. Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. Exp. Mech. 53:1333–41
    [Google Scholar]
  26. 26.
    Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ et al. 2006. Metrology in a scanning electron microscope: theoretical developments and experimental validation. Meas. Sci. Technol. 17:2613–22
    [Google Scholar]
  27. 27.
    Lenthe WC, Stinville JC, Echlin MP, Chen Z, Daly S, Pollock TM. 2018. Advanced detector signal acquisition and electron beam scanning for high resolution SEM imaging. Ultramicroscopy 195:93–100
    [Google Scholar]
  28. 28.
    Hémery S, Stinville J, Wang F, Charpagne M, Emigh M et al. 2021. Strain localization and fatigue crack formation at (0001) twist boundaries in titanium alloys. Acta Mater 219:117227
    [Google Scholar]
  29. 29.
    Arani MM, Ramesh N, Wang X, Parson N, Li M, Poole W 2022. The localization of plastic deformation in the precipitate free zone of an Al-Mg-Si-Mn alloy. Acta Mater 231:117872
    [Google Scholar]
  30. 30.
    Atkinson MD, Donoghue JM, da Fonseca JQ. 2020. Measurement of local plastic strain during uniaxial reversed loading of nickel alloy 625. Mater. Charact. 168:110561
    [Google Scholar]
  31. 31.
    Xu X, Lunt D, Thomas R, Babu RP, Harte A et al. 2019. Identification of active slip mode in a hexagonal material by correlative scanning electron microscopy. Acta Mater 175:376–93
    [Google Scholar]
  32. 32.
    Harr M, Daly S, Pilchak A. 2021. The effect of temperature on slip in microtextured Ti-6Al-2Sn-4Zr-2Mo under dwell fatigue. Int. J. Fatigue 147:106173
    [Google Scholar]
  33. 33.
    Stinville J, Callahan P, Charpagne M, Echlin M, Valle V, Pollock T. 2020. Direct measurements of slip irreversibility in a nickel-based superalloy using high resolution digital image correlation. Acta Mater 186:172–89
    [Google Scholar]
  34. 34.
    Vermeij T, Hoefnagels J. 2022. Plasticity, localization, and damage in ferritic-pearlitic steel studied by nanoscale digital image correlation. Scr. Mater. 208:114327
    [Google Scholar]
  35. 35.
    Vermeij T, Verstijnen JAC, Ramirez y Cantador TJJ, Blaysat B, Neggers J, Hoefnagels JPM. 2022. A nanomechanical testing framework yielding front&rear-sided, high-resolution, microstructure-correlated SEM-DIC strain fields. Exp. Mech. 62:1625–46
    [Google Scholar]
  36. 36.
    Jiang R, Pierron F, Octaviani S, Reed P. 2017. Characterisation of strain localisation processes during fatigue crack initiation and early crack propagation by SEM-DIC in an advanced disc alloy. Mater. Sci. Eng. A 699:128–44
    [Google Scholar]
  37. 37.
    Guery A, Hild F, Latourte F, Roux S. 2016. Slip activities in polycrystals determined by coupling DIC measurements with crystal plasticity calculations. Int. J. Plast. 81:249–66
    [Google Scholar]
  38. 38.
    Stinville JC, Francis T, Polonsky AT, Torbet CJ, Charpagne MA et al. 2021. Time-resolved digital image correlation in the scanning electron microscope for analysis of time-dependent mechanisms. Exp. Mech. 61:331–48
    [Google Scholar]
  39. 39.
    Di Gioacchino F, Quinta da Fonseca J 2013. Plastic strain mapping with sub-micron resolution using digital image correlation. Exp. Mech. 53:743–54
    [Google Scholar]
  40. 40.
    Chen Z, Daly S. 2018. Deformation twin identification in magnesium through clustering and computer vision. Mater. Sci. Eng. A 736:61–75
    [Google Scholar]
  41. 41.
    Chen Z, Lenthe W, Stinville JC, Echlin M, Pollock TM, Daly S. 2018. High-resolution deformation mapping across large fields of view using scanning electron microscopy and digital image correlation. Exp. Mech. 58:1407–21
    [Google Scholar]
  42. 42.
    Linne MA, Bieler TR, Daly S. 2020. The effect of microstructure on the relationship between grain boundary sliding and slip transmission in high purity aluminum. Int. J. Plast. 135:102818
    [Google Scholar]
  43. 43.
    Linne MA, Daly S. 2019. Data clustering for the high-resolution alignment of microstructure and strain fields. Mater. Charact. 158:109984
    [Google Scholar]
  44. 44.
    Edwards TEJ, Di Gioacchino F, Clegg WJ. 2021. High resolution digital image correlation mapping of strain localization upon room and high temperature, high cycle fatigue of a TiAl intermetallic alloy. Int. J. Fatigue 142:105905
    [Google Scholar]
  45. 45.
    Charpagne MA, Stinville JC, Polonsky AT, Echlin MP, Pollock TM. 2021. A multi-modal data merging framework for correlative investigation of strain localization in three dimensions. JOM 73:3263–71
    [Google Scholar]
  46. 46.
    Charpagne M, Hestroffer J, Polonsky A, Echlin M, Texier D et al. 2021. Slip localization in Inconel 718: a three-dimensional and statistical perspective. Acta Mater 215:117037
    [Google Scholar]
  47. 47.
    Sperry R, Han S, Chen Z, Daly SH, Crimp MA, Fullwood DT. 2021. Comparison of EBSD, DIC, AFM, and ECCI for active slip system identification in deformed Ti-7Al. Mater. Charact. 173:110941
    [Google Scholar]
  48. 48.
    Edwards TEJ, Maeder X, Ast J, Berger L, Michler J. 2022. Mapping pure plastic strains against locally applied stress: revealing toughening plasticity. Sci. Adv. 8:eabo5735
    [Google Scholar]
  49. 49.
    Bourdin F, Stinville J, Echlin M, Callahan P, Lenthe W et al. 2018. Measurements of plastic localization by heaviside-digital image correlation. Acta Mater 157:307–25
    [Google Scholar]
  50. 50.
    Chen Z, Daly S. 2017. Active slip system identification in polycrystalline metals by digital image correlation (DIC). Exp. Mech. 57:115–27
    [Google Scholar]
  51. 51.
    Bergsmo A, Xu Y, Poole B, Dunne FP. 2022. Twin boundary fatigue crack nucleation in a polycrystalline nickel superalloy containing non-metallic inclusions. J. Mech. Phys. Solids 160:104785
    [Google Scholar]
  52. 52.
    Poissant J, Barthelat F. 2010. A novel “subset splitting” procedure for digital image correlation on discontinuous displacement fields. Exp. Mech. 50:353–64
    [Google Scholar]
  53. 53.
    Réthoré J, Hild F, Roux S. 2007. Shear-band capturing using a multiscale extended digital image correlation technique. Comput. Methods Appl. Mech. Eng. 196:5016–30
    [Google Scholar]
  54. 54.
    Valle V, Hedan S, Cosenza P, Fauchille AL, Berdjane M. 2015. Digital image correlation development for the study of materials including multiple crossing cracks. Exp. Mech. 55:379–91
    [Google Scholar]
  55. 55.
    Stinville JC, Hestroffer JM, Charpagne MA, Polonsky AT, Echlin MP et al. 2022. Multi-modal dataset of a polycrystalline metallic material: 3D microstructure and deformation fields. Sci. Data 9:460
    [Google Scholar]
  56. 56.
    Hestroffer JM, Latypov MI, Stinville JC, Charpagne MA, Valle V et al. 2022. Development of grain-scale slip activity and lattice rotation fields in Inconel 718. Acta Mater 226:117627
    [Google Scholar]
  57. 57.
    Stinville J, Lenthe W, Miao J, Pollock T. 2016. A combined grain scale elastic–plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy. Acta Mater 103:461–73
    [Google Scholar]
  58. 58.
    Stinville J, Charpagne M, Bourdin F, Callahan P, Chen Z et al. 2020. Measurement of elastic and rotation fields during irreversible deformation using heaviside-digital image correlation. Mater. Charact. 169:110600
    [Google Scholar]
  59. 59.
    Echlin MP, Stinville JC, Miller VM, Lenthe WC, Pollock TM. 2016. Incipient slip and long range plastic strain localization in microtextured Ti-6Al-4V titanium. Acta Mater 114:164–75
    [Google Scholar]
  60. 60.
    Hémery S, Naït-Ali A, Guéguen M, Wendorf J, Polonsky A et al. 2019. A 3D analysis of the onset of slip activity in relation to the degree of micro-texture in Ti–6Al–4V. Acta Mater 181:36–48
    [Google Scholar]
  61. 61.
    Wilkinson AJ, Hirsch PB 1997. Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 28:279–308
    [Google Scholar]
  62. 62.
    Cazottes S, Bechis A, Lafond C, L'Hôte G, Roth C et al. 2019. Toward an automated tool for dislocation density characterization in a scanning electron microscope. Mater. Charact. 158:109954
    [Google Scholar]
  63. 63.
    Callahan PG, Haidet BB, Jung D, Seward GGE, Mukherjee K. 2018. Direct observation of recombination-enhanced dislocation glide in heteroepitaxial GaAs on silicon. Phys. Rev. Mater. 2:081601
    [Google Scholar]
  64. 64.
    Steinmetz DR, Jäpel T, Wietbrock B, Eisenlohr P, Gutierrez-Urrutia I et al. 2013. Revealing the strain-hardening behavior of twinning-induced plasticity steels: theory, simulations, experiments. Acta Mater 61:494–510
    [Google Scholar]
  65. 65.
    Simkin B, Crimp M, Bieler T. 2003. A factor to predict microcrack nucleation at γ–γ grain boundaries in TiAl. Scr. Mater. 49:149–54
    [Google Scholar]
  66. 66.
    Crimp MA. 2006. Scanning electron microscopy imaging of dislocations in bulk materials, using electron channeling contrast. Microsc. Res. Tech. 69:374–81
    [Google Scholar]
  67. 67.
    Ram F, Li Z, Zaefferer S, Hafez Haghighat SM, Zhu Z et al. 2016. On the origin of creep dislocations in a Ni-base, single-crystal superalloy: an ECCI, EBSD, and dislocation dynamics-based study. Acta Mater 109:151–61
    [Google Scholar]
  68. 68.
    Zauter R, Petry F, Bayerlein M, Sommer C, Christ HJ, Mughrabi H. 1992. Electron channelling contrast as a supplementary method for microstructural investigations in deformed metals. Philos. Mag. A 66:425–36
    [Google Scholar]
  69. 69.
    Ahmed J, Wilkinson A, Roberts S. 1997. Characterizing dislocation structures in bulk fatigued copper single crystals using electron channelling contrast imaging (ECCI). Philos. Mag. Lett. 76:237–46
    [Google Scholar]
  70. 70.
    Kaneko Y, Fukui K, Hashimoto S. 2005. Electron channeling contrast imaging of dislocation structures in fatigued austenitic stainless steels. Mater. Sci. Eng. A 400–401:413–17
    [Google Scholar]
  71. 71.
    L'Hôte G, Cazottes S, Lachambre J, Montagnat M, Courtois P et al. 2019. Dislocation dynamics during cyclic loading in copper single crystal. Materialia 8:100501
    [Google Scholar]
  72. 72.
    Li Z, Tasan CC, Pradeep KG, Raabe D. 2017. A trip-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior. Acta Mater 131:323–35
    [Google Scholar]
  73. 73.
    Grilli N, Janssens K, Nellessen J, Sandlöbes S, Raabe D. 2018. Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method. Int. J. Plast. 100:104–21
    [Google Scholar]
  74. 74.
    Callahan PG, Stinville JC, Yao ER, Echlin MP, Titus MS et al. 2018. Transmission scanning electron microscopy: defect observations and image simulations. Ultramicroscopy 186:49–61
    [Google Scholar]
  75. 75.
    Gianola DS, Britton TB, Zaefferer S. 2019. New techniques for imaging and identifying defects in electron microscopy. MRS Bull 44:450–58
    [Google Scholar]
  76. 76.
    Stinville J, Yao ER, Callahan PG, Shin J, Wang F et al. 2019. Dislocation dynamics in a nickel-based superalloy via in-situ transmission scanning electron microscopy. Acta Mater 168:152–66
    [Google Scholar]
  77. 77.
    Phillips P, Brandes M, Mills M, De Graef M 2011. Diffraction contrast STEM of dislocations: imaging and simulations. Ultramicroscopy 111:1483–87
    [Google Scholar]
  78. 78.
    Wang F, Balbus GH, Xu S, Su Y, Shin J et al. 2020. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy. Science 370:95–101
    [Google Scholar]
  79. 79.
    Levin BDA. 2021. Direct detectors and their applications in electron microscopy for materials science. J. Phys. Mater. 4:042005
    [Google Scholar]
  80. 80.
    Wang F, Echlin MP, Taylor AA, Shin J, Bammes B et al. 2021. Electron backscattered diffraction using a new monolithic direct detector: high resolution and fast acquisition. Ultramicroscopy 220:113160
    [Google Scholar]
  81. 81.
    Wilkinson AJ, Moldovan G, Britton TB, Bewick A, Clough R, Kirkland AI. 2013. Direct detection of electron backscatter diffraction patterns. Phys. Rev. Lett. 111:065506
    [Google Scholar]
  82. 82.
    Mingard K, Stewart M, Gee M, Vespucci S, Trager-Cowan C. 2018. Practical application of direct electron detectors to EBSD mapping in 2D and 3D. Ultramicroscopy 184:242–51
    [Google Scholar]
  83. 83.
    Kacher J, Ruggles T, Key J, Nowell M, Wright S. 2022. Characterizing defect structures in AM steel using direct electron detection EBSD. Scr. Mater. 221:114952
    [Google Scholar]
  84. 84.
    Echlin MP, Polonsky AT, Lamb J, Geurts R, Randolph SJ et al. 2021. Recent developments in femtosecond laser-enabled TriBeam systems. JOM 73:4258–69
    [Google Scholar]
  85. 85.
    Rowenhorst DJ, Nguyen L, Murphy-Leonard AD, Fonda RW. 2020. Characterization of microstructure in additively manufactured 316L using automated serial sectioning. Curr. Opin. Solid State Mater. Sci. 24:100819
    [Google Scholar]
  86. 86.
    Echlin MP, Burnett TL, Polonsky AT, Pollock TM, Withers PJ. 2020. Serial sectioning in the SEM for three dimensional materials science. Curr. Opin. Solid State Mater. Sci. 24:100817
    [Google Scholar]
  87. 87.
    Zhu C, De Graef M. 2020. EBSD pattern simulations for an interaction volume containing lattice defects. Ultramicroscopy 218:113088
    [Google Scholar]
  88. 88.
    Wang F, Stinville JC, Charpagne M, Echlin MP, Agnew SR et al. 2023. Dislocation cells in additively manufactured metallic alloys characterized by electron backscatter diffraction pattern sharpness. Mater. Charact. 197:112673
    [Google Scholar]
  89. 89.
    Witzen WA, Echlin MP, Charpagne MA, Pollock TM, Beyerlein IJ. 2023. Subgrain geometrically necessary dislocation density mapping in spalled Ta in three dimensions. Acta Mater. 244:118366
    [Google Scholar]
  90. 90.
    Witzen WA, Polonsky AT, Pollock TM, Beyerlein IJ. 2020. Three-dimensional maps of geometrically necessary dislocation densities in additively manufactured Ni-based superalloy IN718. Int. J. Plast. 131:102709
    [Google Scholar]
  91. 91.
    Jiang J, Britton T, Wilkinson A. 2013. Measurement of geometrically necessary dislocation density with high resolution electron backscatter diffraction: effects of detector binning and step size. Ultramicroscopy 125:1–9
    [Google Scholar]
  92. 92.
    Steinmetz DR, Zaefferer S. 2010. Towards ultrahigh resolution EBSD by low accelerating voltage. Mater. Sci. Technol. 26:640–45
    [Google Scholar]
  93. 93.
    Adhyaksa GWP, Brittman S, Āboliņš H, Lof A, Li X et al. 2018. Understanding detrimental and beneficial grain boundary effects in halide perovskites. Adv. Mater. 30:1804792
    [Google Scholar]
  94. 94.
    Fonda RW, Spanos G. 2014. Effects of cooling rate on transformations in a Fe-9 pct Ni steel. Metall. Mater. Trans. A 45:5982–89
    [Google Scholar]
  95. 95.
    Trimby PW, Cao Y, Chen Z, Han S, Hemker KJ et al. 2014. Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission kikuchi diffraction in a scanning electron microscope. Acta Mater 62:69–80
    [Google Scholar]
  96. 96.
    Singh S, Guo Y, Winiarski B, Burnett TL, Withers PJ, De Graef M. 2018. High resolution low kV EBSD of heavily deformed and nanocrystalline aluminium by dictionary-based indexing. Sci. Rep. 8:10991
    [Google Scholar]
  97. 97.
    Morales-Rivas L, Ram F, Spriestersbach D, Sippel J, De Graef M, Kerscher E 2021. Fine granular area linked to very high cycle fatigue in martensitic and bainitic steels: characterization by means of EBSD-dictionary indexing. Scr. Mater. 194:113644
    [Google Scholar]
  98. 98.
    Zeisl S, Lassnig A, Hohenwarter A, Mendez-Martin F. 2022. Precipitation behavior of a Co-free Fe-Ni-Cr-Mo-Ti-Al maraging steel after severe plastic deformation. Mater. Sci. Eng. A 833:142416
    [Google Scholar]
  99. 99.
    Liao Z, Polyakov M, Diaz OG, Axinte D, Mohanty G et al. 2019. Grain refinement mechanism of nickel-based superalloy by severe plastic deformation - mechanical machining case. Acta Mater 180:2–14
    [Google Scholar]
  100. 100.
    Lenthe WC, Echlin MP, Stinville JC, De Graef M, Pollock TM. 2020. Twin related domain networks in René 88DT. Mater. Charact. 165:110365
    [Google Scholar]
  101. 101.
    Stinville JC, Martin E, Karadge M, Ismonov S, Soare M et al. 2018. Competing modes for crack initiation from non-metallic inclusions and intrinsic microstructural features during fatigue in a polycrystalline nickel-based superalloy. Metall. Mater. Trans. A 49:3865–73
    [Google Scholar]
  102. 102.
    Lenthe WC, Stinville JC, Echlin MP, Pollock TM 2016. Statistical assessment of fatigue-initiating microstructural features in a polycrystalline disk alloy. Superalloys 2016: Proceedings of the 13th International Symposium of Superalloys M Hardy, E Huron, U Glatze, B Griffin, B Lewis, et al. 567–78. Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  103. 103.
    Wilkinson AJ, Meaden G, Dingley DJ. 2006. High resolution mapping of strains and rotations using electron backscatter diffraction. Mater. Sci. Technol. 22:1271–78
    [Google Scholar]
  104. 104.
    Britton T, Wilkinson A. 2011. Measurement of residual elastic strain and lattice rotations with high resolution electron backscatter diffraction. Ultramicroscopy 111:1395–404
    [Google Scholar]
  105. 105.
    Villechaise P, Cormier J, Billot T, Mendez J 2012. Mechanical behavior and damage processes of Udimet 720Li: influence of localized plasticity at grain boundaries. Superalloys 2012: Proceedings of the 12th International Symposium on Superalloys, ed. ES Huron, RC Reed, MC Hardy, MJ Mills, RE Montero, et al. 15–24. Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  106. 106.
    Larrouy B, Villechaise P, Cormier J, Berteaux O. 2015. Grain boundary–slip bands interactions: impact on the fatigue crack initiation in a polycrystalline forged Ni-based superalloy. Acta Mater 99:325–36
    [Google Scholar]
  107. 107.
    Koko A, Elmukashfi E, Becker TH, Karamched PS, Wilkinson AJ, Marrow TJ. 2022. In situ characterisation of the strain fields of intragranular slip bands in ferrite by high-resolution electron backscatter diffraction. Acta Mater 239:118284
    [Google Scholar]
  108. 108.
    Guo Y, Collins D, Tarleton E, Hofmann F, Tischler J et al. 2015. Measurements of stress fields near a grain boundary: exploring blocked arrays of dislocations in 3D. Acta Mater 96:229–36
    [Google Scholar]
  109. 109.
    Danilewsky AN. 2020. X-ray topography—more than nice pictures. Cryst. Res. Technol. 55:2000012
    [Google Scholar]
  110. 110.
    Cho A. 2020. X-ray source gets a 100-fold boost in brightness. Science 369:234–35
    [Google Scholar]
  111. 111.
    Ludwig W, Lauridsen EM, Schmidt S, Poulsen HF, Baruchel J. 2007. High-resolution three-dimensional mapping of individual grains in polycrystals by topotomography. J. Appl. Crystallogr. 40:905–11
    [Google Scholar]
  112. 112.
    Hänschke D, Helfen L, Altapova V, Danilewsky A, Baumbach T. 2012. Three-dimensional imaging of dislocations by X-ray diffraction laminography. Appl. Phys. Lett. 101:244103
    [Google Scholar]
  113. 113.
    Viganò N, Ludwig W. 2020. X-ray orientation microscopy using topo-tomography and multi-mode diffraction contrast tomography. Curr. Opin. Solid State Mater. Sci. 24:100832
    [Google Scholar]
  114. 114.
    Proudhon H, Pelerin M, King A, Ludwig W. 2020. In situ 4D mechanical testing of structural materials: the data challenge. Curr. Opin. Solid State Mater. Sci. 24:100834
    [Google Scholar]
  115. 115.
    Gustafson S, Ludwig W, Shade P, Naragani D, Pagan D et al. 2020. Quantifying microscale drivers for fatigue failure via coupled synchrotron X-ray characterization and simulations. Nat. Commun. 11:3189
    [Google Scholar]
  116. 116.
    Simons H, King A, Ludwig W, Detlefs C, Pantleon W et al. 2015. Dark-field X-ray microscopy for multiscale structural characterization. Nat. Commun. 6:6098
    [Google Scholar]
  117. 117.
    Jakobsen AC, Simons H, Ludwig W, Yildirim C, Leemreize H et al. 2019. Mapping of individual dislocations with dark-field X-ray microscopy. J. Appl. Crystallogr. 52:122–32
    [Google Scholar]
  118. 118.
    Dresselhaus-Marais LE, Winther G, Howard M, Gonzalez A, Breckling SR et al. 2021. In situ visualization of long-range defect interactions at the edge of melting. Sci. Adv. 7:eabe8311
    [Google Scholar]
  119. 119.
    Porz L, Klomp AJ, Fang X, Li N, Yildirim C et al. 2021. Dislocation-toughened ceramics. Mater. Horiz. 8:1528–37
    [Google Scholar]
  120. 120.
    Yildirim C, Mavrikakis N, Cook P, Rodriguez-Lamas R, Kutsal M et al. 2022. 4D microstructural evolution in a heavily deformed ferritic alloy: a new perspective in recrystallisation studies. Scr. Mater. 214:114689
    [Google Scholar]
  121. 121.
    Kutsal M, Bernard P, Berruyer G, Cook PK, Hino R et al. 2019. The ESRF dark-field X-ray microscope at ID06. IOP Conf. Ser. Mater. Sci. Eng. 580:012007
    [Google Scholar]
  122. 122.
    Wright J, Giacobbe C, Majkut M. 2020. New opportunities at the materials science beamline at ESRF to exploit high energy nano-focus X-ray beams. Curr. Opin. Solid State Mater. Sci. 24:100818
    [Google Scholar]
  123. 123.
    Ice GE, Pang JWL, Larson BC, Budai JD, Tischler JZ et al. 2009. At the limit of polychromatic microdiffraction. Mater. Sci. Eng. A 524:3–9
    [Google Scholar]
  124. 124.
    Liu W, Ice GE, Assoufid L, Liu C, Shi B et al. 2011. Achromatic nested Kirkpatrick–Baez mirror optics for hard X-ray nanofocusing. J. Synchrotron Radiat. 18:575–79
    [Google Scholar]
  125. 125.
    Larson BC, Yang W, Ice GE, Budai JD, Tischler JZ. 2002. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415:887–90
    [Google Scholar]
  126. 126.
    Li R, Xie Q, Wang YD, Liu W, Wang M et al. 2017. Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction. PNAS 115:483–88
    [Google Scholar]
  127. 127.
    Bonnin A, Wright JP, Tucoulou R, Palancher H. 2014. Impurity precipitation in atomized particles evidenced by nano X-ray diffraction computed tomography. Appl. Phys. Lett. 105:084103
    [Google Scholar]
  128. 128.
    Hayashi Y, Setoyama D, Hirose Y, Yoshida T, Kimura H. 2019. Intragranular three-dimensional stress tensor fields in plastically deformed polycrystals. Science 366:1492–96
    [Google Scholar]
  129. 129.
    Henningsson NA, Hall SA, Wright JP, Hektor J. 2020. Reconstructing intragranular strain fields in polycrystalline materials from scanning 3DXRD data. J. Appl. Crystallogr. 53:314–25
    [Google Scholar]
  130. 130.
    Henningsson A, Hendriks J. 2021. Intragranular strain estimation in far-field scanning X-ray diffraction using a Gaussian process. J. Appl. Crystallogr. 54:1057–70
    [Google Scholar]
  131. 131.
    Liu J, Vanderesse N, Stinville JC, Pollock T, Bocher P, Texier D. 2019. In-plane and out-of-plane deformation at the sub-grain scale in polycrystalline materials assessed by confocal microscopy. Acta Mater 169:260–74
    [Google Scholar]
  132. 132.
    Wei S, Kim J, Tasan CC. 2022. In-situ investigation of plasticity in a Ti-Al-V-Fe (α+β) alloy: Slip mechanisms, strain localization, and partitioning. Int. J. Plast. 148:103131
    [Google Scholar]
  133. 133.
    Dichtl C, Lunt D, Atkinson M, Thomas R, Plowman A et al. 2022. Slip activity during low-stress cold creep deformation in a near-α titanium alloy. Acta Mater 229:117691
    [Google Scholar]
  134. 134.
    Lim H, Carroll JD, Michael JR, Battaile CC, Chen SR, Lane JMD. 2020. Investigating active slip planes in tantalum under compressive load: crystal plasticity and slip trace analyses of single crystals. Acta Mater 185:1–12
    [Google Scholar]
  135. 135.
    Luan Q, Xing H, Zhang J, Jiang J. 2020. Experimental and crystal plasticity study on deformation bands in single crystal and multi-crystal pure aluminium. Acta Mater 183:78–92
    [Google Scholar]
  136. 136.
    Yang Y, Wang L, Bieler TR, Eisenlohr P, Crimp MA. 2011. Quantitative atomic force microscopy characterization and crystal plasticity finite element modeling of heterogeneous deformation in commercial purity titanium. Metall. Mater. Trans. A 42:636–44
    [Google Scholar]
  137. 137.
    Chen Z, Lenthe W, Stinville JC, Echlin M, Pollock TM, Daly S. 2018. High-resolution deformation mapping across large fields of view using scanning electron microscopy and digital image correlation. Exp. Mech. 58:1407–21
    [Google Scholar]
  138. 138.
    Charpagne MA, Stinville JC, Polonsky AT, Echlin MP, Murray SP et al. 2020. Tuning strain localization in polycrystalline nickel-based superalloys by thermomechanical processing. Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys S Tin, M Hardy, J Clews, J Cormier, Q Feng, et al. 471–81. Cham, Switz: Springer Int.
    [Google Scholar]
  139. 139.
    Nolze G. 2007. Image distortions in SEM and their influences on EBSD measurements. Ultramicroscopy 107:172–83
    [Google Scholar]
  140. 140.
    Charpagne MA, Strub F, Pollock TM. 2019. Accurate reconstruction of EBSD datasets by a multimodal data approach using an evolutionary algorithm. Mater. Charact. 150:184–98
    [Google Scholar]
  141. 141.
    Winiarski B, Gholinia A, Mingard K, Gee M, Thompson G, Withers P. 2021. Correction of artefacts associated with large area EBSD. Ultramicroscopy 226:113315
    [Google Scholar]
  142. 142.
    Nguyen LT, Rowenhorst DJ. 2021. The alignment and fusion of multimodal 3D serial sectioning datasets. JOM 73:3272–84
    [Google Scholar]
  143. 143.
    Tong VS, Ben Britton T 2021. TrueEBSD: Correcting spatial distortions in electron backscatter diffraction maps. Ultramicroscopy 221:113130
    [Google Scholar]
  144. 144.
    Liang D, Hure J, Courcelle A, Shawish SE, Tanguy B. 2021. A micromechanical analysis of intergranular stress corrosion cracking of an irradiated austenitic stainless steel. Acta Mater 204:116482
    [Google Scholar]
  145. 145.
    Ånes HW, van Helvoort ATJ, Marthinsen K. 2022. Correlated subgrain and particle analysis of a recovered Al-Mn alloy by directly combining EBSD and backscatter electron imaging. Mater. Charact. 193:112228
    [Google Scholar]
  146. 146.
    Zhang Y, Elbrønd A, Lin F. 2014. A method to correct coordinate distortion in EBSD maps. Mater. Charact. 96:158–65
    [Google Scholar]
  147. 147.
    Polonsky AT, Raghavan N, Echlin MP, Kirka MM, Dehoff RR, Pollock TM 2020. 3D characterization of the columnar-to-equiaxed transition in additively manufactured Inconel 718. Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys ed. S Tin, M Hardy, J Clews, J Cormier, Q Feng, et al. 990–1002. Cham, Switz: Springer Int.
    [Google Scholar]
  148. 148.
    Chen Z, Daly S. 2020. Automated identification of deformation twin systems in Mg WE43 from SEM DIC. Mater. Charact. 169:110628
    [Google Scholar]
  149. 149.
    Charpagne M, Stinville J, Polonsky A, Echlin M, Pollock T. 2021. A multi-modal data merging framework for correlative investigation of strain localization in three dimensions. JOM 73:3263–71
    [Google Scholar]
  150. 150.
    Groeber MA, Jackson MA. 2014. DREAM.3D: A digital representation environment for the analysis of microstructure in 3D. Integrat. Mater. Manuf. Innov. 3:56–72
    [Google Scholar]
  151. 151.
    Proudhon H. 2022. Pymicro. Github https://github.com/heprom/pymicro
    [Google Scholar]
  152. 152.
    Charpagne M, Stinville J, Callahan P, Texier D, Chen Z et al. 2020. Automated and quantitative analysis of plastic strain localization via multi-modal data recombination. Mater. Charact. 163:110245
    [Google Scholar]
  153. 153.
    Bridier F, Villechaise P, Mendez J. 2005. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation. Acta Mater 53:555–67
    [Google Scholar]
  154. 154.
    Bayerschen E, McBride A, Reddy B, Böhlke T. 2016. Review on slip transmission criteria in experiments and crystal plasticity models. J. Mater. Sci. 51:2243–58
    [Google Scholar]
  155. 155.
    Alizadeh R, Peña-Ortega M, Bieler T, LLorca J. 2020. A criterion for slip transfer at grain boundaries in Al. Scr. Mater. 178:408–12
    [Google Scholar]
  156. 156.
    Bieler T, Alizadeh R, Peña-Ortega M, LLorca J. 2019. An analysis of (the lack of) slip transfer between near-cube oriented grains in pure Al. Int. J. Plast. 118:269–90
    [Google Scholar]
  157. 157.
    Zhao Z, Bieler TR, LLorca J, Eisenlohr P. 2020. Grain boundary slip transfer classification and metric selection with artificial neural networks. Scr. Mater. 185:71–75
    [Google Scholar]
  158. 158.
    Vermeij T, Peerlings RHJ, Geers MGD, Hoefnagels JPM. 2023. Automated identification of slip system activity fields from digital image correlation data. Acta Mater 243:118502
    [Google Scholar]
  159. 159.
    Charpagne M, Stinville J, Wang F, Philips N, Pollock T. 2022. Orientation dependent plastic localization in the refractory high entropy alloy HfNbTaTiZr at room temperature. Mater. Sci. Eng. A 848:143291
    [Google Scholar]
  160. 160.
    Schmid E, Valouch MA. 1932. About the sudden translation of zinc crystals. Z. Phys. 75:531–38
    [Google Scholar]
  161. 161.
    Becker R, Orowan E. 1932. Sudden expansion of zinc crystals. Z. Phys. 79:566–72
    [Google Scholar]
  162. 162.
    Tinder RF, Trzil JP. 1973. Millimicroplastic burst phenomena in zinc monocrystals. Acta Metall 21:975–89
    [Google Scholar]
  163. 163.
    Chatterjee K, Beaudoin AJ, Pagan DC, Shade PA, Philipp HT et al. 2019. Intermittent plasticity in individual grains: a study using high energy X-ray diffraction. Struct. Dyn. 6:014501
    [Google Scholar]
  164. 164.
    Deschanel S, Ben Rhouma W, Weiss J 2017. Acoustic emission multiplets as early warnings of fatigue failure in metallic materials. Sci. Rep. 7:13680
    [Google Scholar]
  165. 165.
    Csikor FF, Motz C, Weygand D, Zaiser M, Zapperi S. 2007. Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318:251–54
    [Google Scholar]
  166. 166.
    Rizzardi Q, McElfresh C, Sparks G, Stauffer DD, Marian J, Maass R. 2022. Mild-to-wild plastic transition is governed by athermal screw dislocation slip in bcc Nb. Nat. Commun. 13:1010
    [Google Scholar]
  167. 167.
    Schuh CA. 2006. Nanoindentation studies of materials. Mater. Today 9:32–40
    [Google Scholar]
  168. 168.
    Uchic MD, Shade P, Dimiduk DM. 2009. Plasticity of micrometer-scale single-crystals in compression. Annu. Rev. Mater. Res. 39:361–86
    [Google Scholar]
  169. 169.
    Pharr GM, Herbert EG, Gao Y. 2010. The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40:271–92
    [Google Scholar]
  170. 170.
    Shimanek J, Rizzardi Q, Sparks G, Derlet PM, Maass R. 2020. Scale-dependent pop-ins in nanoindentation and scale-free plastic fluctuations in microcompression. J. Mater. Res. 35:196–205
    [Google Scholar]
  171. 171.
    Morris JR, Bei H, Pharr GM, George EP. 2011. Size effects and stochastic behavior of nanoindentation pop in. Phys. Rev. Lett. 106:165502
    [Google Scholar]
  172. 172.
    Gerberich WW, Nelson JC, Lilleodden ET, Anderson P, Wyrobek JT. 1996. Indentation induced dislocation nucleation: the initial yield point. Acta Mater 44:3585–98
    [Google Scholar]
  173. 173.
    Zhang L, Ohmura T. 2014. Plasticity initiation and evolution during nanoindentation of an iron-3% silicon crystal. Phys. Rev. Lett. 112:145504
    [Google Scholar]
  174. 174.
    Lilleodden ET, Nix WD. 2006. Microstructural length-scale effects in the nanoindentation behavior of thin gold films. Acta Mater 54:1583–93
    [Google Scholar]
  175. 175.
    Schuh CA, Mason JK, Lund AC. 2005. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4:617–21
    [Google Scholar]
  176. 176.
    Perepezko JH, Imhoff SD, Chen MW, Wang JQ, Gonzalez S. 2014. Nucleation of shear bands in amorphous alloys. PNAS 111:3938–42
    [Google Scholar]
  177. 177.
    Tönnies D, Samwer K, Derlet PM, Volkert CA, Maass R. 2015. Rate-dependent shear-band initiation in a metallic glass. Appl. Phys. Lett. 106:171907
    [Google Scholar]
  178. 178.
    Derlet PM, Maass R. 2016. The stress statistics of the first pop-in or discrete plastic event in crystal plasticity. J. Appl. Phys. 120:225101
    [Google Scholar]
  179. 179.
    Li J, Kirchlechner C. 2020. Does the stacking fault energy affect dislocation multiplication?. Mater. Charact. 161:110136
    [Google Scholar]
  180. 180.
    Schuh CA, Argon AS, Nieh TG, Wadsworth J. 2003. The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. 83:2585–97
    [Google Scholar]
  181. 181.
    Gan B, Tin S. 2012. Phenomenological description and temperature dependence of serrated flow in Ni–10Pd during high temperature instrumented microindentation. Mater. Sci. Eng. A 554:41–47
    [Google Scholar]
  182. 182.
    Ikeda Y, Mancias J, Gan B, Maass R. 2021. Evidence of room-temperature shear-deformation in a Cu-Al intermetallic. Scr. Mater. 190:126–30
    [Google Scholar]
  183. 183.
    Packard CE, Schuh CA. 2007. Initiation of shear bands near a stress concentration in metallic glass. Acta Mater 55:5348–58
    [Google Scholar]
  184. 184.
    Hintsala ED, Hangen U, Stauffer DD. 2018. High-throughput nanoindentation for statistical and spatial property determination. JOM 70:494–503
    [Google Scholar]
  185. 185.
    Chang Y, Lin M, Hangen U, Richter S, Haase C, Bleck W. 2021. Revealing the relation between microstructural heterogeneities and local mechanical properties of complex-phase steel by correlative electron microscopy and nanoindentation characterization. Mater. Des. 203:109620
    [Google Scholar]
  186. 186.
    Koumoulos EP, Paraskevoudis K, Charitidis CA. 2019. Constituents phase reconstruction through applied machine learning in nanoindentation mapping data of mortar surface. J. Compos. Sci. 3:63
    [Google Scholar]
  187. 187.
    McCue I, Gaskey B, Crawford B, Erlebacher J. 2016. Local heterogeneity in the mechanical properties of bicontinuous composites made by liquid metal dealloying. Appl. Phys. Lett. 109:231901
    [Google Scholar]
  188. 188.
    Chang HW, Zhang MX, Atrens A, Huang H. 2014. Nanomechanical properties of Mg–Al intermetallic compounds produced by packed powder diffusion coating (PPDC) on the surface of AZ91E. J. Alloys Compd. 587:527–32
    [Google Scholar]
  189. 189.
    Lilleodden ET, Zimmerman JA, Foiles SM, Nix WD. 2003. Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51:901–20
    [Google Scholar]
  190. 190.
    Konstantopoulos G, Koumoulos EP, Charitidis CA. 2020. Classification of mechanism of reinforcement in the fiber-matrix interface: application of machine learning on nanoindentation data. Mater. Des. 192:108705
    [Google Scholar]
  191. 191.
    Lu L, Dao M, Kumar P, Ramamurty U, Karniadakis GE, Suresh S. 2020. Extraction of mechanical properties of materials through deep learning from instrumented indentation. PNAS 117:7052
    [Google Scholar]
  192. 192.
    Uchic MD, Dimiduk DM, Florando JN, Nix WD. 2004. Sample dimensions influence strength and crystal plasticity. Science 305:986–89
    [Google Scholar]
  193. 193.
    Jennings AT, Li J, Greer JR. 2011. Emergence of strain-rate sensitivity in Cu nanopillars: transition from dislocation multiplication to dislocation nucleation. Acta Mater 59:5627–37
    [Google Scholar]
  194. 194.
    Xiao Y, Kozak R, Haché MJ, Steurer W, Spolenak R et al. 2020. Micro-compression studies of face-centered cubic and body-centered cubic high-entropy alloys: size-dependent strength, strain rate sensitivity, and activation volumes. Mater. Sci. Eng. A 790:139429
    [Google Scholar]
  195. 195.
    Wheeler J, Thilly L, Morel A, Taylor A, Montagne A et al. 2016. The plasticity of indium antimonide: insights from variable temperature, strain rate jump micro-compression testing. Acta Mater 106:283–89
    [Google Scholar]
  196. 196.
    Ispánovity PD, Hegyi Á, Groma I, Györgyi G, Ratter K, Weygand D. 2013. Average yielding and weakest link statistics in micron-scale plasticity. Acta Mater 61:6234–45
    [Google Scholar]
  197. 197.
    Dimiduk DM, Woodward C, LeSar R, Uchic MD. 2006. Scale-free intermittent flow in crystal plasticity. Science 312:1188–90
    [Google Scholar]
  198. 198.
    Sethna JP, Bierbaum MK, Dahmen KA, Goodrich CP, Greer JR et al. 2017. Deformation of crystals: connections with statistical physics. Annu. Rev. Mater. Res. 47:217–46
    [Google Scholar]
  199. 199.
    Sparks G, Maass R. 2019. Effects of orientation and pre-deformation on velocity profiles of dislocation avalanches in gold microcrystals. Eur. Phys. J. B 92:15
    [Google Scholar]
  200. 200.
    Sparks G, Maass R. 2018. Nontrivial scaling exponents of dislocation avalanches in microplasticity. Phys. Rev. Mater. 2:120601
    [Google Scholar]
  201. 201.
    Krebs J, Rao SI, Verheyden S, Miko C, Goodall R et al. 2017. Cast aluminium single crystals cross the threshold from bulk to size-dependent stochastic plasticity. Nat. Mater. 16:730–736
    [Google Scholar]
  202. 202.
    Rizzardi Q, Derlet PM, Maaß R. 2022. Intermittent microplasticity in the presence of a complex microstructure. Phys. Rev. Mater. 6:073602
    [Google Scholar]
  203. 203.
    Sparks G, Maaß R. 2018. Shapes and velocity relaxation of dislocation avalanches in Au and Nb microcrystals. Acta Mater 152:86–95
    [Google Scholar]
  204. 204.
    Rizzardi Q, Sparks G, Maaß R. 2018. Fast slip velocity in a high-entropy alloy. JOM 70:1088–93
    [Google Scholar]
  205. 205.
    Sparks G, Cui Y, Po G, Rizzardi Q, Marian J, Maass R. 2019. Avalanche statistics and the intermittent-to-smooth transition in microplasticity. Phys. Rev. Mater. 3:080601
    [Google Scholar]
  206. 206.
    Maass R, Klaumünzer D, Löffler JF. 2011. Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater 59:3205–13
    [Google Scholar]
  207. 207.
    Shashkov I, Lebyodkin M, Lebedkina T. 2012. Multiscale study of acoustic emission during smooth and jerky flow in an AlMg alloy. Acta Mater 60:6842–50
    [Google Scholar]
  208. 208.
    Sparks G, Phani PS, Hangen U, Maass R. 2017. Spatiotemporal slip dynamics during deformation of gold micro-crystals. Acta Mater 122:109–19
    [Google Scholar]
  209. 209.
    Kubin LP, Jouffrey B. 1973. Etude de la déformation plastique de monocristaux de niobium de haute pureté a basse température. Philos. Mag. A 27:1369–85
    [Google Scholar]
  210. 210.
    Rizzardi Q, Derlet PM, Maass R. 2021. Microstructural signatures of dislocation avalanches in a high-entropy alloy. Phys. Rev. Mater. 5:043604
    [Google Scholar]
  211. 211.
    Weiss J, Ben Rhouma W, Deschanel S, Truskinovsky L 2019. Plastic intermittency during cyclic loading: from dislocation patterning to microcrack initiation. Phys. Rev. Mater. 3:023603
    [Google Scholar]
  212. 212.
    Zhao X, Strickland DJ, Derlet PM, He M-R, Cheng YJ et al. 2015. In situ measurements of a homogeneous to heterogeneous transition in the plastic response of ion-irradiated 〈111〉 Ni microspecimens. Acta Mater 88:121–35
    [Google Scholar]
  213. 213.
    Chatterjee K, Beaudoin AJ, Pagan DC, Shade PA, Philipp HT et al. 2019. Intermittent plasticity in individual grains: a study using high energy X-ray diffraction. Struct. Dyn. 6:014501
    [Google Scholar]
  214. 214.
    Zhang P, Bian JJ, Zhang JY, Liu G, Weiss J, Sun J. 2020. Plate-like precipitate effects on plasticity of Al-Cu alloys at micrometer to sub-micrometer scales. Mater. Des. 188:108444
    [Google Scholar]
  215. 215.
    Beyerlein IJ, Knezevic M. 2018. Mesoscale, microstructure-sensitive modeling for interface-dominated, nanostructured materials. Handbook of Materials Modeling W Andreoni, S Yip 1111–52. Cham, Switz: Springer Int.
    [Google Scholar]
  216. 216.
    Kumar MA, Beyerlein IJ. 2020. Local microstructure and micromechanical stress evolution during deformation twinning in hexagonal polycrystals. J. Mater. Res. 35:217–41
    [Google Scholar]
  217. 217.
    Zhang M, Bridier F, Villechaise P, Mendez J, McDowell D. 2010. Simulation of slip band evolution in duplex Ti–6Al–4V. Acta Mater 58:1087–96
    [Google Scholar]
  218. 218.
    Ahmadikia B, Kumar MA, Beyerlein IJ. 2021. Effect of neighboring grain orientation on strain localization in slip bands in HCP materials. Int. J. Plast. 144:103026
    [Google Scholar]
  219. 219.
    Beyerlein IJ, Zhang X, Misra A. 2014. Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44:329–63
    [Google Scholar]
  220. 220.
    Jiang J, Dunne FPE, Britton TB. 2017. Toward predictive understanding of fatigue crack nucleation in Ni-based superalloys. JOM 69:863–71
    [Google Scholar]
  221. 221.
    Latypov MI, Hestroffer JM, Stinville JC, Mayeur JR, Pollock TM, Beyerlein IJ. 2021. Modeling lattice rotation fields from discrete crystallographic slip bands in superalloys. Extreme Mech. Lett. 49:101468
    [Google Scholar]
  222. 222.
    Wang L, Yang Y, Eisenlohr P, Bieler T, Crimp M, Mason D. 2009. Twin nucleation by slip transfer across grain boundaries in commercial purity titanium. Metall. Mater. Trans. A 41:421–30
    [Google Scholar]
  223. 223.
    Kumar MA, Beyerlein IJ. 2020. Influence of plastic properties on the grain size effect on twinning in Ti and Mg. Mater. Sci. Eng. A 771:138644
    [Google Scholar]
  224. 223a.
    Black RL, Garbowski T, Bean C, Eberle AL, Nickell Set al 2023. High-throughput high-resolution digital image correlation measurements by multi-beam SEM imaging. Exp. Mech In press https://doi.org/10.1007/s11340-023-00961-y
    [Crossref] [Google Scholar]
  225. 224.
    Yildirim C, Poulsen HF, Winther G, Detlefs C, Huang PH, Dresselhaus-Marais LE. 2023. Extensive 3D mapping of dislocation structures in bulk aluminum. Sci. Rep. 13:3834
    [Google Scholar]
  226. 225.
    Durmaz AR, Hadzic N, Straub T, Eberl C, Gumbsch P. 2021. Efficient experimental and data-centered workflow for microstructure-based fatigue data. Exp. Mech. 61:1489–502
    [Google Scholar]
  227. 226.
    Alcalá J, Očenášek J, Varillas J, A. El-Awady J, Wheeler JM, Michler J 2020. Statistics of dislocation avalanches in fcc and bcc metals: dislocation mechanisms and mean swept distances across microsample sizes and temperatures. Sci. Rep. 10:19024
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080921-102621
Loading
/content/journals/10.1146/annurev-matsci-080921-102621
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error