1932

Abstract

Soft robotics aims to close the performance gap between built and biological machines through materials design. Soft robots are constructed from soft, actuatable materials to be physically intelligent, or to have traits that living organisms possess such as passive adaptability and morphological computation through their compliant, deformable bodies. However, materials selection for physical intelligence often involves low-performance and/or energy-inefficient, stimuli-responsive materials for actuation. Additional challenges in soft robot sensorization and control further limit the practical utility of these machines. Recognizing that electrically controllable materials are crucial for the development of soft machines that are both physically and computationally intelligent, we review progress in the development of electroprogrammable materials for soft robotic actuation. We focus on thermomechanical, electrostatic, and electrochemical actuation strategies that are directly controlled by electric currents and fields. We conclude with an outlook on the design and fabrication of next-generation robotic materials that will facilitate true bioinspired autonomy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080921-102916
2023-07-03
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-080921-102916.html?itemId=/content/journals/10.1146/annurev-matsci-080921-102916&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pfeifer R, Lungarella M, Iida F. 2007. Self-organization, embodiment, and biologically inspired robotics. Science 318:58531088–93
    [Google Scholar]
  2. 2.
    Sitti M. 2021. Physical intelligence as a new paradigm. Extreme Mech. Lett. 46:101340
    [Google Scholar]
  3. 3.
    Pfeifer R, Lungarella M, Iida F. 2012. The challenges ahead for bio-inspired `soft' robotics. Commun. ACM 55:1176–87
    [Google Scholar]
  4. 4.
    Li G, Chen X, Zhou F, Liang Y, Xiao Y et al. 2021. Self-powered soft robot in the Mariana Trench. Nature 591:784866–71
    [Google Scholar]
  5. 5.
    He Q, Wang Z, Wang Y, Minori A, Tolley MT, Cai S. 2019. Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation. Sci. Adv. 5:10eaax5746
    [Google Scholar]
  6. 6.
    Jafferis NT, Helbling EF, Karpelson M, Wood RJ. 2019. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 570:7762491–95
    [Google Scholar]
  7. 7.
    Ji X, Liu X, Cacucciolo V, Imboden M, Civet Y et al. 2019. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4:37eaaz6451
    [Google Scholar]
  8. 8.
    Miskin MZ, Cortese AJ, Dorsey K, Esposito EP, Reynolds MF et al. 2020. Electronically integrated, mass-manufactured, microscopic robots. Nature 584:7822557–61
    [Google Scholar]
  9. 9.
    Rich SI, Wood RJ, Majidi C. 2018. Untethered soft robotics. Nat. Electron. 1:2102–12
    [Google Scholar]
  10. 10.
    Truby RL. 2021. Designing soft robots as robotic materials. Acc. Mater. Res. 2:10854–57
    [Google Scholar]
  11. 11.
    Wang J, Chortos A. 2022. Control strategies for soft robot systems. Adv. Intell. Syst. 4:52100165
    [Google Scholar]
  12. 12.
    Rothemund P, Kim Y, Heisser RH, Zhao X, Shepherd RF, Keplinger C. 2021. Shaping the future of robotics through materials innovation. Nat. Mater. 20:121582–87
    [Google Scholar]
  13. 13.
    Li S, Vogt DM, Rus D, Wood RJ. 2017. Fluid-driven origami-inspired artificial muscles. PNAS 114:5013132–37
    [Google Scholar]
  14. 14.
    Katzschmann RK, DelPreto J, MacCurdy R, Rus D. 2018. Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot. 3:16eaar3449
    [Google Scholar]
  15. 15.
    O'Brien KW, Xu PA, Levine DJ, Aubin CA, Yang HJ et al. 2018. Elastomeric passive transmission for autonomous force-velocity adaptation applied to 3D-printed prosthetics. Sci. Robot. 3:23eaau5543
    [Google Scholar]
  16. 16.
    Lipton JI, MacCurdy R, Manchester Z, Chin L, Cellucci D, Rus D. 2018. Handedness in shearing auxetics creates rigid and compliant structures. Science 360:6389632–35
    [Google Scholar]
  17. 17.
    Aubin CA, Choudhury S, Jerch R, Archer LA, Pikul JH, Shepherd RF. 2019. Electrolytic vascular systems for energy-dense robots. Nature 571:776351–57
    [Google Scholar]
  18. 18.
    Kaarthik P, Sanchez FL, Avtges J, Truby RL. 2022. Motorized, untethered soft robots via 3D printed auxetics. Soft Matter 18:438229–37
    [Google Scholar]
  19. 19.
    Ebron VH, Yang Z, Seyer DJ, Kozlov ME, Oh J et al. 2006. Fuel-powered artificial muscles. Science 311:57671580–83
    [Google Scholar]
  20. 20.
    Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM et al. 2016. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:7617451–55
    [Google Scholar]
  21. 21.
    Yang X, Chang L Pérez-Arancibia NO.. 2020 . An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Sci. Robot. 5:45eaba0015
    [Google Scholar]
  22. 22.
    Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. 2018. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558:7709274–79
    [Google Scholar]
  23. 23.
    Boyvat M, Vogt DM, Wood RJ. 2019. Ultrastrong and high-stroke wireless soft actuators through liquid–gas phase change. Adv. Mater. Technol. 4:21800381
    [Google Scholar]
  24. 24.
    Yu X, Xie Z, Yu Y, Lee J, Vazquez-Guardado A et al. 2019. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575:7783473–79
    [Google Scholar]
  25. 25.
    Na H, Kang YW, Park CS, Jung S, Kim HY, Sun JY. 2022. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 376:6590301–7
    [Google Scholar]
  26. 26.
    Kotikian A, McMahan C, Davidson EC, Muhammad JM, Weeks RD et al. 2019. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot. 4:33eaax7044
    [Google Scholar]
  27. 27.
    Meder F, Naselli GA, Sadeghi A, Mazzolai B. 2019. Remotely light-powered soft fluidic actuators based on plasmonic-driven phase transitions in elastic constraint. Adv. Mater. 31:511905671
    [Google Scholar]
  28. 28.
    Li C, Lau GC, Yuan H, Aggarwal A, Dominguez VL et al. 2020. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci. Robot. 5:49eabb9822
    [Google Scholar]
  29. 29.
    Hines L, Petersen K, Lum GZ, Sitti M. 2017. Soft actuators for small-scale robotics. Adv. Mater. 29:131603483
    [Google Scholar]
  30. 30.
    Mirvakili SM, Hunter IW. 2018. Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30:61704407
    [Google Scholar]
  31. 31.
    McCracken JM, Donovan BR, White TJ. 2020. Materials as machines. Adv. Mater. 32:201906564
    [Google Scholar]
  32. 32.
    Zhao Y, Hua M, Yan Y, Wu S, Alsaid Y, He X. 2022. Stimuli-responsive polymers for soft robotics. Annu. Rev. Control Robot. Auton. Syst. 5:515–45
    [Google Scholar]
  33. 33.
    Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. 2022. Soft actuators for real-world applications. Nat. Rev. Mater. 7:3235–49
    [Google Scholar]
  34. 34.
    Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L et al. 2018. The grand challenges of Science Robotics. Sci. Robot. 3:14eaar7650
    [Google Scholar]
  35. 35.
    Elfferich JF, Dodou D, Santina CD. 2022. Soft robotic grippers for crop handling or harvesting: a review. IEEE Access 10:75428–43
    [Google Scholar]
  36. 36.
    Hawkes E, An B, Benbernou NM, Tanaka H, Kim S et al. 2010. Programmable matter by folding. PNAS 107:2812441–45
    [Google Scholar]
  37. 37.
    Kim S, Hawkes E, Choy K, Joldaz M, Foleyz J, Wood R. 2009. Micro artificial muscle fiber using NiTi spring for soft robotics. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems2228–34. Piscataway, NJ: IEEE
  38. 38.
    Lin HT, Leisk GG, Trimmer B. 2011. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspiration Biomimet 6:2026007
    [Google Scholar]
  39. 39.
    Lee JH, Chung YS, Rodrigue H. 2019. Application of SMA spring tendons for improved grasping performance. Smart Mater. Struct. 28:3035006
    [Google Scholar]
  40. 40.
    Wu S, Baker GL, Yin J, Zhu Y. 2021. Fast thermal actuators for soft robotics. Soft Robot 9:61031–39
    [Google Scholar]
  41. 41.
    Kotikian A, Morales JM, Lu A, Mueller J, Davidson ZS et al. 2021. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv. Mater. 33:272101814
    [Google Scholar]
  42. 42.
    Huang X, Ford M, Patterson ZJ, Zarepoor M, Pan C, Majidi C. 2020. Shape memory materials for electrically-powered soft machines. J. Mater. Chem. B 8:214539–51
    [Google Scholar]
  43. 43.
    Zhakypov Z, Mori K, Hosoda K, Paik J. 2019. Designing minimal and scalable insect-inspired multi-locomotion millirobots. Nature 571:7765381–86
    [Google Scholar]
  44. 44.
    Patterson ZJ, Patel DK, Bergbreiter S, Yao L, Majidi C. 2023. A method for 3D printing and rapid prototyping of fieldable untethered soft robots. Soft Robot 102292–300
  45. 45.
    Huang X, Kumar K, Jawed MK, Mohammadi Nasab A, Ye Z et al. 2019. Highly dynamic shape memory alloy actuator for fast moving soft robots. Adv. Mater. Technol. 4:41800540
    [Google Scholar]
  46. 46.
    Xu Z, Ding C, Wei DW, Bao RY, Ke K et al. 2019. Electro and light-active actuators based on reversible shape-memory polymer composites with segregated conductive networks. ACS Appl. Mater. Interfaces 11:3330332–40
    [Google Scholar]
  47. 47.
    Akbari S, Sakhaei AH, Kowsari K, Yang B, Serjouei A et al. 2018. Enhanced multimaterial 4D printing with active hinges. Smart Mater. Struct. 27:6065027
    [Google Scholar]
  48. 48.
    Zhou Y, Yang Y, Jian A, Zhou T, Tao G et al. 2022. Co-extrusion 4D printing of shape memory polymers with continuous metallic fibers for selective deformation. Compos. Sci. Technol. 227:109603
    [Google Scholar]
  49. 49.
    McCue ID, Valentino GM, Trigg DB, Lennon AM, Hebert CE et al. 2021. Controlled shape-morphing metallic components for deployable structures. Mater. Des. 208:109935
    [Google Scholar]
  50. 50.
    Lee HT, Kim MS, Lee GY, Kim CS, Ahn SH. 2018. Shape memory alloy (SMA)-based microscale actuators with 60% deformation rate and 1.6 kHz actuation speed. Small 14:231801023
    [Google Scholar]
  51. 51.
    Wang W, Yu CY, Abrego Serrano PA, Ahn SH 2020. Shape memory alloy-based soft finger with changeable bending length using targeted variable stiffness. Soft Robot 7:3283–91
    [Google Scholar]
  52. 52.
    Aksoy B, Shea H. 2020. Reconfigurable and latchable shape-morphing dielectric elastomers based on local stiffness modulation. Adv. Funct. Mater. 30:272001597
    [Google Scholar]
  53. 53.
    Amjadi M, Sitti M. 2018. Self-sensing paper actuators based on graphite-carbon nanotube hybrid films. Adv. Sci. 5:71800239
    [Google Scholar]
  54. 54.
    Li Q, Liu C, Lin YH, Liu L, Jiang K, Fan S. 2015. Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets. ACS Nano 9:1409–18
    [Google Scholar]
  55. 55.
    Li D, Wang S, He J, Zeng H, Yao K et al. 2021. Bioinspired ultrathin piecewise controllable soft robots. Adv. Mater. Technol. 6:52001095
    [Google Scholar]
  56. 56.
    Haines CS, Lima MD, Li N, Spinks GM, Foroughi J et al. 2014. Artificial muscles from fishing line and sewing thread. Science 343:6173868–72
    [Google Scholar]
  57. 57.
    Mirvakili SM, Hunter IW. 2017. Multidirectional artificial muscles from nylon. Adv. Mater. 29:41604734
    [Google Scholar]
  58. 58.
    Mu J, Jung de Andrade M, Fang S, Wang X, Gao E et al. 2019. Sheath-run artificial muscles. Science 365:6449150–55
    [Google Scholar]
  59. 59.
    van der Weijde J, Vallery H, Babuška R. 2019. Closed-loop control through self-sensing of a joule-heated twisted and coiled polymer muscle. Soft Robot 6:5621–30
    [Google Scholar]
  60. 60.
    Chi Y, Li Y, Zhao Y, Hong Y, Tang Y, Yin J. 2022. Bistable and multistable actuators for soft robots: Structures, Materials, and Functionalities. Adv. Mater. 34:192110384
    [Google Scholar]
  61. 61.
    Long F, Cheng Y, Ren Y, Wang J, Li Z et al. 2022. Latest advances in development of smart phase change material for soft actuators. Adv. Eng. Mater. 24:32100863
    [Google Scholar]
  62. 62.
    Matsuoka H, Kanda T, Wakimoto S, Suzumori K, Lambert P et al. 2016. Development of a rubber soft actuator driven with gas/liquid phase change. Int. J. Autom. Technol. 10:4517–24
    [Google Scholar]
  63. 63.
    Zhou Z, Li Q, Chen L, Liu C, Fan S. 2016. A large-deformation phase transition electrothermal actuator based on carbon nanotube–elastomer composites. J. Mater. Chem. B 4:71228–34
    [Google Scholar]
  64. 64.
    Chellattoan R, Yudhanto A, Lubineau G. 2020. Low-voltage-driven large-amplitude soft actuators based on phase transition. Soft Robot 7:6688–99
    [Google Scholar]
  65. 65.
    Nakahara K, Narumi K, Niiyama R, Kawahara Y. 2017. Electric phase-change actuator with inkjet printed flexible circuit for printable and integrated robot prototyping. 2017 IEEE International Conference on Robotics and Automation (ICRA)1856–63. Piscataway, NJ: IEEE
  66. 66.
    Narumi K, Sato H, Nakahara K, Seong Ya, Morinaga K et al. 2020. Liquid pouch motors: printable planar actuators driven by liquid-to-gas phase change for shape-changing interfaces. IEEE Robot. Autom. Lett. 5:33915–22
    [Google Scholar]
  67. 67.
    Miriyev A, Stack K, Lipson H. 2017. Soft material for soft actuators. Nat. Commun. 8:1596
    [Google Scholar]
  68. 68.
    Bilodeau RA, Miriyev A, Lipson H, Kramer-Bottiglio R. 2018. All-soft material system for strong soft actuators. 2018 IEEE International Conference on Soft Robotics (RoboSoft)288–94. Piscataway, NJ: IEEE
  69. 69.
    Xia B, Miriyev A, Trujillo C, Chen N, Cartolano M et al. 2020. Improving the actuation speed and multi-cyclic actuation characteristics of silicone/ethanol soft actuators. Actuators 9:362
    [Google Scholar]
  70. 70.
    Miriyev A, Trujillo C, Caires G, Lipson H. 2018. Rejuvenation of soft material-actuator. MRS Commun 8:2556–61
    [Google Scholar]
  71. 71.
    Lipton JI, Angle S, Banai RE, Peretz E, Lipson H. 2016. Electrically actuated hydraulic solids: electrically actuated hydraulic solids. Adv. Eng. Mater. 18:101710–15
    [Google Scholar]
  72. 72.
    Yu C, Duan Z, Yuan P, Li Y, Su Y et al. 2013. Electronically programmable, reversible shape change in two- and three-dimensional hydrogel structures. Adv. Mater. 25:111541–46
    [Google Scholar]
  73. 73.
    Khodambashi R, Alsaid Y, Rico R, Marvi H, Peet MM et al. 2021. Heterogeneous hydrogel structures with spatiotemporal reconfigurability using addressable and tunable voxels. Adv. Mater. 33:102005906
    [Google Scholar]
  74. 74.
    Taccola S, Greco F, Sinibaldi E, Mondini A, Mazzolai B, Mattoli V. 2015. Toward a new generation of electrically controllable hygromorphic soft actuators. Adv. Mater. 27:101668–75
    [Google Scholar]
  75. 75.
    Hamedi MM, Campbell VE, Rothemund P, Güder F, Christodouleas DC et al. 2016. Electrically activated paper actuators. Adv. Funct. Mater. 26:152446–53
    [Google Scholar]
  76. 76.
    Byun J, Lee Y, Yoon J, Lee B, Oh E et al. 2018. Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Sci. Robot. 3:18eaas9020
    [Google Scholar]
  77. 77.
    Xiao YY, Jiang ZC, Hou JB, Chen XS, Zhao Y. 2022. Electrically driven liquid crystal network actuators. Soft Matter 18:264850–67
    [Google Scholar]
  78. 78.
    Agrawal A, Chen H, Kim H, Zhu B, Adetiba O et al. 2016. Electromechanically responsive liquid crystal elastomer nanocomposites for active cell culture. ACS Macro Lett 5:121386–90
    [Google Scholar]
  79. 79.
    Greco F, Domenici V, Desii A, Sinibaldi E, Zupančič B et al. 2013. Liquid single crystal elastomer/conducting polymer bilayer composite actuator: modelling and experiments. Soft Matter 9:4711405
    [Google Scholar]
  80. 80.
    Yuan C, Roach DJ, Dunn CK, Mu Q, Kuang X et al. 2017. 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter 13:335558–68
    [Google Scholar]
  81. 81.
    Roach DJ, Kuang X, Yuan C, Chen K, Qi HJ. 2018. Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing. Smart Mater. Struct. 27:12125011
    [Google Scholar]
  82. 82.
    Wang C, Sim K, Chen J, Kim H, Rao Z et al. 2018. Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 30:131706695
    [Google Scholar]
  83. 83.
    Liu K, Hacker F, Daraio C. 2021. Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation. Sci. Robot. 6:53eabf5116
    [Google Scholar]
  84. 84.
    Ford MJ, Ambulo CP, Kent TA, Markvicka EJ, Pan C et al. 2019. A multifunctional shape-morphing elastomer with liquid metal inclusions. PNAS 116:4321438–44
    [Google Scholar]
  85. 85.
    Kent TA, Ford MJ, Markvicka EJ, Majidi C. 2020. Soft actuators using liquid crystal elastomers with encapsulated liquid metal joule heaters. Multifunct. Mater. 3:2025003
    [Google Scholar]
  86. 86.
    Zadan M, Patel DK, Sabelhaus AP, Liao J, Wertz A et al. 2022. Liquid crystal elastomer with integrated soft thermoelectrics for shape memory actuation and energy harvesting. Adv. Mater. 34:2200857
    [Google Scholar]
  87. 87.
    Gao X, Yang J, Wu J, Xin X, Li Z et al. 2020. Piezoelectric actuators and motors: materials, designs, and applications. Adv. Mater. Technol. 5:11900716
    [Google Scholar]
  88. 88.
    Keplinger C, Sun JY, Foo CC, Rothemund P, Whitesides GM, Suo Z. 2013. Stretchable, transparent, ionic conductors. Science 341:6149984–87
    [Google Scholar]
  89. 89.
    Acome E, Mitchell SK, Morrissey TG, Emmett MB, Benjamin C et al. 2018. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359:637161–65
    [Google Scholar]
  90. 90.
    Courty S, Mine J, Tajbakhsh AR, Terentjev EM. 2003. Nematic elastomers with aligned carbon nanotubes: new electromechanical actuators. Europhys. Lett. 64:5654–60
    [Google Scholar]
  91. 91.
    Guin T, Hinton HE, Burgeson E, Bowland CC, Kearney LT et al. 2020. Tunable electromechanical liquid crystal elastomer actuators. Adv. Intell. Syst. 2:72000022
    [Google Scholar]
  92. 92.
    Duduta M, Hajiesmaili E, Zhao H, Wood RJ, Clarke DR. 2019. Realizing the potential of dielectric elastomer artificial muscles. PNAS 116:72476–81
    [Google Scholar]
  93. 93.
    Uchino K, Nomura S, Cross LE, Newnham RE, Jang SJ. 1981. Electrostrictive effect in perovskites and its transducer applications. J. Mater. Sci. 16:569–78
    [Google Scholar]
  94. 94.
    Huang C, Klein R, Xia F, Li H, Zhang QM et al. 2004. Poly(vinylidene fluoride-trifluoroethylene) based high performance electroactive polymers. IEEE Trans. Dielectr. Electr. Insul. 11:2299–311
    [Google Scholar]
  95. 95.
    Wood R. 2008. The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. 24:2341–47
    [Google Scholar]
  96. 96.
    Wu Y, Kim JK, Liang J, Shao Z, Qi M et al. 2019. Insect-scale fast moving and ultrarobust soft robot. Sci. Robot. 4:32eaax1594
    [Google Scholar]
  97. 97.
    Liang J, Wu Y, Yim JK, Chen H, Miao Z et al. 2021. Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci. Robot. 6:55eabe7906
    [Google Scholar]
  98. 98.
    Cui H, Yao D, Hensleigh R, Lu H, Calderon A et al. 2022. Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science 376:65991287–93
    [Google Scholar]
  99. 99.
    Pelrine R, Kornbluh R, Pei Q, Joseph J 2000. High-speed electrically actuated elastomers with strain greater than 100%. Science 287:5454836–39
    [Google Scholar]
  100. 100.
    Keplinger C, Li T, Baumgartner R, Suo Z, Bauer S. 2012. Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8:2285–88
    [Google Scholar]
  101. 101.
    Guo Y, Liu L, Liu Y, Leng J. 2021. Review of dielectric elastomer actuators and their applications in soft robots. Adv. Intell. Syst. 3:102000282
    [Google Scholar]
  102. 102.
    Duduta M, Wood RJ, Clarke DR. 2016. Multilayer dielectric elastomers for fast, programmable actuation without prestretch. Adv. Mater. 28:368058–63
    [Google Scholar]
  103. 103.
    Shi Y, Askounis E, Plamthottam R, Libby T, Peng Z et al. 2022. A processable, high-performance dielectric elastomer and multilayering process. Science 377:6602228–32
    [Google Scholar]
  104. 104.
    Rosset S, Shea HR. 2013. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110:2281–307
    [Google Scholar]
  105. 105.
    Christianson C, Goldberg NN, Deheyn DD, Cai S, Tolley MT. 2018. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 3:17eaat1893
    [Google Scholar]
  106. 106.
    Li T, Li G, Liang Y, Cheng T, Dai J et al. 2017. Fast-moving soft electronic fish. Sci. Adv. 3:4e1602045
    [Google Scholar]
  107. 107.
    Davidson ZS, Shahsavan H, Aghakhani A, Guo Y, Hines L et al. 2019. Monolithic shape-programmable dielectric liquid crystal elastomer actuators. Sci. Adv. 5:11eaay0855
    [Google Scholar]
  108. 108.
    Fowler HE, Rothemund P, Keplinger C, White TJ. 2021. Liquid crystal elastomers with enhanced directional actuation to electric fields. Adv. Mater. 33:432103806
    [Google Scholar]
  109. 109.
    Mitchell SK, Martin T, Keplinger C. 2022. A pocket-sized ten-channel high voltage power supply for soft electrostatic actuators. Adv. Mater. Technol. 7:82101469
    [Google Scholar]
  110. 110.
    Chen Y, Zhao H, Mao J, Chirarattananon P, Helbling EF et al. 2019. Controlled flight of a microrobot powered by soft artificial muscles. Nature 575:7782324–29
    [Google Scholar]
  111. 111.
    Chortos A, Hajiesmaili E, Morales J, Clarke DR, Lewis JA. 2019. 3D printing of interdigitated dielectric elastomer actuators. Adv. Funct. Mater. 30:11907375
    [Google Scholar]
  112. 112.
    Chortos A, Mao J, Mueller J, Hajiesmaili E, Lewis JA, Clarke DR. 2021. Printing reconfigurable bundles of dielectric elastomer fibers. Adv. Funct. Mater. 31:222010643
    [Google Scholar]
  113. 113.
    Maffli L, Rosset S, Shea HR. 2013. Zipping dielectric elastomer actuators: characterization, design and modeling. Smart Mater. Struct. 22:10104013
    [Google Scholar]
  114. 114.
    Taghavi M, Helps T, Rossiter J. 2018. Electro-ribbon actuators and electro-origami robots. Sci. Robot. 3:25eaau9795
    [Google Scholar]
  115. 115.
    Leroy E, Hinchet R, Shea H. 2020. Multimode hydraulically amplified electrostatic actuators for wearable haptics. Adv. Mater. 32:362002564
    [Google Scholar]
  116. 116.
    Kellaris N, Gopaluni Venkata V, Smith GM, Mitchell SK, Keplinger C 2018. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 3:14eaar3276
    [Google Scholar]
  117. 117.
    Wang X, Mitchell SK, Rumley EH, Rothemund P, Keplinger C. 2020. High-strain peano-HASEL actuators. Adv. Funct. Mater. 30:71908821
    [Google Scholar]
  118. 118.
    O'Neill MR, Acome E, Bakarich S, Mitchell SK, Timko J et al. 2020. Rapid 3D printing of electrohydraulic (HASEL) tentacle actuators. Adv. Funct. Mater. 30:402005244
    [Google Scholar]
  119. 119.
    Helps T, Romero C, Taghavi M, Conn AT, Rossiter J. 2022. Liquid-amplified zipping actuators for micro-air vehicles with transmission-free flapping. Sci. Robot. 7:63eabi8189
    [Google Scholar]
  120. 120.
    Zhu X, Hu Y, Wu G, Chen W, Bao N. 2021. Two-dimensional nanosheets-based soft electro-chemo-mechanical actuators: recent advances in design, construction, and applications. ACS Nano 15:69273–98
    [Google Scholar]
  121. 121.
    Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J. 1998. Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review. Smart Mater. Struct. 7:6R15–30
    [Google Scholar]
  122. 122.
    Nemat-Nasser S. 2002. Micromechanics of actuation of ionic polymer-metal composites. J. Appl. Phys. 92:52899–915
    [Google Scholar]
  123. 123.
    Must I, Kaasik F, Põldsalu I, Mihkels L, Johanson U et al. 2014. Ionic and capacitive artificial muscle for biomimetic soft robotics. Adv. Eng. Mater. 17:184–94
    [Google Scholar]
  124. 124.
    Smela E, Inganäs O, Lundström I. 1995. Controlled folding of micrometer-size structures. Science 268:52181735–38
    [Google Scholar]
  125. 125.
    Johannisson W, Harnden R, Zenkert D, Lindbergh G. 2020. Shape-morphing carbon fiber composite using electrochemical actuation. PNAS 117:147658–64
    [Google Scholar]
  126. 126.
    Palleau E, Morales D, Dickey MD, Velev OD. 2013. Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nat. Commun. 4:12257
    [Google Scholar]
  127. 127.
    Ma S, Zhang Y, Liang Y, Ren L, Tian W, Ren L. 2020. High-performance ionic-polymer–metal composite: toward large-deformation fast-response artificial muscles. Adv. Funct. Mater. 30:71908508
    [Google Scholar]
  128. 128.
    Lee JA, Li N, Haines CS, Kim KJ, Lepró X et al. 2017. Electrochemically powered, energy-conserving carbon nanotube artificial muscles. Adv. Mater. 29:311700870
    [Google Scholar]
  129. 129.
    Luqman M, Lee JW, Moon KK, Yoo YT. 2011. Sulfonated polystyrene-based ionic polymer–metal composite (IPMC) actuator. J. Ind. Eng. Chem. 17:149–55
    [Google Scholar]
  130. 130.
    Nemat-Nasser S, Zamani S, Tor Y. 2006. Effect of solvents on the chemical and physical properties of ionic polymer-metal composites. J. Appl. Phys. 99:10104902
    [Google Scholar]
  131. 131.
    Wang HS, Cho J, Park HW, Jho JY, Park JH. 2021. Ionic polymer–metal composite actuators driven by methylammonium formate for high-voltage and long-term operation. J. Ind. Eng. Chem. 96:194–201
    [Google Scholar]
  132. 132.
    Shahinpoor M. 2016. Ionic polymer metal composites (IPMCs) optimal manufacturing. Ionic Polymer Metal Composites (IPMCs): Smart Multi-Functional Materials and Artificial Muscles, Vol. 1 M Shahinpoor 61–147. Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  133. 133.
    Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN et al. 1999. Carbon nanotube actuators. Science 284:54181340–44
    [Google Scholar]
  134. 134.
    Kong L, Chen W. 2014. Carbon nanotube and graphene-based bioinspired electrochemical actuators. Adv. Mater. 26:71025–43
    [Google Scholar]
  135. 135.
    Mahato M, Tabassian R, Nguyen VH, Oh S, Nam S et al. 2020. CTF-based soft touch actuator for playing electronic piano. Nat. Commun. 11:15358
    [Google Scholar]
  136. 136.
    Lee JA, Kim YT, Spinks GM, Suh D, Lepró X et al. 2014. All-solid-state carbon nanotube torsional and tensile artificial muscles. Nano Lett 14:52664–69
    [Google Scholar]
  137. 137.
    Lu C, Yang Y, Wang J, Fu R, Zhao X et al. 2018. High-performance graphdiyne-based electrochemical actuators. Nat. Commun. 9:1752
    [Google Scholar]
  138. 138.
    Liu Q, Wang W, Reynolds MF, Cao MC, Miskin MZ et al. 2021. Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics. Sci. Robot. 6:52eabe6663
    [Google Scholar]
  139. 139.
    Shu J, Ge DA, Wang E, Ren H, Cole T et al. 2021. A liquid metal artificial muscle. Adv. Mater. 33:432103062
    [Google Scholar]
  140. 140.
    Xia X, Afshar A, Yang H, Portela CM, Kochmann DM et al. 2019. Electrochemically reconfigurable architected materials. Nature 573:7773205–13
    [Google Scholar]
  141. 141.
    Come J, Black JM, Lukatskaya MR, Naguib M, Beidaghi M et al. 2015. Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy 17:27–35
    [Google Scholar]
  142. 142.
    Umrao S, Tabassian R, Kim J, Nguyen VH, Zhou Q et al. 2019. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 4:33eaaw7797
    [Google Scholar]
  143. 143.
    Chen S, Ciou JH, Yu F, Chen J, Lv J, Lee PS. 2022. Molecular-level methylcellulose/MXene hybrids with greatly enhanced electrochemical actuation. Adv. Mater. 34:292200660
    [Google Scholar]
  144. 144.
    Cameron CG, Freund MS. 2002. Electrolytic actuators: alternative, high-performance, material-based devices. PNAS 99:127827–31
    [Google Scholar]
  145. 145.
    Wada A, Nabae H, Kitamori T, Suzumori K. 2016. Energy regenerative hose-free pneumatic actuator. Sens. Actuators A 249:1–7
    [Google Scholar]
  146. 146.
    Madden JD, Cush RA, Kanigan TS, Hunter IW. 2000. Fast contracting polypyrrole actuators. Synth. Met. 113:1–2185–92
    [Google Scholar]
  147. 147.
    Lu W, Fadeev AG, Qi B, Smela E, Mattes BR et al. 2002. Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297:5583983–87
    [Google Scholar]
  148. 148.
    Jager EWH, Inganäs O, Lundström I. 2000. Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288:54752335–38
    [Google Scholar]
  149. 149.
    Rohtlaid K, Nguyen GTM, Ebrahimi-Takalloo S, Nguyen TN, Madden JDW et al. 2021. Asymmetric PEDOT:PSS trilayers as actuating and sensing linear artificial muscles. Adv. Mater. Technol. 6:32001063
    [Google Scholar]
  150. 150.
    Kotal M, Kim J, Kim KJ, Oh IK. 2016. Sulfur and nitrogen co-doped graphene electrodes for high-performance ionic artificial muscles. Adv. Mater. 28:81610–15
    [Google Scholar]
  151. 151.
    Melling D, Martinez JG, Jager EWH. 2019. Conjugated polymer actuators and devices: progress and opportunities. Adv. Mater. 31:221808210
    [Google Scholar]
  152. 152.
    Wang W, Liu Q, Tanasijevic I, Reynolds MF, Cortese AJ et al. 2022. Cilia metasurfaces for electronically programmable microfluidic manipulation. Nature 605:7911681–86
    [Google Scholar]
  153. 153.
    Liao J, Majidi C. 2021. Soft actuators by electrochemical oxidation of liquid metal surfaces. Soft Matter 17:71921–28
    [Google Scholar]
  154. 154.
    Liao J, Majidi C. 2022. Muscle-inspired linear actuators by electrochemical oxidation of liquid metal bridges. Adv. Sci. 9:262201963
    [Google Scholar]
  155. 155.
    Koyama Y, Chin T, Rhyner U, Holman R, Hall S, Chiang YM. 2006. Harnessing the actuation potential of solid-state intercalation compounds. Adv. Funct. Mater. 16:4492–98
    [Google Scholar]
  156. 156.
    Acerce M, Akdoǧan EK, Chhowalla M. 2017. Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 549:7672370–73
    [Google Scholar]
  157. 157.
    Wu G, Wu X, Xu Y, Cheng H, Meng J et al. 2019. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv. Mater. 31:251806492
    [Google Scholar]
  158. 158.
    Jäckel N, Krüner B, Van Aken KL, Alhabeb M, Anasori B et al. 2016. Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids. ACS Appl. Mater. Interfaces 8:4732089–93
    [Google Scholar]
  159. 159.
    Pang D, Alhabeb M, Mu X, Dall'Agnese Y, Gogotsi Y, Gao Y. 2019. Electrochemical actuators based on two-dimensional Ti3C2Tx (MXene). Nano Lett 19:107443–48
    [Google Scholar]
  160. 160.
    Pang C, Tai YC, Burdick JW, Andersen RA. 2006. Electrolysis-based diaphragm actuators. Nanotechnology 17:4S64–68
    [Google Scholar]
  161. 161.
    Yu C, Yuan P, Erickson EM, Daly CM, Rogers JA, Nuzzo RG. 2015. Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators. Soft Matter 11:407953–59
    [Google Scholar]
  162. 162.
    Levine DJ, Turner KT, Pikul JH. 2021. Materials with electroprogrammable stiffness. Adv. Mater. 33:352007952
    [Google Scholar]
  163. 163.
    Kaspar C, Ravoo BJ, van der Wiel WG, Wegner SV, Pernice WHP. 2021. The rise of intelligent matter. Nature 594:7863345–55
    [Google Scholar]
  164. 164.
    Mahapatra SD, Mohapatra PC, Aria AI, Christie G, Mishra YK et al. 2021. Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials. Adv. Sci. 8:172100864
    [Google Scholar]
  165. 165.
    Aubin CA, Gorissen B, Milana E, Buskohl PR, Lazarus N et al. 2022. Towards enduring autonomous robots via embodied energy. Nature 602:7897393–402
    [Google Scholar]
  166. 166.
    Kuenstler AS, Kim H, Hayward RC. 2019. Liquid crystal elastomer waveguide actuators. Adv. Mater. 31:241901216
    [Google Scholar]
  167. 167.
    Truby RL, Li S. 2020. Integrating chemical fuels and artificial muscles for untethered microrobots. Sci. Robot. 5:45eabd7338
    [Google Scholar]
  168. 168.
    McEvoy MA, Correll N. 2015. Materials that couple sensing, actuation, computation, and communication. Science 347:62281261689
    [Google Scholar]
  169. 169.
    Truby RL, Chin L, Zhang A, Rus D. 2022. Fluidic innervation sensorizes structures from a single build material. Sci. Adv. 8:32eabq4385
    [Google Scholar]
  170. 170.
    Truby RL, Lewis JA. 2016. Printing soft matter in three dimensions. Nature 540:7633371–78
    [Google Scholar]
  171. 171.
    Howard D, Eiben AE, Kennedy DF, Mouret JB, Valencia P, Winkler D. 2019. Evolving embodied intelligence from materials to machines. Nat. Mach. Intell. 1:112–19
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080921-102916
Loading
/content/journals/10.1146/annurev-matsci-080921-102916
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error