1932

Abstract

Beta-gallium oxide (β-GaO) is a material with a history of research and development spanning about 70 years; however, it has attracted little attention as a semiconductor for a long time. The situation has changed completely in the last ten years, and the world has seen increasing demand for active research and development of both materials and devices. Many of its distinctive physical properties are attributed to its very large bandgap energy of 4.5 eV. Another important feature is that it is possible to grow large bulk single crystals by melt growth. In this article, we first discuss the important physical properties of β-GaO for electronic device applications, followed by bulk melt growth and thin-film epitaxial growth technologies. Then, state-of-the-art β-GaO transistor and diode technologies are discussed.

Keyword(s): Ga2O3gallium oxide
Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080921-104058
2024-08-05
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/matsci/54/1/annurev-matsci-080921-104058.html?itemId=/content/journals/10.1146/annurev-matsci-080921-104058&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Higashiwaki M, Jessen GH. 2018.. Guest editorial: the dawn of gallium oxide microelectronics. . Appl. Phys. Lett. 112::060401
    [Crossref] [Google Scholar]
  2. 2.
    Onuma T, Saito S, Sasaki K, Masui T, Yamaguchi T, et al. 2015.. Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy. . Jpn. J. Appl. Phys. 54::112601
    [Crossref] [Google Scholar]
  3. 3.
    Roy R, Hill VG, Osborn EF. 1952.. Polymorhism of Ga2O3 and the system Ga2O3–H2O. . J. Am. Chem. Soc. 74::71922
    [Crossref] [Google Scholar]
  4. 4.
    Geller S. 1960.. Crystal structure of β-Ga2O3. . J. Chem. Phys. 33::67684
    [Crossref] [Google Scholar]
  5. 5.
    Shinohara D, Fujita S. 2008.. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. . Jpn. J. Appl. Phys 47::7311
    [Crossref] [Google Scholar]
  6. 6.
    Kneiß M, Hassa A, Splith D, Sturm C, Wenckstern HV, et al. 2019.. Tin-assisted heteroepitaxial PLD-growth of κ-Ga2O3 thin films with high crystalline quality. . APL Mater. 7::022516
    [Crossref] [Google Scholar]
  7. 7.
    Ghosh K, Singisetti U. 2018.. Impact ionization in β-Ga2O3. . J. Appl. Phys. 124::085707
    [Crossref] [Google Scholar]
  8. 8.
    Xia Z, Chandrasekar H, Moore W, Wang C, Lee AJ, et al. 2019.. Metal/BaTiO3/β-Ga2O3 dielectric heterojunction diode with 5.7 MV/cm breakdown field. . Appl. Phys. Lett. 115::252104
    [Crossref] [Google Scholar]
  9. 9.
    Ma N, Tanen N, Verma A, Guo Z, Luo T, et al. 2016.. Intrinsic electron mobility limits in β-Ga2O3. . Appl. Phys. Lett. 109::212101
    [Crossref] [Google Scholar]
  10. 10.
    Onuma T, Saito S, Sasaki K, Goto K, Masui T, et al. 2016.. Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β-Ga2O3 single crystals. . Appl. Phys. Lett. 108::101904
    [Crossref] [Google Scholar]
  11. 11.
    Ghosh K, Singisetti U. 2017.. Ab initio velocity-field curves in monoclinic β-Ga2O3. . J. Appl. Phys. 122::035702
    [Crossref] [Google Scholar]
  12. 12.
    Oishi T, Harada K, Koga Y, Kasu M. 2016.. Conduction mechanism in highly doped β-Ga2O3(01) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes. . Jpn. J. Appl. Phys. 55::030305
    [Crossref] [Google Scholar]
  13. 13.
    Neal AT, Mou S, Rafique S, Zhao H, Ahmadi E, et al. 2018.. Donors and deep acceptors in β-Ga2O3. . Appl. Phys. Lett. 113::062101
    [Crossref] [Google Scholar]
  14. 14.
    Lyons JL. 2018.. A survey of acceptor dopants for β-Ga2O3. . Semicond. Sci. Technol. 33::05LT02
    [Crossref] [Google Scholar]
  15. 15.
    Peelaers H, Lyons JL, Varley JB, Van de Walle CG. 2019.. Deep acceptors and their diffusion in Ga2O3. . APL Mater. 7::022519
    [Crossref] [Google Scholar]
  16. 16.
    He H, Orlando R, Blanco MA, Pandey R, Amzallag E, et al. 2006.. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. . Phys. Rev. B 74::195123
    [Crossref] [Google Scholar]
  17. 17.
    Varley JB, Weber JR, Janotti A, Van de Walle CG. 2010.. Oxygen vacancies and donor impurities in β-Ga2O3. . Appl. Phys. Lett. 97::142106
    [Crossref] [Google Scholar]
  18. 18.
    Peelaers H, Van de Walle CG. 2015.. Brillouin zone and band structure of β-Ga2O3. . Phys. Status Solidi B 252::82832
    [Crossref] [Google Scholar]
  19. 19.
    Varley JB, Janotti A, Franchini C, Van de Walle CG. 2012.. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. . Phys. Rev. B 85::081109(R)
    [Crossref] [Google Scholar]
  20. 20.
    Handwerg M, Mitdank R, Galazka Z, Fischer SF. 2015.. Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals. . Semicond. Sci. Technol. 30::024006
    [Crossref] [Google Scholar]
  21. 21.
    Guo Z, Verma A, Wu X, Sun F, Hickman A, et al. 2015.. Anisotropic thermal conductivity in single crystal β-gallium oxide. . Appl. Phys. Lett. 106::111909
    [Crossref] [Google Scholar]
  22. 22.
    Baliga BJ. 1982.. Semiconductors for high voltage, vertical channel field effect transistors. . J. Appl. Phys. 53::175964
    [Crossref] [Google Scholar]
  23. 23.
    Baliga BJ. 1989.. Power semiconductor device figure of merit for high-frequency applications. . IEEE Electron Device Lett. 10::45557
    [Crossref] [Google Scholar]
  24. 24.
    Johnson EO. 1965.. Physical limitations on frequency and power parameters of transistors. . RCA Rev. 26::16377
    [Google Scholar]
  25. 25.
    Chase AB. 1964.. Growth of β-Ga2O3 by the Verneuil technique. . J. Am. Ceram. Soc. 47::470
    [Crossref] [Google Scholar]
  26. 26.
    Víllora EG, Shimamura K, Yoshikawa Y, Aoki K, Ichinose N. 2004.. Large-size β-Ga2O3 single crystals and wafers. . J. Cryst. Growth 270::42026
    [Crossref] [Google Scholar]
  27. 27.
    Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T, Yamakoshi S. 2016.. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. . Jpn. J. Appl. Phys. 55::1202A2
    [Crossref] [Google Scholar]
  28. 28.
    Galazka Z, Uecker R, Klimm D, Irmscher K, Naumann M, et al. 2017.. Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method. . ECS J. Solid State Sci. Technol. 6::Q3007
    [Crossref] [Google Scholar]
  29. 29.
    Blevins JD, Stevens K, Lindsey A, Foundos G, Sande L. 2019.. Development of large diameter semi-insulating gallium oxide (Ga2O3) substrates. . IEEE Trans. Semicond. Manuf. 32::46672
    [Crossref] [Google Scholar]
  30. 30.
    Aida H, Nishiguchi K, Takeda H, Aota N, Sunakawa K, Yaguchi Y. 2008.. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. . Jpn. J. Appl. Phys. 47::8506
    [Crossref] [Google Scholar]
  31. 31.
    Hoshikawa K, Kobayashi T, Ohba E, Kobayashi T. 2020.. 50 mm diameter Sn-doped (001) β-Ga2O3 crystal growth using the vertical Bridgeman technique in ambient air. . J. Cryst. Growth 546::125778
    [Crossref] [Google Scholar]
  32. 32.
    Sasaki K, Kuramata A, Masui T, Víllora EG, Shimamura K, Yamakoshi S. 2012.. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. . Appl. Phys. Express 5::035502
    [Crossref] [Google Scholar]
  33. 33.
    Okumura H, Kita M, Sasaki K, Kuramata A, Higashiwaki M, Speck JS. 2014.. Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy. . Appl. Phys. Express 7::095501
    [Crossref] [Google Scholar]
  34. 34.
    Kaun SW, Wu F, Speck JS. 2015.. β-(AlxGa1−x)2O3/Ga2O3 (010) heterostructures grown on β-Ga2O3 (010) substrates by plasma-assisted molecular beam epitaxy. . J. Vac. Sci. Technol. A 33::041508
    [Crossref] [Google Scholar]
  35. 35.
    Ohtsuki T, Higashiwaki M. 2023.. Crystallinity degradation and defect development in (AlxGa1−x)2O3 thin films with increased Al composition. . J. Vac. Sci. Technol. A 41::042712
    [Crossref] [Google Scholar]
  36. 36.
    Ahmadi E, Koksaldi OS, Zheng X, Mates T, Oshima Y, et al. 2017.. Demonstration of β-(AlxGa1−x)2O3/β-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy. . Appl. Phys. Express 10::071101
    [Crossref] [Google Scholar]
  37. 37.
    Krishnamoorthy S, Xia Z, Joishi C, Zhang Y, McGlone J, et al. 2017.. Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor. . Appl. Phys. Lett. 111::023502
    [Crossref] [Google Scholar]
  38. 38.
    Nomura K, Goto K, Togashi R, Murakami H, Kumagai Y, et al. 2014.. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. . J. Cryst. Growth 405::1922
    [Crossref] [Google Scholar]
  39. 39.
    Murakami H, Nomura K, Goto K, Sasaki K, Kawara K, et al. 2015.. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. . Appl. Phys. Express 8::015503
    [Crossref] [Google Scholar]
  40. 40.
    Goto K, Konishi K, Murakami H, Kumagai Y, Monemar B, et al. 2018.. Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties. . Thin Solid Films 666::18284
    [Crossref] [Google Scholar]
  41. 41.
    Zhang Y, Alema F, Mauze A, Koksaldi OS, Miller R, et al. 2019.. MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature. . APL Mater. 7::022506
    [Crossref] [Google Scholar]
  42. 42.
    Feng Z, Bhuiyan AFMAU, Karim MR, Zhao H. 2019.. MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties. . Appl. Phys. Lett. 114::250601
    [Crossref] [Google Scholar]
  43. 43.
    Alema F, Zhang Y, Osinsky A, Valente N, Mauze A, et al. 2019.. Low temperature electron mobility exceeding 104 cm2/Vs in MOCVD grown β-Ga2O3. . APL Mater. 7::121110
    [Crossref] [Google Scholar]
  44. 44.
    Tadjer MJ, Alema F, Osinsky A, Mastro MA, Nepal N, et al. 2021.. Characterization of β-Ga2O3 homoepitaxial films and MOSFETs grown by MOCVD at high growth rates. . J. Phys. D 54::034005
    [Crossref] [Google Scholar]
  45. 45.
    Bhuiyan AFMAU, Feng Z, Johnson JM, Chen Z, Huang HL, et al. 2019.. MOCVD epitaxy of β-(AlxGa1−x)2O3 thin films on (010) Ga2O3 substrates and N-type doping. . Appl. Phys. Lett. 115::120602
    [Crossref] [Google Scholar]
  46. 46.
    Ranga P, Bhattacharyya A, Rishinaramangalam A, Ooi YK, Scarpulla MA, et al. 2020.. Delta-doped β-Ga2O3 thin films and β-(Al0.26Ga0.74)2O3/β-Ga2O3 heterostructures grown by metalorganic vapor-phase epitaxy. . Appl. Phys. Express 13::045501
    [Crossref] [Google Scholar]
  47. 47.
    Konishi K, Goto K, Murakami H, Kumagai Y, Kuramata A, et al. 2017.. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. . Appl. Phys. Lett. 110::103506
    [Crossref] [Google Scholar]
  48. 48.
    Kumar S, Murakami H, Kumagai Y, Higashiwaki M. 2022.. Vertical β-Ga2O3 Schottky barrier diodes with trench staircase field plate. . Appl. Phys. Express 15::054001
    [Crossref] [Google Scholar]
  49. 49.
    Sharma R, Xian M, Fares C, Law ME, Tadjer M, et al. 2021.. Effect of probe geometry during measurement of >100 A Ga2O3 vertical rectifiers. . J. Vac. Sci. Technol. A 39::013406
    [Crossref] [Google Scholar]
  50. 50.
    Lee HS, Kalarickal NK, Rahman MW, Xia Z, Moore W, et al. 2020.. High-permittivity dielectric edge termination for vertical high voltage devices. . J. Comp. Electron. 19::153845
    [Crossref] [Google Scholar]
  51. 51.
    Roy S, Bhattacharyya A, Ranga P, Splawn H, Leach J, Krishnamoorthy S. 2021.. High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with Baliga's figure of merit over 1 GW/cm2. . IEEE Electron Device Lett. 42::114043
    [Crossref] [Google Scholar]
  52. 52.
    Roy S, Bhattacharyya A, Peterson C, Krishnamoorthy S. 2022.. β-Ga2O3 lateral high-permittivity dielectric superjunction Schottky barrier diode with 1.34 GW/cm2 power figure of merit. . IEEE Electron Device Lett. 43::203740
    [Crossref] [Google Scholar]
  53. 53.
    Farzana E, Alema F, Ho WY, Mauze A, Itoh T, et al. 2021.. Vertical β-Ga2O3 field plate Schottky barrier diode from metal-organic chemical vapor deposition. . Appl. Phys. Lett. 118::162109
    [Crossref] [Google Scholar]
  54. 54.
    Dhara S, Kalarickal NK, Dheenan A, Joishi C, Rajan S. 2022.. β-Ga2O3 Schottky barrier diodes with 4.1 MV/cm field strength by deep plasma etching field-termination. . Appl. Phys. Lett. 121::203501
    [Crossref] [Google Scholar]
  55. 55.
    Joishi C, Rafique S, Xia Z, Han L, Krishnamoorthy S, et al. 2018.. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes. . Appl. Phys. Express 11::031101
    [Crossref] [Google Scholar]
  56. 56.
    Allen N, Xiao M, Yan X, Sasaki K, Tadjer MJ, et al. 2019.. Vertical Ga2O3 Schottky barrier diodes with small-angle beveled field plates: a Baliga's figure-of-merit of 0.6 GW/cm2. . IEEE Electron Device Lett. 40::1399402
    [Crossref] [Google Scholar]
  57. 57.
    Zhang Y, Zhang J, Feng Z, Hu Z, Chen J, et al. 2020.. Impact of implanted edge termination on vertical β-Ga2O3 Schottky barrier diodes under OFF-state stressing. . IEEE Trans. Electron Devices 67::394853
    [Crossref] [Google Scholar]
  58. 58.
    Lin CH, Yuda Y, Wong MH, Sato M, Takekawa N, et al. 2019.. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation. . IEEE Electron Device Lett. 40::148790
    [Crossref] [Google Scholar]
  59. 59.
    Hu Z, Lv Y, Zhao C, Feng Q, Feng Z, et al. 2020.. Beveled fluoride plasma treatment for vertical β-Ga2O3 Schottky barrier diode with high reverse blocking voltage and low turn-on voltage. . IEEE Electron Device Lett. 41::44144
    [Crossref] [Google Scholar]
  60. 60.
    Wang Y, Lv Y, Long S, Zhou X, Song X, et al. 2020.. High-voltage (01) β-Ga2O3 vertical Schottky barrier diode with thermally-oxidized termination. . IEEE Electron Device Lett. 41::13134
    [Crossref] [Google Scholar]
  61. 61.
    Dong P, Zhang J, Yan Q, Liu Z, Ma P, et al. 2022.. 6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV2/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC. . IEEE Electron Device Lett. 43::76568
    [Crossref] [Google Scholar]
  62. 62.
    Yan Q, Gong H, Zhou H, Zhang J, Ye J, et al. 2022.. Low density of interface trap states and temperature dependence study of Ga2O3 Schottky barrier diode with p-NiOx termination. . Appl. Phys. Lett. 120::092106
    [Crossref] [Google Scholar]
  63. 63.
    Wang B, Xiao M, Spencer J, Qin Y, Sasaki K, et al. 2023.. 2.5 kV vertical Ga2O3 Schottky rectifier with graded junction termination extension. . IEEE Electron Device Lett. 44::22124
    [Crossref] [Google Scholar]
  64. 64.
    Hao W, Wu F, Li W, Xu G, Xie X, et al. 2023.. Improved vertical β-Ga2O3 Schottky barrier diodes with conductivity-modulated p-NiO junction termination extension. . IEEE Trans. Electron Devices 70::212934
    [Crossref] [Google Scholar]
  65. 65.
    Gong HH, Yu XX, Xu Y, Chen XH, Kuang Y, et al. 2021.. β-Ga2O3 vertical heterojunction barrier Schottky diodes terminated with p-NiO field limiting rings. . Appl. Phys. Lett. 118::202102
    [Crossref] [Google Scholar]
  66. 66.
    Hu Z, Zhao C, Feng Q, Feng Z, Jia Z, et al. 2020.. The investigation of β-Ga2O3 Schottky diode with floating field ring termination and the interface states. . ECS J. Solid State Sci. Technol. 9::025001
    [Crossref] [Google Scholar]
  67. 67.
    Qin Y, Xiao M, Porter M, Ma Y, Spencer J, et al. 2023.. 10-kV Ga2O3 charge-balance Schottky rectifier operational at 200°C. . IEEE Electron Device Lett. 44::126871
    [Crossref] [Google Scholar]
  68. 68.
    Li W, Nomoto K, Jena D, Xing HG. 2020.. Thermionic emission or tunneling? The universal transition electric field for ideal Schottky reverse leakage current: a case study in β-Ga2O3. . Appl. Phys. Lett. 117::222104
    [Crossref] [Google Scholar]
  69. 69.
    Li W, Saraswat D, Long Y, Nomoto K, Jena D, Xing HG. 2020.. Near-ideal reverse leakage current and practical maximum electric field in β-Ga2O3 Schottky barrier diodes. . Appl. Phys. Lett. 116::192101
    [Crossref] [Google Scholar]
  70. 70.
    Sasaki K, Thieu QT, Wakimoto D, Koishikawa Y, Kuramata A, Yamakoshi S. 2017.. First demonstration of Ga2O3 junction barrier Schottky diodes. Paper presented at the International Conference on Silicon Carbide and Related Materials, Washington, DC:, Sept. 17–22
    [Google Scholar]
  71. 71.
    Lv Y, Wang Y, Fu X, Dun S, Sun Z, et al. 2021.. Demonstration of β-Ga2O3 junction barrier Schottky diodes with a Baliga's figure of merit of 0.85 GW/cm2 or a 5A/700 V handling capabilities. . IEEE Trans. Power Electron. 36::617982
    [Crossref] [Google Scholar]
  72. 72.
    Hao W, He Q, Han Z, Zhao X, Xu G, et al. 2023.. 1 kV vertical β-Ga2O3 heterojunction barrier Schottky diode with hybrid unipolar and bipolar operation. . In IEEE 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 39497. Piscataway, NJ:: IEEE. https://doi.org/10.1109/ISPSD57135.2023.10147686
    [Google Scholar]
  73. 73.
    Sasaki K, Wakimoto D, Thieu QT, Koishikawa Y, Kuramata A, et al. 2017.. First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. . IEEE Electron Device Lett. 38::78385
    [Crossref] [Google Scholar]
  74. 74.
    Takatsuka A, Sasaki K, Wakimoto D, Thieu QT, Koishikawa Y, et al. 2018.. Fast recovery performance of β-Ga2O3 trench MOS Schottky barrier diodes. . In 76th Device Research Conference (DRC). Piscataway, NJ:: IEEE. https://doi.org/10.1109/DRC.2018.8442267
    [Google Scholar]
  75. 75.
    Li W, Nomoto K, Hu Z, Jena D, Xing HG. 2020.. Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron,sp of up to 0.95 GW/cm2. . IEEE Electron Device Lett. 41::10710
    [Crossref] [Google Scholar]
  76. 76.
    Moule T, Dalcanale S, Kumar AS, Uren MJ, Li W, et al. 2022.. Breakdown mechanisms in β-Ga2O3 trench-MOS Schottky-barrier diodes. . IEEE Trans. Electron Devices 69::7581
    [Crossref] [Google Scholar]
  77. 77.
    Li W, Nomoto K, Hu Z, Jena D, Xing HG. 2020.. Guiding principles for trench Schottky barrier diodes based on ultrawide bandgap semiconductors: a case study in Ga2O3. . IEEE Trans. Electron Devices 67::393847
    [Crossref] [Google Scholar]
  78. 78.
    Li W, Nomoto K, Hu Z, Jena D, Xing HG. 2021.. ON-resistance of Ga2O3 trench-MOS Schottky barrier diodes: Role of sidewall interface trapping. . IEEE Trans. Electron Devices 68::242026
    [Crossref] [Google Scholar]
  79. 79.
    Zhou F, Gong H, Xu W, Yu X, Xu Y, et al. 2022.. 1.95-kV beveled-mesa NiO/β-Ga2O3 heterojunction diode with 98.5% conversion efficiency and over million-times overvoltage ruggedness. . IEEE Trans. Power Electron. 37::122327
    [Crossref] [Google Scholar]
  80. 80.
    Hao W, He Q, Zhou X, Zhao X, Xu G, Long S. 2022.. 2.6 kV NiO/Ga2O3 heterojunction diode with superior high-temperature voltage blocking capability. . In IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 1058. Piscataway, NJ:: IEEE. https://doi.org/10.1109/ISPSD49238.2022.9813680
    [Google Scholar]
  81. 81.
    Zhang J, Dong P, Dang K, Zhang Y, Yan Q, et al. 2022.. Ultra-wide bandgap semiconductor Ga2O3 power diodes. . Nat. Commun. 13::3900
    [Crossref] [Google Scholar]
  82. 82.
    Xiao M, Wang B, Zhang R, Song Q, Spencer J, et al. 2023.. NiO junction termination extension for Ga2O3 devices: High blocking field, low capacitance, and fast switching speed. . In IEEE 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 38689. Piscataway, NJ:: IEEE. https://doi.org/10.1109/ISPSD57135.2023.10147704
    [Google Scholar]
  83. 83.
    Li JS, Chiang CC, Xia X, Wan HH, Ren F, Pearton SJ. 2023.. Effect of drift layer doping and NiO parameters in achieving 8.9 kV breakdown in 100 μm diameter and 4 kV/4 A in 1 mm diameter NiO/β-Ga2O3 rectifiers. . J. Vac. Sci. Technol. A 41::043404
    [Crossref] [Google Scholar]
  84. 84.
    Zhou F, Gong H, Xiao M, Ma Y, Wang Z, et al. 2023.. An avalanche-and-surge robust ultrawide-bandgap heterojunction for power electronics. . Nat. Commun. 14::4459
    [Crossref] [Google Scholar]
  85. 85.
    Kokubun Y, Kubo S, Nakagomi S. 2016.. All-oxide p-n heterojunction diodes comprising p-type NiO and n-type β-Ga2O3. . Appl. Phys. Express 9::091101
    [Crossref] [Google Scholar]
  86. 86.
    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S. 2012.. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. . Appl. Phys. Lett. 100::013504
    [Crossref] [Google Scholar]
  87. 87.
    Higashiwaki M, Sasaki K, Wong MH, Kamimura T, Krishnamurthy D, et al. 2013.. Depletion-mode Ga2O3 MOSFETs on β-Ga2O3 (010) substrates with Si-ion-implanted channel and contacts. . In 59th IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:: IEEE. https://doi.org/10.1109/IEDM.2013.6724713
    [Google Scholar]
  88. 88.
    Green AJ, Chabak KD, Heller ER, Fitch RC Jr., Baldini M, et al. 2016.. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs. . IEEE Electron Device Lett. 37::9025
    [Crossref] [Google Scholar]
  89. 89.
    Wong MH, Sasaki K, Kuramata A, Yamakoshi S, Higashiwaki M. 2016.. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. . IEEE Electron Device Lett. 37::21215
    [Crossref] [Google Scholar]
  90. 90.
    Zeng K, Vaidya A, Singisetti U. 2019.. A field-plated Ga2O3 MOSFET with near 2-kV breakdown voltage and 520 mΩ·cm2 on-resistance. . Appl. Phys. Express 12::081003
    [Crossref] [Google Scholar]
  91. 91.
    Joishi C, Zhang Y, Xia Z, Sun W, Arehart AR, et al. 2019.. Breakdown characteristics of β-(Al0.22Ga0.78)2O3/Ga2O3 field-plated modulation-doped field-effect transistors. . IEEE Electron Device Lett. 40::124144
    [Crossref] [Google Scholar]
  92. 92.
    Tetzner K, Bahat-Treidel E, Hilt O, Popp A, Bin Anooz S, et al. 2019.. Lateral 1.8 kV β-Ga2O3 MOSFETs with 155 MW/cm2 power figure of merit. . IEEE Electron Device Lett. 40::15036
    [Crossref] [Google Scholar]
  93. 93.
    Sharma S, Meng L, Bhuiyan AFMAU, Feng Z, Eason D, et al. 2022.. Vacuum annealed β-Ga2O3 recess channel MOSFETs with 8.56 kV breakdown voltage. . IEEE Electron Device Lett. 43::202932
    [Crossref] [Google Scholar]
  94. 94.
    Bhattacharyya A, Sharma S, Alema F, Ranga P, Roy S, et al. 2022.. 4.4 kV β-Ga2O3 MESFETs with power figure of merit exceeding 100 MW cm2. . Appl. Phys. Express 15::061001
    [Crossref] [Google Scholar]
  95. 95.
    Liu H, Wang Y, Lv Y, Han S, Han T, et al. 2023.. 10-kV lateral β-Ga2O3 MESFETs with B ion implanted planar isolation. . IEEE Electron Device Lett. 44::104851
    [Crossref] [Google Scholar]
  96. 96.
    Bhattacharyya A, Roy S, Ranga P, Peterson C, Krishnamoorthy S. 2022.. High-mobility tri-gate β-Ga2O3 MESFETs with a power figure of merit over 0.9 GW/cm2. . IEEE Electron Device Lett. 43::163740
    [Crossref] [Google Scholar]
  97. 97.
    Kuring C, Tetzner K, Popp A, Heucke S, Hilt O, et al. 2021.. Switching behavior and dynamic on-resistance of lateral β-Ga2O3 MOSFETs up to 400 V. . In IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), pp. 5257. Piscataway, NJ:: IEEE. https://doi.org/10.1109/WiPDA49284.2021.9645079
    [Google Scholar]
  98. 98.
    Xia Z, Wang C, Kalarickal NK, Stemmer S, Rajan S. 2019.. Design of transistors using high-permittivity materials. . IEEE Trans. Electron Devices 66::896900
    [Crossref] [Google Scholar]
  99. 99.
    Kalarickal NK, Feng Z, Bhuiyan AFMAU, Xia Z, Moore W, et al. 2021.. Electrostatic engineering using extreme permittivity materials for ultra-wide bandgap semiconductor transistors. . IEEE Trans. Electron Devices 68::2935
    [Crossref] [Google Scholar]
  100. 100.
    Kalarickal NK, Xia Z, Huang HL, Moore W, Liu Y, et al. 2021.. β-(Al0.18Ga0.82)2O3/Ga2O3 double heterojunction transistor with average field of 5.5 MV/cm. . IEEE Electron Device Lett. 42::899902
    [Crossref] [Google Scholar]
  101. 101.
    Wang Y, Gong H, Jia X, Han G, Ye J, et al. 2021.. First demonstration of RESURF and superjunction β-Ga2O3 MOSFETs with p-NiO/n-Ga2O3 junctions. . In 67th IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:: IEEE. https://doi.org/10.1109/IEDM19574.2021.9720500
    [Google Scholar]
  102. 102.
    Wang Y, Gong H, Jia X, Ye J, Liu Y, et al. 2022.. Demonstration of β-Ga2O3 superjunction-equivalent MOSFETs. . IEEE Trans. Electron Devices 69::22039
    [Crossref] [Google Scholar]
  103. 103.
    Chabak KD, McCandless JP, Moser NA, Green AJ, Mahalingam K, et al. 2018.. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs. . IEEE Electron Device Lett. 39::6770
    [Crossref] [Google Scholar]
  104. 104.
    Wang C, Zhou H, Zhang J, Mu W, Wei J, et al. 2022.. Hysteresis-free and μs-switching of D/E-modes Ga2O3 hetero-junction FETs with the BV2/Ron,sp of 0.74/0.28 GW/cm2. . Appl. Phys. Lett. 120::112101
    [Crossref] [Google Scholar]
  105. 105.
    Wong MH, Nakata Y, Kuramata A, Yamakoshi S, Higashiwaki M. 2017.. Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. . Appl. Phys. Express 10::041101
    [Crossref] [Google Scholar]
  106. 106.
    Lv Y, Zhou X, Long S, Wang Y, Song X, et al. 2020.. Enhancement-mode β-Ga2O3 metal-oxide-semiconductor field-effect transistor with high breakdown voltage over 3000 V realized by oxygen annealing. . Phys. Status Solidi RRL 14::1900586
    [Crossref] [Google Scholar]
  107. 107.
    Kamimura T, Nakata Y, Wong MH, Higashiwaki M. 2019.. Unintentionally nitrogen-doped channel layer grown by plasma-assisted molecular beam epitaxy. . IEEE Electron Device Lett. 40::106467
    [Crossref] [Google Scholar]
  108. 108.
    Chabak KD, Moser N, Green AJ, Walker DE Jr., Tetlak SE, et al. 2016.. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. . Appl. Phys. Lett. 109::213501
    [Crossref] [Google Scholar]
  109. 109.
    Wong MH, Goto K, Murakami H, Kumagai Y, Higashiwaki M. 2019.. Current aperture vertical β-Ga2O3 MOSFETs fabricated by N- and Si-ion implantation doping. . IEEE Electron Device Lett. 40::43134
    [Crossref] [Google Scholar]
  110. 110.
    Wong MH, Murakami H, Kumagai Y, Higashiwaki M. 2020.. Enhancement-mode β-Ga2O3 current aperture vertical MOSFETs with N-ion-implanted blocker. . IEEE Electron Device Lett. 41::29699
    [Crossref] [Google Scholar]
  111. 111.
    Zeng K, Soman R, Bian Z, Jeong S, Chowdhury S. 2022.. Vertical Ga2O3 MOSFET with magnesium diffused current blocking layer. . IEEE Electron Device Lett. 43::152730
    [Crossref] [Google Scholar]
  112. 112.
    Wong MH, Murakami H, Kumagai Y, Higashiwaki M. 2021.. Aperture-limited conduction and its possible mechanism in ion-implanted current aperture β-Ga2O3 MOSFETs. . Appl. Phys. Lett. 118::012102
    [Crossref] [Google Scholar]
  113. 113.
    Hu Z, Nomoto K, Li W, Tanen N, Sasaki K, et al. 2018.. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. . IEEE Electron Device Lett. 39::86972
    [Crossref] [Google Scholar]
  114. 114.
    Hu Z, Nomoto K, Li W, Zhang Z, Tanen N, et al. 2018.. Breakdown mechanism in 1 kA/cm2 and 960 V E-mode β-Ga2O3 vertical transistors. . Appl. Phys. Lett. 113::122103
    [Crossref] [Google Scholar]
  115. 115.
    Li W, Nomoto K, Hu Z, Nakamura T, Jena D, Xing HG. 2019.. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. . In 65th IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:. https://doi.org/10.1109/IEDM19573.2019.8993526
    [Google Scholar]
  116. 116.
    Tetzner K, Klupsch M, Popp A, Bin Anooz S, Chou TS, et al. 2023.. Enhancement-mode vertical (100) β-Ga2O3 FinFETs with an average breakdown strength of 2.7 MV cm−1. . Jpn. J. Appl. Phys. 62::SF1010
    [Crossref] [Google Scholar]
  117. 117.
    Huang HC, Ren Z, Bhuiyan AFMAU, Feng Z, Yang Z, et al. 2022.. β-Ga2O3 FinFETs with ultra-low hysteresis by plasma-free metal-assisted chemical etching. . Appl. Phys. Lett. 121::052102
    [Crossref] [Google Scholar]
  118. 118.
    Dhara S, Kalarickal NK, Dheenan A, Rahman SI, Joishi C, Rajan S. 2023.. β-Ga2O3 trench Schottky diodes by low-damage Ga-atomic beam etching. . Appl. Phys. Lett. 123::023503
    [Crossref] [Google Scholar]
  119. 119.
    Zhou X, Ma Y, Xu G, Liu Q, Liu J, et al. 2022.. Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing. . Appl. Phys. Lett. 121::223501
    [Crossref] [Google Scholar]
  120. 120.
    Ma Y, Zhou X, Tang W, Zhang X, Xu G, et al. 2023.. 702.3 A·cm2/10.4 mΩ·cm2β-Ga2O3 U-shape trench gate MOSFET with N-ion implantation. . IEEE Electron Device Lett. 44::38487
    [Crossref] [Google Scholar]
  121. 121.
    Wakimoto D, Lin CH, Thieu QT, Miyamoto H, Sasaki K, Kuramata A. 2023.. Nitrogen-doped β-Ga2O3 vertical transistors with a threshold voltage of ≥1.3 V and a channel mobility of 100 cm2V−1s−1. . Appl. Phys. Express 16::036503
    [Crossref] [Google Scholar]
  122. 122.
    Liddy KJ, Green AJ, Hendricks NS, Heller ER, Moser NA, et al. 2019.. Thin channel β-Ga2O3 MOSFETs with self-aligned refractory metal gate. . Appl. Phys. Express 12::126501
    [Crossref] [Google Scholar]
  123. 123.
    Saha CN, Vaidya A, Bhuiyan AFMAU, Meng L, Sharma S, et al. 2023.. Scaled β-Ga2O3 thin channel MOSFETs with 5.4 MV/cm average breakdown field and near 50 GHz fMAX. . Appl. Phys. Lett. 122::182106
    [Crossref] [Google Scholar]
  124. 124.
    Yu X, Xu W, Wang Y, Qiao B, Shen R, et al. 2023.. Heterointegrated Ga2O3-on-SiC RF MOSFETs with fT/fmax of 47/51 GHz by ion-cutting process. . IEEE Electron Device Lett. 44::195154
    [Crossref] [Google Scholar]
  125. 125.
    Kalarickal NK, Dheenan A, McGlone JF, Dhara S, Brenner M, et al. 2023.. Demonstration of self-aligned β-Ga2O3δ-doped MOSFETs with current density >550 mA/mm. . Appl. Phys. Lett. 122::113506
    [Crossref] [Google Scholar]
  126. 126.
    Yu X, Gong H, Zhou J, Shen Z, Ren FF, et al. 2022.. RF performance enhancement in sub-μm scaled β-Ga2O3 tri-gate FinFETs. . Appl. Phys. Lett. 121::072102
    [Crossref] [Google Scholar]
  127. 127.
    Vaidya A, Saha CN, Singisetti U. 2021.. Enhancement mode β-(AlxGa1−x)2O3/Ga2O3 heterostructure FET (HFET) with high transconductance and cutoff frequency. . IEEE Electron Device Lett. 42::144447
    [Crossref] [Google Scholar]
  128. 128.
    Kamimura T, Nakata Y, Higashiwaki M. 2020.. Delay-time analysis in radio-frequency β-Ga2O3 field effect transistors. . Appl. Phys. Lett. 117::253501
    [Crossref] [Google Scholar]
  129. 129.
    Moser NA, Asel T, Liddy KJ, Lindquist M, Miller NC, et al. 2020.. Pulsed power performance of β-Ga2O3 MOSFETs at L-band. . IEEE Electron Device Lett. 41::98992
    [Crossref] [Google Scholar]
  130. 130.
    Green AJ, Chabak KD, Baldini M, Moser N, Gilbert R, et al. 2017.. β-Ga2O3 MOSFETs for radio frequency operation. . IEEE Electron Device Lett. 38::79093
    [Crossref] [Google Scholar]
  131. 131.
    Singh M, Casbon MA, Uren MJ, Pomeroy JW, Dalcanale S, et al. 2018.. Pulsed large signal RF performance of field-plated Ga2O3 MOSFETs. . IEEE Electron Device Lett. 39::157275
    [Crossref] [Google Scholar]
  132. 132.
    Saha CN, Vaidya A, Singisetti U. 2022.. Temperature dependent pulsed IV and RF characterization of β-(AlxGa1−x)2O3/Ga2O3 hetero-structure FET with ex situ passivation. . Appl. Phys. Lett. 120::172102
    [Crossref] [Google Scholar]
  133. 133.
    Moser N, Liddy K, Islam A, Miller N, Leedy K, et al. 2020.. Toward high voltage radio frequency devices in β-Ga2O3. . Appl. Phys. Lett. 117::242101
    [Crossref] [Google Scholar]
  134. 134.
    Fares C, Ren F, Pearton SJ. 2019.. Temperature-dependent electrical characteristics of β-Ga2O3 diodes with W Schottky contacts up to 500°C. . ECS J. Solid State Sci. Technol. 8::Q3007
    [Crossref] [Google Scholar]
  135. 135.
    Hou C, York KR, Makin RA, Durbin SM, Gazoni RM, et al. 2020.. High temperature (500°C) operating limits of oxidized platinum group metal (PtOx, IrOx, PdOx, RuOx) Schottky contacts on β-Ga2O3. . Appl. Phys. Lett. 117::203502
    [Crossref] [Google Scholar]
  136. 136.
    Islam AE, Sepelak NP, Liddy KJ, Kahler R, Dryden DM, et al. 2022.. 500°C operation of β-Ga2O3 field-effect transistors. . Appl. Phys. Lett. 121::243501
    [Crossref] [Google Scholar]
  137. 137.
    Yang J, Ren F, Chen YT, Liao YT, Chang CW, et al. 2019.. Dynamic switching characteristics of 1 A forward current β-Ga2O3 rectifiers. . IEEE J. Electron Devices Soc. 7::5761
    [Crossref] [Google Scholar]
  138. 138.
    Pomeroy JW, Middleton C, Singh M, Dalcanale S, Uren MJ, et al. 2019.. Raman thermography of peak channel temperature in β-Ga2O3 MOSFETs. . IEEE Electron Device Lett. 40::18992
    [Crossref] [Google Scholar]
  139. 139.
    Wilhelmi F, Komatsu Y, Yamaguchi S, Uchida Y, Kase T, et al. 2023.. Improving the heat dissipation and current rating of Ga2O3 Schottky diodes by substrate thinning and junction-side cooling. . IEEE Trans. Power Electron. 38::710717
    [Crossref] [Google Scholar]
  140. 140.
    Gong H, Zhou F, Yu X, Xu W, Ren FF, et al. 2022.. 70-μm-body Ga2O3 Schottky barrier diode with 1.48 K/W thermal resistance, 59 A surge current and 98.9% conversion efficiency. . IEEE Electron Device Lett. 43::77376
    [Crossref] [Google Scholar]
  141. 141.
    Xiao M, Wang B, Liu J, Zhang R, Zhang Z, et al. 2021.. Packaged Ga2O3 Schottky rectifiers with over 60-A surge current capability. . IEEE Trans. Power Electron. 36::856569
    [Crossref] [Google Scholar]
  142. 142.
    Buttay C, Wong HY, Wang B, Xiao M, Dimarino C, Zhang Y. 2020.. Surge current capability of ultra-wide-bandgap Ga2O3 Schottky diodes. . Microelectron. Reliab. 114::113743
    [Crossref] [Google Scholar]
  143. 143.
    Wilhelmi F, Kunori S, Sasaki K, Kuramata A, Komatsu Y, Lindemann A. 2022.. Packaged β-Ga2O3 trench MOS Schottky diode with nearly ideal junction properties. . IEEE Trans. Power Electron. 37::373742
    [Crossref] [Google Scholar]
  144. 144.
    Chatterjee B, Li W, Nomoto K, Xing HG, Choi S. 2021.. Thermal design of multi-fin Ga2O3 vertical transistors. . Appl. Phys. Lett. 119::103502
    [Crossref] [Google Scholar]
  145. 145.
    Kim S, Zhang Y, Yuan C, Montgomery R, Mauze A, et al. 2021.. Thermal management of β-Ga2O3 current aperture vertical electron transistors. . IEEE Trans. Compon. Packag. Manuf. Technol. 11::117176
    [Crossref] [Google Scholar]
  146. 146.
    Lundh JS, Masten HN, Sasaki K, Jacobs AG, Cheng Z, et al. 2022.. AlN-capped β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors for near-junction thermal management of next generation power devices. . In 80th Device Research Conference (DRC). Piscataway, NJ:: IEEE. https://doi.org/10.1109/DRC55272.2022.9855809
    [Google Scholar]
  147. 147.
    Xu W, Wang Y, You T, Ou X, Han G, et al. 2019.. First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process. . In 65th IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:: IEEE. https://doi.org/10.1109/IEDM19573.2019.8993501
    [Google Scholar]
  148. 148.
    Song Y, Bhattacharyya B, Karim A, Shoemaker D, Huang HL, et al. 2023.. Ultra-wide band gap Ga2O3-on-SiC MOSFET. . ACS Appl. Mater. Interfaces 15::713747
    [Crossref] [Google Scholar]
  149. 149.
    Green AJ, Speck J, Xing G, Moens P, Allerstam F, et al. 2022.. β-gallium oxide power electronics. . APL Mater. 10::029201
    [Crossref] [Google Scholar]
  150. 150.
    Qin Y, Wang Z, Sasaki K, Ye J, Zhang Y. 2023.. Recent progress of Ga2O3 power technology: large-area devices, packaging and applications. . Jpn. J. Appl. Phys. 62::SF0801
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-matsci-080921-104058
Loading
/content/journals/10.1146/annurev-matsci-080921-104058
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error