1932

Abstract

Noncentrosymmetric (NCS) materials feature an exciting array of functionalities such as nonlinear optical (NLO) responses and topological spin textures (skyrmions). While NLO materials and magnetic skyrmions display two different sets of physical properties, their design strategies are deeply connected in terms of atomic-scale precision, structural customization, and electronic tunability. Despite impressive progress in studying these systems separately, a joint road map for navigating the chemical principles for NCS materials remains elusive. This review unites two subtopics of NCS systems, NLO materials and magnetic skyrmions, offering a multifaceted narrative of how to translate the often-abstract fundamentals to the targeted functionalities while inviting innovative approaches from the community. We outline the design principles central to the desired properties by exemplifying relevant examples in the field. We supplement materials chemistry with pertinent electronic structures to demonstrate the power of the fundamentals to create systems integration relevant to foreseeable societal impacts in frequency-doubling instrumentation and spin-based electronics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080921-110002
2023-07-03
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-080921-110002.html?itemId=/content/journals/10.1146/annurev-matsci-080921-110002&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Halasyamani PS, Rondinelli JM. 2018. The must-have and nice-to-have experimental and computational requirements for functional frequency doubling deep-UV crystals. Nat. Commun. 9:2972
    [Google Scholar]
  2. 2.
    Mutailipu M, Pan S. 2020. Emergent deep-ultraviolet nonlinear optical candidates. Angew. Chem. Int. Ed. 59:20302–17
    [Google Scholar]
  3. 3.
    Ok KM. 2016. Toward the rational design of novel noncentrosymmetric materials: factors influencing the framework structures. Acc. Chem. Res. 49:2774–85
    [Google Scholar]
  4. 4.
    Halasyamani PS, Poeppelmeier KR. 1998. Noncentrosymmetric oxides. Chem. Mater. 10:2753–69
    [Google Scholar]
  5. 5.
    Tran TT, Yu H, Rondinelli JM, Poeppelmeier KR, Halasyamani PS. 2016. Deep ultraviolet nonlinear optical materials. Chem. Mater. 28:5238–58
    [Google Scholar]
  6. 6.
    Rondinelli JM, Kioupakis E. 2015. Predicting and designing optical properties of inorganic materials. Annu. Rev. Mater. Res. 45:491–518
    [Google Scholar]
  7. 7.
    Tokura Y, Kanazawa N. 2020. Magnetic skyrmion materials. Chem. Rev. 121:2857–97
    [Google Scholar]
  8. 8.
    Kanazawa N, Seki S, Tokura Y. 2017. Noncentrosymmetric magnets hosting magnetic skyrmions. Adv. Mater. 29:1603227
    [Google Scholar]
  9. 9.
    Wang J. 2019. Mechanical control of magnetic order: from phase transition to skyrmions. Annu. Rev. Mater. Res. 49:361–88
    [Google Scholar]
  10. 10.
    Felser C. 2013. Skyrmions. Angew. Chem. Int. Ed. 52:1631–34
    [Google Scholar]
  11. 11.
    Yang S-H, Naaman R, Paltiel Y, Parkin SSP. 2021. Chiral spintronics. Nat. Rev. Phys. 3:328–43
    [Google Scholar]
  12. 12.
    Göbel B, Mertig I, Tretiakov OA. 2021. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895:1–28
    [Google Scholar]
  13. 13.
    Savage N. 2007. Ultraviolet lasers. Nat. Photonics 1:83–85
    [Google Scholar]
  14. 14.
    Yao W, He R, Wang X, Lin Z, Chen C 2014. Analysis of deep-UV nonlinear optical borates: approaching the end. Adv. Opt. Mater. 2:411–17
    [Google Scholar]
  15. 15.
    Tressaud A, Poeppelmeier K. 2016. Photonic and Electronic Properties of Fluoride Materials. Prog. Fluor. Sci. Ser Amsterdam: Elsevier
    [Google Scholar]
  16. 16.
    De Vivie-Riedle R, Troppmann U. 2007. Femtosecond lasers for quantum information technology. Chem. Rev. 107:5082–100
    [Google Scholar]
  17. 17.
    Zhang J-H, Clark DJ, Brant JA, Rosmus KA, Grima P et al. 2020. α-Li2ZnGeS4: a wide-bandgap diamond-like semiconductor with excellent balance between laser-induced damage threshold and second harmonic generation response. Chem. Mater. 32:8947–55
    [Google Scholar]
  18. 18.
    Iyer AK, Cho JB, Waters MJ, Cho JS, Oxley BM et al. 2022. Ba2MAsQ5 (Q = S and Se) family of polar structures with large second harmonic generation and phase matchability. Chem. Mater. 34:5283–93
    [Google Scholar]
  19. 19.
    Huang C, Zhang F, Pan S. 2023. Inorganic nonlinear optical materials. In Comprehensive Inorganic Chemistry IIIed. J Reedijk, KR Poeppelmeierpp. 3–44 Amsterdam: Elsevier https://doi.org/10.1016/B978-0-12-823144-9.00081-9
    [Crossref] [Google Scholar]
  20. 20.
    Kang L, Liang F, Jiang X, Lin Z, Chen C 2020. First-principles design and simulations promote the development of nonlinear optical crystals. Acc. Chem. Res. 53:209–17
    [Google Scholar]
  21. 21.
    Halasyamani PS, Zhang W. 2017. Viewpoint: inorganic materials for UV and deep-UV nonlinear-optical applications. Inorg. Chem. 56:12077–85
    [Google Scholar]
  22. 22.
    Wu C, Yang G, Humphrey MG, Zhang C. 2018. Recent advances in ultraviolet and deep-ultraviolet second-order nonlinear optical crystals. Coord. Chem. Rev. 375:459–88
    [Google Scholar]
  23. 23.
    Wu H, Zhang B, Yu H, Hu Z, Wang J et al. 2020. Designing silicates as deep-UV nonlinear optical (NLO) materials using edge-sharing tetrahedra. Angew. Chem. Int. Ed. 132:9007–11
    [Google Scholar]
  24. 24.
    Cheng H, Li F, Yang Z, Pan S 2022. Na4B8O9F10: a deep-ultraviolet transparent nonlinear optical fluorooxoborate with unexpected short phase-matching wavelength induced by optimized chromatic dispersion. Angew. Chem. Int. Ed. 134:e202115669
    [Google Scholar]
  25. 25.
    Yu H, Zhang W, Young J, Rondinelli JM, Halasyamani PS. 2015. Design and synthesis of the beryllium-free deep-ultraviolet nonlinear optical material Ba3(ZnB5O10)PO4. Adv. Mater. 27:7380–85
    [Google Scholar]
  26. 26.
    Hirschberger M, Nakajima T, Gao S, Peng L, Kikkawa A et al. 2019. Skyrmion phase and competing magnetic orders on a breathing kagomé lattice. Nat. Commun. 10:5831
    [Google Scholar]
  27. 27.
    Hirschberger M, Nakajima T, Kriener M, Kurumaji T, Spitz L et al. 2020. High-field depinned phase and planar Hall effect in the skyrmion host Gd2PdSi3. Phys. Rev. B 101:220401
    [Google Scholar]
  28. 28.
    Hirschberger M, Spitz L, Nomoto T, Kurumaji T, Gao S et al. 2020. Topological Nernst effect of the two-dimensional skyrmion lattice. Phys. Rev. Lett. 125:076602
    [Google Scholar]
  29. 29.
    Khanh ND, Nakajima T, Yu X, Gao S, Shibata K et al. 2020. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nat. Nanotechnol. 15:444–49
    [Google Scholar]
  30. 30.
    Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y et al. 2019. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science 365:914–18
    [Google Scholar]
  31. 31.
    Nomoto T, Koretsune T, Arita R. 2020. Formation mechanism of the helical Q structure in Gd-based skyrmion materials. Phys. Rev. Lett. 125:117204
    [Google Scholar]
  32. 32.
    Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz CAF et al. 2016. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11:444–48
    [Google Scholar]
  33. 33.
    Yasuda K, Wakatsuki R, Morimoto T, Yoshimi R, Tsukazaki A et al. 2016. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 12:555–59
    [Google Scholar]
  34. 34.
    Matsuno J, Ogawa N, Yasuda K, Kagawa F, Koshibae W et al. 2016. Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer. Sci. Adv. 2:e1600304
    [Google Scholar]
  35. 35.
    Wang L, Feng Q, Kim Y, Kim R, Lee KH et al. 2018. Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat. Mater. 17:1087–94
    [Google Scholar]
  36. 36.
    Brown KR, Chiaverini J, Sage JM, Haffner H. 2021. Materials challenges for trapped-ion quantum computers. Nat. Rev. Mater. 6:892–905
    [Google Scholar]
  37. 37.
    Munn RW, Ironside CN, eds. 1993. Principles and Applications of Nonlinear Optical Materials Dordrecht, Neth.: Springer
  38. 38.
    Kurtz SK, Perry TT. 1968. Powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39:3798–813
    [Google Scholar]
  39. 39.
    Ok KM, Chi EO, Halasyamani PS. 2006. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem. Soc. Rev. 35:710–17
    [Google Scholar]
  40. 40.
    Nye JF. 1985. Physical Properties of Crystals: Their Representation by Tensors and Matrices Oxford, UK: Clarendon
  41. 41.
    Maker PD, Terhune RW, Nisenoff M, Savage CM. 1962. Effects of dispersion and focusing on the production of optical harmonics. Phys. Rev. Lett. 8:21–22
    [Google Scholar]
  42. 42.
    Zhang W, Yu H, Wu H, Halasyamani PS. 2017. Phase-matching in nonlinear optical compounds: a materials perspective. Chem. Mater. 29:2655–68
    [Google Scholar]
  43. 43.
    Mutailipu M, Poeppelmeier KR, Pan S. 2020. Borates: a rich source for optical materials. Chem. Rev. 121:1130–202
    [Google Scholar]
  44. 44.
    Mutailipu M, Li F, Jin C, Yang Z, Poeppelmeier KR, Pan S 2022. Strong nonlinearity induced by coaxial alignment of polar chain and dense [BO3] units in CaZn2(BO3)2. Angew. Chem. Int. Ed. 61:e202202096
    [Google Scholar]
  45. 45.
    Liu R, Wu H, Yu H, Hu Z, Wang J, Wu Y 2021. K5Mg2La3(BO3)6: an efficient, deep-ultraviolet nonlinear optical material. Chem. Mater. 33:4240–46
    [Google Scholar]
  46. 46.
    Ye N, Zeng W, Jiang J, Wu B, Chen C et al. 2000. New nonlinear optical crystal K2Al2B2O7. J. Opt. Soc. Am. B 17:764–68
    [Google Scholar]
  47. 47.
    Ye N, Zeng W, Wu B, Chen C 1998. Two new nonlinear optical crystals: BaAl2B2O7 and K2Al2B2O7. Proceedings of the International Society for Optics and Photonics, Vol. 3556 Electro-Optic and Second Harmonic Generation Materials, Devices, and Applications II C Chen. https://doi.org/10.1117/12.318263
    [Google Scholar]
  48. 48.
    Huang H, Liu L, Jin S, Yao W, Zhang Y, Chen C 2013. Deep-ultraviolet nonlinear optical materials: Na2Be4B4O11 and LiNa5Be12B12O33. J. Am. Chem. Soc. 135:18319–22
    [Google Scholar]
  49. 49.
    Chen C, Wu B, Jiang A, You G. 1985. A new-type ultraviolet SHG crystal—–β-BaB2O4. Sci. China Ser. B 28:235–43
    [Google Scholar]
  50. 50.
    Huang C, Mutailipu M, Zhang F, Griffith KJ, Hu C et al. 2021. Expanding the chemistry of borates with functional [BO2] anions. Nat. Commun. 12:2597
    [Google Scholar]
  51. 51.
    Zhao S, Gong P, Bai L, Xu X, Zhang S et al. 2014. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications. Nat. Commun. 5:4019
    [Google Scholar]
  52. 52.
    Tran TT, Koocher NZ, Rondinelli JM, Halasyamani PS. 2017. Beryllium-free β-Rb2Al2B2O7 as a possible deep-ultraviolet nonlinear optical material replacement for KBe2BO3F2. Angew. Chem. Int. Ed. 56:2969–73
    [Google Scholar]
  53. 53.
    Li Y, Liang F, Zhao S, Li L, Wu Z et al. 2019. Two non-π-conjugated deep-UV nonlinear optical sulfates. J. Am. Chem. Soc. 141:3833–37
    [Google Scholar]
  54. 54.
    Liu X, Gong P, Yang Y, Song G, Lin Z. 2019. Nitrate nonlinear optical crystals: a survey on structure-performance relationships. Coord. Chem. Rev. 400:213045
    [Google Scholar]
  55. 55.
    Mutailipu M, Yang Z, Pan S 2021. Toward the enhancement of critical performance for deep-ultraviolet frequency-doubling crystals utilizing covalent tetrahedra. Acc. Mater. Res. 2:282–91
    [Google Scholar]
  56. 56.
    Shan P, Sun T, Chen H, Liu H, Chen S et al. 2016. Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO3)4, a possible deep-ultraviolet nonlinear optical crystal. Sci. Rep. 6:25201
    [Google Scholar]
  57. 57.
    Wang S, Ye N. 2011. Na2CsBe6B5O15: An alkaline beryllium borate as a deep-UV nonlinear optical crystal. J. Am. Chem. Soc. 133:11458–61
    [Google Scholar]
  58. 58.
    Zhao S, Gong P, Luo S, Bai L, Lin Z et al. 2014. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4]3− units. J. Am. Chem. Soc. 136:8560–63
    [Google Scholar]
  59. 59.
    Chen C, Wu Y, Li R. 1989. The anionic group theory of the nonlinear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Int. Rev. Phys. Chem. 8:65–91
    [Google Scholar]
  60. 60.
    Lei B-H, Pan S, Yang Z, Cao C, Singh DJ. 2020. Second harmonic generation susceptibilities from symmetry adapted Wannier functions. Phys. Rev. Lett. 125:187402
    [Google Scholar]
  61. 61.
    Tran TT, He J, Rondinelli JM, Halasyamani PS. 2015. RbMgCO3F: a new beryllium-free deep-ultraviolet nonlinear optical material. J. Am. Chem. Soc. 137:10504–7
    [Google Scholar]
  62. 62.
    Tran TT, Young J, Rondinelli JM, Halasyamani PS. 2017. Mixed-metal carbonate fluorides as deep-ultraviolet nonlinear optical materials. J. Am. Chem. Soc. 139:1285–95
    [Google Scholar]
  63. 63.
    Tran TT, Halasyamani PS, Rondinelli JM. 2014. Role of acentric displacements on the crystal structure and second-harmonic generating properties of RbPbCO3F and CsPbCO3F. Inorg. Chem. 53:6241–51
    [Google Scholar]
  64. 64.
    Ding Q, Liu X, Zhao S, Wang Y, Li Y et al. 2020. Designing a deep-UV nonlinear optical fluorooxosilicophosphate. J. Am. Chem. Soc. 142:6472–76
    [Google Scholar]
  65. 65.
    Lei B-H, Yang Z, Yu H, Cao C, Li Z et al. 2018. Module-guided design scheme for deep-ultraviolet nonlinear optical materials. J. Am. Chem. Soc. 140:10726–33
    [Google Scholar]
  66. 66.
    Li Y, Zhou Z, Zhao S, Liang F, Ding Q et al. 2021. A deep-UV nonlinear optical borosulfate with incommensurate modulations. Angew. Chem. Int. Ed. 60:11457–63
    [Google Scholar]
  67. 67.
    Liang F, Kang L, Gong P, Lin Z, Wu Y. 2017. Rational design of deep-ultraviolet nonlinear optical materials in fluorooxoborates: toward optimal planar configuration. Chem. Mater. 29:7098–102
    [Google Scholar]
  68. 68.
    Liu X, Kang L, Gong P, Lin Z. 2021. LiZn(OH)CO3: A deep-ultraviolet nonlinear optical hydroxycarbonate designed from a diamond-like structure. Angew. Chem. Int. Ed. 60:13574–78
    [Google Scholar]
  69. 69.
    Luo M, Song Y, Lin C, Ye N, Cheng W, Long X. 2016. Molecular engineering as an approach to design a new beryllium-free fluoride carbonate as a deep-ultraviolet nonlinear optical material. Chem. Mater. 28:2301–7
    [Google Scholar]
  70. 70.
    Mutailipu M, Zhang M, Yang Z, Pan S 2019. Targeting the next generation of deep-ultraviolet nonlinear optical materials: expanding from borates to borate fluorides to fluorooxoborates. Acc. Chem. Res. 52:791–801
    [Google Scholar]
  71. 71.
    Peng G, Ye N, Lin Z, Kang L, Pan S et al. 2018. NH4Be2BO3F2 and γ-Be2BO3F: overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials. Angew. Chem. Int. Ed. 57:8968–72
    [Google Scholar]
  72. 72.
    Shi G, Wang Y, Zhang F, Zhang B, Yang Z et al. 2017. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J. Am. Chem. Soc. 139:10645–48
    [Google Scholar]
  73. 73.
    Wang Y, Zhang B, Yang Z, Pan S 2018. Cation-tuned synthesis of fluorooxoborates: towards optimal deep-ultraviolet nonlinear optical materials. Angew. Chem. Int. Ed. 57:2150–54
    [Google Scholar]
  74. 74.
    Xiong L, Chen J, Lu J, Pan C-Y, Wu L-M. 2018. Monofluorophosphates: a new source of deep-ultraviolet nonlinear optical materials. Chem. Mater. 30:7823–30
    [Google Scholar]
  75. 75.
    Yu H, Zhang W, Young J, Rondinelli JM, Halasyamani PS. 2015. Design and synthesis of the beryllium-free deep-ultraviolet nonlinear optical material Ba3(ZnB5O10)PO4. Adv. Mater. 27:7380–85
    [Google Scholar]
  76. 76.
    Zhang B, Shi G, Yang Z, Zhang F, Pan S. 2017. Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew. Chem. Int. Ed. 56:3916–19
    [Google Scholar]
  77. 77.
    Peng G, Lin C, Fan H, Chen K, Li B et al. 2021. Be2(BO3)(IO3): The first anion-mixed Van der Waals member in the KBe2BO3F2 family with a very strong second harmonic generation response. Angew. Chem. Int. Ed. 60:17415–18
    [Google Scholar]
  78. 78.
    Tran TT, Halasyamani PS. 2013. New fluoride carbonates: centrosymmetric KPb2(CO3)2F and noncentrosymmetric K2.70Pb5.15(CO3)5F3. Inorg. Chem. 52:2466–73
    [Google Scholar]
  79. 79.
    Luo M, Liang F, Song Y, Zhao D, Xu F et al. 2018. M2B10O14F6 (M = Ca, Sr): two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials. J. Am. Chem. Soc. 140:3884–87
    [Google Scholar]
  80. 80.
    Harada JK, Charles N, Poeppelmeier KR, Rondinelli JM. 2019. Heteroanionic materials by design: progress toward targeted properties. Adv. Mater. 31:1805295
    [Google Scholar]
  81. 81.
    Kageyama H, Hayashi K, Maeda K, Attfield JP, Hiroi Z et al. 2018. Expanding frontiers in materials chemistry and physics with multiple anions. Nat. Commun. 9:772
    [Google Scholar]
  82. 82.
    Tran TT, Gooch M, Lorenz B, Litvinchuk AP, Sorolla MG et al. 2015. Nb2O2F3: a reduced niobium (III/IV) oxyfluoride with a complex structural, magnetic, and electronic phase transition. J. Am. Chem. Soc. 137:636–39
    [Google Scholar]
  83. 83.
    Kunz M, Brown ID. 1995. Out-of-center distortions around octahedrally coordinated d0 transition metals. J. Solid State Chem. 115:395–406
    [Google Scholar]
  84. 84.
    Goodenough JB, Longo JM. 1970. Crystallographic and magnetic properties of perovskite and perovskite-related compounds. Landolt-Börnstein: Group III Condensed Matter, Vol. 4a KH Hellwege, AM Hellwege 126–314. Berlin: Springer-Verlag
    [Google Scholar]
  85. 85.
    Evans H. 1951. The crystal structure of tetragonal barium titanate. Acta Crystallogr 4:377
    [Google Scholar]
  86. 86.
    Xue D, Zhang S. 1997. Comparison of non-linear optical susceptibilities of KNbO3 and LiNbO3. J. Phys. Chem. Solids 58:1399–402
    [Google Scholar]
  87. 87.
    Hou Y, Wu H, Yu H, Hu Z, Wang J, Wu Y 2021. An effective strategy for designing nonlinear optical crystals by combining the structure-directing property of oxyfluorides with chemical substitution. Angew. Chem. Int. Ed. 133:25506–10
    [Google Scholar]
  88. 88.
    Abrahams SC, Reddy JM, Bernstein JL. 1966. Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24°C. J. Phys. Chem. Solids 27:997–1012
    [Google Scholar]
  89. 89.
    Hewat A. 1973. Soft modes and the structure, spontaneous polarization and Curie constants of perovskite ferroelectrics: tetragonal potassium niobate. J. Phys. C 6:1074
    [Google Scholar]
  90. 90.
    Ok KM, Lee DW, Smith RI, Ohare D. 2012. Time-resolved in situ neutron diffraction under supercritical hydrothermal conditions: a study of the synthesis of KTiOPO4. J. Am. Chem. Soc. 134:17889–91
    [Google Scholar]
  91. 91.
    Sykora RE, Ok KM, Halasyamani PS, Albrecht-Schmitt TE. 2002. Structural modulation of molybdenyl iodate architectures by alkali metal cations in AMoO3(IO3) (A = K, Rb, Cs): a facile route to new polar materials with large SHG responses. J. Am. Chem. Soc. 124:1951–57
    [Google Scholar]
  92. 92.
    Halasyamani PS. 2004. Asymmetric cation coordination in oxide materials: influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chem. Mater. 16:3586–92
    [Google Scholar]
  93. 93.
    Stoltzfus MW, Woodward PM, Seshadri R, Klepeis J-H, Bursten B. 2007. Structure and bonding in SnWO4, PbWO4, and BiVO4: lone pairs versus inert pairs. Inorg. Chem. 46:3839–50
    [Google Scholar]
  94. 94.
    Walsh A, Payne DJ, Egdell RG, Watson GW. 2011. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40:4455–63
    [Google Scholar]
  95. 95.
    Nguyen SD, Yeon J, Kim S-H, Halasyamani PS. 2011. BiO(IO3): a new polar iodate that exhibits an aurivillius-type (Bi2O2)2+ layer and a large SHG response. J. Am. Chem. Soc. 133:12422–25
    [Google Scholar]
  96. 96.
    Kim YH, Tran TT, Halasyamani PS, Ok KM. 2015. Macroscopic polarity control with alkali metal cation size and coordination environment in a series of tin iodates. Inorg. Chem. Front. 2:361–68
    [Google Scholar]
  97. 97.
    Chang H-Y, Kim S-H, Halasyamani PS, Ok KM. 2009. Alignment of lone pairs in a new polar material: synthesis, characterization, and functional properties of Li2Ti(IO3)6. J. Am. Chem. Soc. 131:2426–27
    [Google Scholar]
  98. 98.
    Liu Y, Liu X, Liu S, Ding Q, Li Y et al. 2020. An unprecedented antimony(III) borate with strong linear and nonlinear optical responses. Angew. Chem. Int. Ed. 59:7793–96
    [Google Scholar]
  99. 99.
    Roginskii EM, Kuznetsov VG, Smirnov MB, Noguera O, Duclere JR et al. 2017. Comparative analysis of the electronic structure and nonlinear optical susceptibility of α-TeO2 and β-TeO3 crystals. J. Phys. Chem. C 121:12365–74
    [Google Scholar]
  100. 100.
    Xia M, Jiang X, Lin Z, Li R 2016.. “ All-three-in-one”: a new bismuth-tellurium-borate Bi3TeBO9 exhibiting strong second harmonic generation response. J. Am. Chem. Soc. 138:14190–93
    [Google Scholar]
  101. 101.
    Yang Y, Guo Y, Zhang B, Wang T, Chen Y-G et al. 2022. Lead tellurite crystals BaPbTe2O6 and PbVTeO5F with large nonlinear-/linear-optical responses due to active lone pairs and distorted octahedra. Inorg. Chem. 61:1538–45
    [Google Scholar]
  102. 102.
    Zhang W-L, Lin X-S, Zhang H, Wang J-Y, Lin C-S et al. 2010. Lone electron-pair enhancement of SHG responses in eulytite-type compounds: AII3MIII(PO4)3 (A = Pb, M = Bi; A = Ba, M = Bi, La). Dalton Trans. 39:1546–51
    [Google Scholar]
  103. 103.
    Peng G, Yang Y, Tang Y-H, Luo M, Yan T et al. 2017. Collaborative enhancement from Pb2+ and F in Pb2(NO3)2(H2O)F2 generates the largest second harmonic generation effect among nitrates. Chem. Commun. 53:9398–401
    [Google Scholar]
  104. 104.
    Skyrme THR. 1961. A non-linear field theory. Proc. R. Soc. A 240:127–38
    [Google Scholar]
  105. 105.
    Skyrme THR. 1962. A unified field theory of mesons and baryons. Nucl. Phys. 31:556–69
    [Google Scholar]
  106. 106.
    Psaroudaki C, Panagopoulos C. 2021. Skyrmion qubits: a new class of quantum logic elements based on nanoscale magnetization. Phys. Rev. Lett. 127:067201
    [Google Scholar]
  107. 107.
    Dzyaloshinsky IE. 1958. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. Phys. Chem. Solids 4:241–55
    [Google Scholar]
  108. 108.
    Moriya T. 1960. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120:91–98
    [Google Scholar]
  109. 109.
    Landau LD, Lifshitz EM. 1980. Statistical Physics. Oxford, UK: Butterworth-Heinemann
  110. 110.
    Kézsmárki I, Bordács S, Milde P, Neuber E, Eng LM et al. 2015. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14:1116–22
    [Google Scholar]
  111. 111.
    Wang Y, Rahman S, Sun E, Knill C, Zhang D et al. 2021. From semiconducting to metallic: Jahn–Teller-induced phase transformation in skyrmion host GaV4S8. J. Phys. Chem. C 125:5771–80
    [Google Scholar]
  112. 112.
    Fujima Y, Abe N, Tokunaga Y, Arima T. 2017. Thermodynamically stable skyrmion lattice at low temperatures in a bulk crystal of lacunar spinel GaV4Se8. Phys. Rev. B 95:180410
    [Google Scholar]
  113. 113.
    Bordács S, Butykai A, Szigeti BG, White JS, Cubitt R et al. 2017. Equilibrium skyrmion lattice ground state in a polar easy-plane magnet. Sci. Rep. 7:7584
    [Google Scholar]
  114. 114.
    Schueller EC, Kitchaev DA, Zuo JL, Bocarsly JD, Cooley JA et al. 2020. Structural evolution and skyrmionic phase diagram of the lacunar spinel GaMo4Se8. Phys. Rev. Mater. 4:064402
    [Google Scholar]
  115. 115.
    Butykai Á, Geirhos K, Szaller D, Kiss LF, Balogh L et al. 2022. Squeezing the periodicity of Néel-type magnetic modulations by enhanced Dzyaloshinskii-Moriya interaction of 4d electrons. NPJ Quantum Mater. 7:26
    [Google Scholar]
  116. 116.
    Routledge K, Vir P, Cook N, Murgatroyd PAE, Ahmed SJ et al. 2021. Mode crystallography analysis through the structural phase transition and magnetic critical behavior of the lacunar spinel GaMo4Se8. Chem. Mater. 33:5718–29
    [Google Scholar]
  117. 117.
    Zuo JL, Kitchaev D, Schueller EC, Bocarsly JD, Seshadri R et al. 2021. Magnetoentropic mapping and computational modeling of cycloids and skyrmions in the lacunar spinels GaV4S8 and GaV4Se8. Phys. Rev. Mater. 5:054410
    [Google Scholar]
  118. 118.
    Zhang H-M, Chen J, Barone P, Yamauchi K, Dong S, Picozzi S 2019. Possible emergence of a skyrmion phase in ferroelectric GaMo4S8. Phys. Rev. B 99:214427
    [Google Scholar]
  119. 119.
    Kurumaji T, Nakajima T, Ukleev V, Feoktystov A, Arima T-H et al. 2017. Néel-type skyrmion lattice in the tetragonal polar magnet VOSe2O5. Phys. Rev. Lett. 119:237201
    [Google Scholar]
  120. 120.
    Kurumaji T, Nakajima T, Feoktystov A, Babcock E, Salhi Z et al. 2021. Direct observation of cycloidal spin modulation and field-induced transition in Néel-type skyrmion-hosting VOSe2O5. J. Phys. Soc. Jpn. 90:024705
    [Google Scholar]
  121. 121.
    Kim S-H, Halasyamani PS, Melot BC, Seshadri R, Green MA et al. 2010. Experimental and computational investigation of the polar ferrimagnet VOSe2O5. Chem. Mater. 22:5074–83
    [Google Scholar]
  122. 122.
    Oyeka EE, Winiarski MJ, Blachowski A, Taddei KM, Scheie A, Tran TT. 2021. Potential skyrmion host Fe(IO3)3: connecting stereoactive lone-pair electron effects to the Dzyaloshinskii-Moriya interaction. Chem. Mater. 33:4661–71
    [Google Scholar]
  123. 123.
    Oyeka EE, Winiarski MJ, Sorolla M II, Taddei KM, Scheie A, Tran TT. 2021. Spin and orbital effects on asymmetric exchange interaction in polar magnets: M(IO3)2 (M = Cu and Mn). Inorg. Chem. 60:16544–57
    [Google Scholar]
  124. 124.
    Mathur N, Stolt MJ, Jin S. 2019. Magnetic skyrmions in nanostructures of non-centrosymmetric materials. APL Mater. 7:120703
    [Google Scholar]
  125. 125.
    Okuyama D, Bleuel M, White JS, Ye Q, Krzywon J et al. 2019. Deformation of the moving magnetic skyrmion lattice in MnSi under electric current flow. Commun. Phys. 2:79
    [Google Scholar]
  126. 126.
    Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH et al. 2010. Real-space observation of a two-dimensional skyrmion crystal. Nature 465:901–4
    [Google Scholar]
  127. 127.
    Birch MT, Cortes-Ortuno D, Turnbull LA, Wilson MN, Gross F et al. 2020. Real-space imaging of confined magnetic skyrmion tubes. Nat. Commun. 11:1726
    [Google Scholar]
  128. 128.
    Bocarsly JD, Heikes C, Brown CM, Wilson SD, Seshadri R. 2019. Deciphering structural and magnetic disorder in the chiral skyrmion host materials CoxZnyMnz (x+y+z = 20). Phys. Rev. Mater. 3:014402
    [Google Scholar]
  129. 129.
    Seki S, Yu XZ, Ishiwata S, Tokura Y. 2012. Observation of skyrmions in a multiferroic material. Science 336:198–201
    [Google Scholar]
  130. 130.
    Park HS, Yu X, Aizawa S, Tanigaki T, Akashi T et al. 2014. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nat. Nanotechnol. 9:337–42
    [Google Scholar]
  131. 131.
    Kautzsch L, Bocarsly JD, Felser C, Wilson SD, Seshadri R. 2020. Controlling Dzyaloshinskii-Moriya interactions in the skyrmion host candidates FePd1−xPtxMo3N. Phys. Rev. Mater. 4:024412
    [Google Scholar]
  132. 132.
    Karube K, Shibata K, White JS, Koretsune T, Yu XZ et al. 2018. Controlling the helicity of magnetic skyrmions in a β-Mn-type high-temperature chiral magnet. Phys. Rev. B 98:155120
    [Google Scholar]
  133. 133.
    Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ et al. 2011. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10:106–9
    [Google Scholar]
  134. 134.
    Tokunaga Y, Yu XZ, White JS, Rønnow HM, Morikawa D et al. 2015. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6:7638
    [Google Scholar]
  135. 135.
    Seki S, Garst M, Waizner J, Takagi R, Khanh ND et al. 2020. Propagation dynamics of spin excitations along skyrmion strings. Nat. Commun. 11:256
    [Google Scholar]
  136. 136.
    Bocarsly JD, Need RF, Seshadri R, Wilson SD. 2018. Magnetoentropic signatures of skyrmionic phase behavior in FeGe. Phys. Rev. B 97:100404
    [Google Scholar]
  137. 137.
    Shanavas KV, Satpathy S. 2016. Electronic structure and the origin of the Dzyaloshinskii-Moriya interaction in MnSi. Phys. Rev. B 93:195101
    [Google Scholar]
  138. 138.
    Jena J, Stinshoff R, Saha R, Srivastava AK, Ma T et al. 2019. Observation of magnetic antiskyrmions in the low magnetization ferrimagnet Mn2Rh0.95Ir0.05Sn. Nano Lett. 20:59–65
    [Google Scholar]
  139. 139.
    Nayak AK, Kumar V, Ma T, Werner P, Pippel E et al. 2017. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548:561–66
    [Google Scholar]
  140. 140.
    Peng L, Takagi R, Koshibae W, Shibata K, Nakajima K et al. 2020. Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet. Nat. Nanotechnol. 15:181–86
    [Google Scholar]
  141. 141.
    Meshcheriakova O, Chadov S, Nayak AK, Roessler UK, Kuebler J et al. 2014. Large noncollinearity and spin reorientation in the novel Mn2RhSn Heusler magnet. Phys. Rev. Lett. 113:087203
    [Google Scholar]
  142. 142.
    Bensaid D, Hellal T, Ameri M, Azzaz Y, Doumi B et al. 2016. First-principle investigation of structural, electronic and magnetic properties in Mn2RhZ (Z = Si, Ge, and Sn) Heusler alloys. J. Supercond. Novel Magn. 29:1843–50
    [Google Scholar]
  143. 143.
    Martinolich AJ, Neilson JR. 2017. Toward reaction-by-design: achieving kinetic control of solid state chemistry with metathesis. Chem. Mater. 29:479–89
    [Google Scholar]
  144. 144.
    Kovnir K. 2021. Predictive synthesis. Chem. Mater. 33:4835–41
    [Google Scholar]
  145. 145.
    Chamorro JR, McQueen TM, Tran TT. 2020. Chemistry of quantum spin liquids. Chem. Rev. 121:2898–934
    [Google Scholar]
  146. 146.
    Benavides KA, Oswald IWH, Chan JY. 2018. Casting a wider net: rational synthesis design of low-dimensional bulk materials. Acc. Chem. Res. 51:12–20
    [Google Scholar]
  147. 147.
    Latturner SE. 2018. Clusters, assemble: growth of intermetallic compounds from metal flux reactions. Acc. Chem. Res. 51:40–48
    [Google Scholar]
  148. 148.
    Maggard PA. 2021. Capturing metastable oxide semiconductors for applications in solar energy conversion. Acc. Chem. Res. 54:3160–71
    [Google Scholar]
  149. 149.
    Schmehr JL, Wilson SD. 2017. Active crystal growth techniques for quantum materials. Annu. Rev. Mater. Res. 47:153–74
    [Google Scholar]
  150. 150.
    Benedek NA, Hayward MA. 2022. Hybrid improper ferroelectricity: a theoretical, computational, and synthetic perspective. Annu. Rev. Mater. Res. 52:331–55
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080921-110002
Loading
/content/journals/10.1146/annurev-matsci-080921-110002
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error