1932

Abstract

Plastics are an extremely important class of materials that are prevalent in all facets of society; however, their widespread use over time, combined with limited end-of-life strategies, has led to increasing levels of waste accumulation. Although currently considered a burden, plastics waste is potentially an untapped feedstock for numerous chemical and manufacturing processes. In this review, we discuss the state of the art of approaches for valorization of plastics waste from a materials research perspective, including previous efforts to utilize plastics waste and recent innovations that have opportunities to add significant value. Although additional progress is necessary, we present several diverse capabilities and strategies for valorization that, when brought together, address end-of-life challenges for plastics at every stage of design and product consumption. In short, a materials research–based framework offers a unique perspective to address the urgent issues posed by plastics, unlocking the potential of polymers and plastics waste.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081320-032344
2022-07-01
2024-05-28
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081320-032344.html?itemId=/content/journals/10.1146/annurev-matsci-081320-032344&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hester RE, Harrison RM, eds. 2019. Plastics and the Environment London: R. Soc. Chem.
  2. 2.
    Statista 2022. Total resin production in the United States from 2009 to 2020. Statista https://www.statista.com/statistics/203398/total-us-resin-production-from-2008/
    [Google Scholar]
  3. 3.
    USGS (US Geol. Surv.) 2014. Historical statistics for mineral and material commodities in the United States (2016 version) USGS Data Ser. 140, compil. TD Kelly, GR Matos. https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-mineral-and-material-commodities
  4. 4.
    Am. Chem. Counc 2013. Plastic resins in the United States Rep., Am. Chem. Counc. Plast. Div. Washington, DC:
  5. 5.
    US EPA (Environ. Prot. Agency) 2020. Advancing sustainable materials management: 2018 tables and figures, assessing trends in materials generation and management in the United States Rep., US EPA Washington, DC: https://www.epa.gov/sites/default/files/2021-01/documents/2018_tables_and_figures_dec_2020_fnl_508.pdf
  6. 6.
    Ward CP, Reddy CM. 2020. Opinion: We need better data about the environmental persistence of plastic goods. PNAS 117:14618–21
    [Google Scholar]
  7. 7.
    Tansel B. 2019. Persistence times of refractory materials in landfills: a review of rate limiting conditions by mass transfer and reaction kinetics. J. Environ. Manag. 247:88–103
    [Google Scholar]
  8. 8.
    Nielsen TD, Hasselbalch J, Holmberg K, Stripple J. 2019. Politics and the plastic crisis: a review throughout the plastic life cycle. WIREs Energy Environ 9:e360
    [Google Scholar]
  9. 9.
    Fagnani DE, Tami JL, Copley G, Clemons MN, Getzler YDYL, McNeil AJ. 2020. 100th anniversary of macromolecular science viewpoint: redefining sustainable polymers. ACS Macro Lett 10:41–53
    [Google Scholar]
  10. 10.
    US EPA (Environ. Prot. Agency) 2006. Solid waste management and greenhouse gases: a life-cycle assessment of emissions and sinks Rep., US EPA Washington, DC.: https://permanent.access.gpo.gov/lps76916/fullreport-2006-3rdEdition.pdf
  11. 11.
    Mwanza BG, Mbohwa C. 2017. Drivers to sustainable plastic solid waste recycling: a review. Procedia Manuf. 8:649–56
    [Google Scholar]
  12. 12.
    US EPA (Environ. Prot. Agency) 2020. Historical recycled commodity values Rep., US EPA Off. Resour. Conserv. Recovery Washington, DC: https://www.epa.gov/sites/default/files/2020-07/documents/historical_commodity_values_07-07-20_fnl_508.pdf
  13. 13.
    Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3:e1700782
    [Google Scholar]
  14. 14.
    Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. 2018. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344:179–99
    [Google Scholar]
  15. 15.
    Martín AJ, Mondelli C, Jaydev SD, Pérez-Ramírez J. 2021. Catalytic processing of plastic waste on the rise. Chem 7:1487–533
    [Google Scholar]
  16. 16.
    Vollmer I, Jenks MJF, Roelands MCP, White RJ, van Harmelen T et al. 2020. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59:15402–23
    [Google Scholar]
  17. 17.
    Lopez G, Artetxe M, Amutio M, Bilbao J, Olazar M. 2017. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 73:346–68
    [Google Scholar]
  18. 18.
    Rahimi A, García JM. 2017. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1:0046
    [Google Scholar]
  19. 19.
    Ru J, Huo Y, Yang Y. 2020. Microbial degradation and valorization of plastic wastes. Front. Microbiol. 11:442
    [Google Scholar]
  20. 20.
    Santagata C, Iaquaniello G, Salladini A, Agostini E, Capocelli M, De Falco M. 2020. Production of low-density poly-ethylene (LDPE) from chemical recycling of plastic waste: process analysis. J. Clean. Prod. 253:119837
    [Google Scholar]
  21. 21.
    Weckhuysen BM. 2020. Creating value from plastic waste. Science 370:400–1
    [Google Scholar]
  22. 22.
    Zhuo C, Levendis YA. 2014. Upcycling waste plastics into carbon nanomaterials: a review. J. Appl. Polym. Sci. 131:39931
    [Google Scholar]
  23. 23.
    Jing Y, Wang Y, Furukawa S, Xia J, Sun C et al. 2021. Towards the circular economy: converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angew. Chem. Int. Ed. 133:5587–95
    [Google Scholar]
  24. 24.
    Hackler RA, Vyavhare K, Kennedy RM, Celik G, Kanbur U et al. 2021. Synthetic lubricants derived from plastic waste and their tribological performance. ChemSusChem 14:4181–89
    [Google Scholar]
  25. 25.
    Anukiruthika T, Sethupathy P, Wilson A, Kashampur K, Moses JA, Anandharamakrishnan C. 2020. Multilayer packaging: advances in preparation techniques and emerging food applications. Compr. Rev. Food Sci. Food Saf. 19:1156–86
    [Google Scholar]
  26. 26.
    Chen X, Yan N 2020. A brief overview of renewable plastics. Mater. Today Sustain. 7–8:100031
    [Google Scholar]
  27. 27.
    Tang X, Chen EYX. 2019. Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem 5:284–312
    [Google Scholar]
  28. 28.
    Christensen PR, Scheuermann AM, Loeffler KE, Helms BA. 2019. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11:442–48
    [Google Scholar]
  29. 29.
    Haussler M, Eck M, Rothauer D, Mecking S. 2021. Closed-loop recycling of polyethylene-like materials. Nature 590:423–27
    [Google Scholar]
  30. 30.
    Jin Y, Lei Z, Taynton P, Huang S, Zhang W. 2019. Malleable and recyclable thermosets: the next generation of plastics. Matter 1:1456–93
    [Google Scholar]
  31. 31.
    Cui Y, Chen Y, Liu X, Dong S, Tian Y et al. 2021. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal 11:1340–50
    [Google Scholar]
  32. 32.
    Wang T, Cui X, Winther KT, Abild-Pedersen F, Bligaard T, Nørskov JK. 2021. Theory-aided discovery of metallic catalysts for selective propane dehydrogenation to propylene. ACS Catal 11:6290–97
    [Google Scholar]
  33. 33.
    Volk R, Stallkamp C, Steins JJ, Yogish SP, Müller RC et al. 2021. Techno-economic assessment and comparison of different plastic recycling pathways: a German case study. J. Ind. Ecol. 25:1318–37
    [Google Scholar]
  34. 34.
    Gracida-Alvarez UR, Winjobi O, Sacramento-Rivero JC, Shonnard DR. 2019. System analyses of high-value chemicals and fuels from a waste high-density polyethylene refinery. Part 2: carbon footprint analysis and regional electricity effects. ACS Sustain. Chem. Eng. 7:18267–78
    [Google Scholar]
  35. 35.
    Gracida-Alvarez UR, Winjobi O, Sacramento-Rivero JC, Shonnard DR. 2019. System analyses of high-value chemicals and fuels from a waste high-density polyethylene refinery. Part 1: conceptual design and techno-economic assessment. ACS Sustain. Chem. Eng. 7:18254–66
    [Google Scholar]
  36. 36.
    Yeung S-K, So W-MW, Cheng N-YI, Cheung T-Y, Chow C-F. 2017. Comparing pedagogies for plastic waste management at university level. Int. J. Sustain. High. Educ. 18:1039–59
    [Google Scholar]
  37. 37.
    Karasik R, Vegh T, Diana Z, Bering J, Caldas J et al. 2020. 20 years of government responses to the global plastic pollution problem: the plastics policy inventory Rep., Nicholas Inst. Environ. Policy Solut., Duke Univ. Durham, NC: https://nicholasinstitute.duke.edu/sites/default/files/publications/20-Years-of-Government-Responses-to-the-Global-Plastic-Pollution-Problem-New_1.pdf
  38. 38.
    Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T et al. 2020. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8:3494–511
    [Google Scholar]
  39. 39.
    Korley LTJ, Epps TH III, Helms BA, Ryan AJ. 2021. Toward polymer upcycling—adding value and tackling circularity. Science 373:66–69
    [Google Scholar]
  40. 40.
    Maris J, Bourdon S, Brossard J-M, Cauret L, Fontaine L, Montembault V. 2018. Mechanical recycling: compatibilization of mixed thermoplastic wastes. Polym. Degrad. Stab. 147:245–66
    [Google Scholar]
  41. 41.
    Hahladakis JN, Iacovidou E. 2018. Closing the loop on plastic packaging materials: What is quality and how does it affect their circularity?. Sci. Total Environ. 630:1394–400
    [Google Scholar]
  42. 42.
    Roosen M, Mys N, Kusenberg M, Billen P, Dumoulin A et al. 2020. Detailed analysis of the composition of selected plastic packaging waste products and its implications for mechanical and thermochemical recycling. Environ. Sci. Technol. 54:13282–93
    [Google Scholar]
  43. 43.
    Ragaert K, Delva L, Van Geem K. 2017. Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58
    [Google Scholar]
  44. 44.
    Schyns ZOG, Shaver MP. 2021. Mechanical recycling of packaging plastics: a review. Macromol. Rapid Commun. 42:e2000415
    [Google Scholar]
  45. 45.
    Walker TW, Frelka N, Shen Z, Chew AK, Banick J et al. 2020. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 6:eaba7599
    [Google Scholar]
  46. 46.
    Zhao YB, Lv XD, Ni HG. 2018. Solvent-based separation and recycling of waste plastics: a review. Chemosphere 209:707–20
    [Google Scholar]
  47. 47.
    Ellis LD, Rorrer NA, Sullivan KP, Otto M, McGeehan JE et al. 2021. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4:539–56
    [Google Scholar]
  48. 48.
    Goli VSNS, Mohammad A, Singh DN. 2020. Application of municipal plastic waste as a manmade neo-construction material: issues & wayforward. Resourc. Conserv. Recycl. 161:105008
    [Google Scholar]
  49. 49.
    Fletcher BL, Mackay ME. 1996. A model of plastics recycling: Does recycling reduce the amount of waste?. Resour. Conserv. Recycl. 17:141–51
    [Google Scholar]
  50. 50.
    Coates GW, Getzler YDYL. 2020. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5:501–16
    [Google Scholar]
  51. 51.
    Chen X, Wang Y, Zhang L. 2021. Recent progress in the chemical upcycling of plastic wastes. ChemSusChem 14:4137–51
    [Google Scholar]
  52. 52.
    Al Rayaan MB 2021. Recent advancements of thermochemical conversion of plastic waste to biofuel-a review. Clean. Eng. Technol. 2:100062
    [Google Scholar]
  53. 53.
    Kunwar B, Cheng HN, Chandrashekaran SR, Sharma BK. 2016. Plastics to fuel: a review. Renew. Sustain. Energy Rev. 54:421–28
    [Google Scholar]
  54. 54.
    Munir D, Irfan MF, Usman MR. 2018. Hydrocracking of virgin and waste plastics: a detailed review. Renew. Sustain. Energy Rev. 90:490–515
    [Google Scholar]
  55. 55.
    Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F. 2017. Recycling of plastic solid waste: a state of art review and future applications. Compos. Part B Eng. 115:409–22
    [Google Scholar]
  56. 56.
    Solis M, Silveira S. 2020. Technologies for chemical recycling of household plastics – a technical review and TRL assessment. Waste Manag 105:128–38
    [Google Scholar]
  57. 57.
    Thiounn T, Smith RC. 2020. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 58:1347–64
    [Google Scholar]
  58. 58.
    Britt PF, Coates GW, Winey KI, Byers J, Chen E et al. 2019. Report of the Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers. Tech. Rep. 1616517 US Dep. Energy Off. Sci. Washington, DC: https://www.osti.gov/servlets/purl/1616517
  59. 59.
    Ghatge S, Yang Y, Ahn J-H, Hur H-G. 2020. Biodegradation of polyethylene: a brief review. Appl. Biol. Chem. 63:27
    [Google Scholar]
  60. 60.
    Nikolaivits E, Pantelic B, Azeem M, Taxeidis G, Babu R et al. 2021. Progressing plastics circularity: a review of mechano-biocatalytic approaches for waste plastic (re)valorization. Front. Bioeng. Biotechnol. 9:696040
    [Google Scholar]
  61. 61.
    Lopez G, Artetxe M, Amutio M, Alvarez J, Bilbao J, Olazar M. 2018. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sustain. Energy Rev. 82:576–96
    [Google Scholar]
  62. 62.
    Al-Salem SM, Antelava A, Constantinou A, Manos G, Dutta A 2017. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 197:177–98
    [Google Scholar]
  63. 63.
    Mark LO, Cendejas MC, Hermans I. 2020. The use of heterogeneous catalysis in the chemical valorization of plastic waste. ChemSusChem 13:5808–36
    [Google Scholar]
  64. 64.
    Kratish Y, Li J, Liu S, Gao Y, Marks TJ. 2020. Polyethylene terephthalate deconstruction catalyzed by a carbon-supported single-site molybdenum-dioxo complex. Angew. Chem. Int. Ed. 59:19857–61
    [Google Scholar]
  65. 65.
    Lu S, Jing Y, Feng B, Guo Y, Liu X, Wang Y. 2021. H2-free plastic conversion: converting PET back to BTX by unlocking hidden hydrogen. ChemSusChem 14:4242–50
    [Google Scholar]
  66. 66.
    Roy PS, Garnier G, Allais F, Saito K. 2021. Strategic approach towards plastic waste valorization: challenges and promising chemical upcycling possibilities. ChemSusChem 14:4007–27
    [Google Scholar]
  67. 67.
    Serrano D, Aguado J, Escola J. 2012. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals. ACS Catal 2:1924–41
    [Google Scholar]
  68. 68.
    Zhao D, Wang X, Miller JB, Huber GW. 2020. The chemistry and kinetics of polyethylene pyrolysis: a feedstock to produce fuels and chemicals. ChemSusChem 13:1764–74
    [Google Scholar]
  69. 69.
    Rorrer JE, Beckham GT, Román-Leshkov Y. 2020. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions. JACS Au 1:8–12
    [Google Scholar]
  70. 70.
    Celik G, Kennedy RM, Hackler RA, Ferrandon M, Tennakoon A et al. 2019. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 5:1795–803
    [Google Scholar]
  71. 71.
    Zhang F, Zeng M, Yappert RD, Sun J, Lee YH et al. 2020. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370:437–41
    [Google Scholar]
  72. 72.
    Nakaji Y, Tamura M, Miyaoka S, Kumagai S, Tanji M et al. 2021. Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes. Appl. Catal. B 285:119805
    [Google Scholar]
  73. 73.
    Liu S, Kots PA, Vance BC, Danielson A, Vlachos DG. 2021. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 7:eabf8283
    [Google Scholar]
  74. 74.
    Uzoejinwa BB, He X, Wang S, El-Fatah Abomohra A, Hu Y, Wang Q. 2018. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide. Energy Convers. Manag. 163:468–92
    [Google Scholar]
  75. 75.
    Weiland MH. 2020. Enzymatic biodegradation by exploring the rational protein engineering of the polyethylene terephthalate hydrolyzing enzyme PETase from Ideonella sakaiensis 201-F6. In Mechanistic Enzymology: Bridging Structure and Function JM Miller 161–74 Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  76. 76.
    Feng S, Yue Y, Zheng M, Li Y, Zhang Q, Wang W. 2021. IsPETase- and IsMHETase-catalyzed cascade degradation mechanism toward polyethylene terephthalate. ACS Sustain. Chem. Eng. 9:9823–32
    [Google Scholar]
  77. 77.
    Montazer Z, Habibi Najafi MB, Levin DB 2020. Challenges with verifying microbial degradation of polyethylene. Polymers 12:123
    [Google Scholar]
  78. 78.
    Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. 2021. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 60:88–119
    [Google Scholar]
  79. 79.
    Beckham GT 2018. Lignin Valorization: Emerging Approaches London: R. Soc. Chem.
  80. 80.
    Lee SY. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49:1–14
    [Google Scholar]
  81. 81.
    Rehm BH. 2010. Bacterial polymers: biosynthesis, modifications and applications. Nat. Rev. Microbiol. 8:578–92
    [Google Scholar]
  82. 82.
    Kim HT, Kim JK, Cha HG, Kang MJ, Lee HS et al. 2019. Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET. ACS Sustain. Chem. Eng. 7:19396–406
    [Google Scholar]
  83. 83.
    Sulaiman S, You DJ, Kanaya E, Koga Y, Kanaya S. 2014. Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase. Biochemistry 53:1858–69
    [Google Scholar]
  84. 84.
    Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–99
    [Google Scholar]
  85. 85.
    Tournier V, Topham CM, Gilles A, David B, Folgoas C et al. 2020. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580:216–19
    [Google Scholar]
  86. 86.
    Kim DH, Han DO, Shim KI, Kim JK, Pelton JG et al. 2021. One-pot chemo-bioprocess of PET depolymerization and recycling enabled by a biocompatible catalyst, betaine. ACS Catal 11:3996–4008
    [Google Scholar]
  87. 87.
    Lea-Smith DJ, Biller SJ, Davey MP, Cotton CA, Perez Sepulveda BM et al. 2015. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. PNAS 112:13591–96
    [Google Scholar]
  88. 88.
    Raddadi N, Fava F. 2019. Biodegradation of oil-based plastics in the environment: existing knowledge and needs of research and innovation. Sci. Total Environ. 679:148–58
    [Google Scholar]
  89. 89.
    Wu WM, Criddle CS 2021. Characterization of biodegradation of plastics in insert larvae. Methods in Enzymology, Vol. 648 G Weber, UT Bornscheuer, R Wei 95–120 Cambridge, MA: Academic
    [Google Scholar]
  90. 90.
    Jiao X, Zheng K, Hu Z, Zhu S, Sun Y, Xie Y. 2021. Conversion of waste plastics into value-added carbonaceous fuels under mild conditions. Adv. Mater. 33:2005192
    [Google Scholar]
  91. 91.
    Gercke D, Furtmann C, Tozakidis IEP, Jose J 2021. Highly crystalline post-consumer PET waste hydrolysis by surface displayed PETase using a bacterial whole-cell biocatalyst. ChemCatChem 13:3479–89
    [Google Scholar]
  92. 92.
    Chen Z, Wang Y, Cheng Y, Wang X, Tong S et al. 2020. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial petase. Sci. Total Environ. 709:136138
    [Google Scholar]
  93. 93.
    Mueller R-J. 2006. Biological degradation of synthetic polyesters—enzymes as potential catalysts for polyester recycling. Process. Biochem. 41:2124–28
    [Google Scholar]
  94. 94.
    Ukei H, Hirose T, Horikawa S, Takai Y, Taka M et al. 2000. Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts. Catal. Today 62:67–75
    [Google Scholar]
  95. 95.
    Kaminsky W, Eger C. 2001. Pyrolysis of filled PMMA for monomer recovery. J. Anal. Appl. Pyrolysis 58:781–87
    [Google Scholar]
  96. 96.
    Somoza-Tornos A, Gonzalez-Garay A, Pozo C, Graells M, Espuña A, Guillén-Gosálbez G. 2020. Realizing the potential high benefits of circular economy in the chemical industry: ethylene monomer recovery via polyethylene pyrolysis. ACS Sustain. Chem. Eng. 8:3561–72
    [Google Scholar]
  97. 97.
    Hong M, Chen EYX. 2017. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19:3692–706
    [Google Scholar]
  98. 98.
    Zhong Y, Zeberl BJ, Wang X, Luo J 2018. Combinatorial approaches in post-polymerization modification for rational development of therapeutic delivery systems. Acta Biomater 73:21–37
    [Google Scholar]
  99. 99.
    Makvandi P, Iftekhar S, Pizzetti F, Zarepour A, Zare EN et al. 2020. Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review. Environ. Chem. Lett. 19:583–611
    [Google Scholar]
  100. 100.
    Lewis SE, Wilhelmy BE Jr., Leibfarth FA. 2019. Upcycling aromatic polymers through C–H fluoroal-kylation. Chem. Sci. 10:6270–77
    [Google Scholar]
  101. 101.
    Jia P, Hu L, Shang Q, Wang R, Zhang M, Zhou Y. 2017. Self-plasticization of PVC materials via chemical modification of mannich base of cardanol butyl ether. ACS Sustain. Chem. Eng. 5:6665–73
    [Google Scholar]
  102. 102.
    Williamson JB, Lewis SE, Johnson RR III, Manning IM, Leibfarth FA. 2019. C–H functionalization of commodity polymers. Angew. Chem. Int. Ed. 58:8654–68
    [Google Scholar]
  103. 103.
    Ma Y, Liao S, Li Q, Guan Q, Jia P, Zhou Y. 2020. Physical and chemical modifications of poly(vinyl chloride) materials to prevent plasticizer migration - still on the run. React. Funct. Polym. 147:104458
    [Google Scholar]
  104. 104.
    Chen L, Malollari KG, Uliana A, Sanchez D, Messersmith PB, Hartwig JF. 2021. Selective, catalytic oxidations of C–H bonds in polyethylenes produce functional materials with enhanced adhesion. Chem 7:137–45
    [Google Scholar]
  105. 105.
    Kar GP, Sawd MO, Terentjev EM. 2020. Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification. J. Mater. Chem. A 8:24137–47
    [Google Scholar]
  106. 106.
    Kim PJ, Fontecha HD, Kim K, Pol VG. 2018. Toward high-performance lithium-sulfur batteries: upcycling of LDPE plastic into sulfonated carbon scaffold via microwave-promoted sulfonation. ACS Appl. Mater. Interfaces 10:14827–34
    [Google Scholar]
  107. 107.
    Ghosh S, Makeev MA, Qi Z, Wang H, Rajput NN et al. 2020. Rapid upcycling of waste polyethylene terephthalate to energy storing disodium terephthalate flowers with DFT calculations. ACS Sustain. Chem. Eng. 8:6252–62
    [Google Scholar]
  108. 108.
    King ER, Hunt SB, Hamernik LJ, Gonce LE, Wiggins JS, Azoulay JD. 2021. Gold-catalyzed post-polymerization modification of commodity aromatic polymers. JACS Au 1:1342–47
    [Google Scholar]
  109. 109.
    Chazovachii PT, Somers MJ, Robo MT, Collias DI, James MI et al. 2021. Giving superabsorbent polymers a second life as pressure-sensitive adhesives. Nat. Commun. 12:4524
    [Google Scholar]
  110. 110.
    Wang J, Wang H, Yue D. 2020. Insights into mechanism of hypochlorite-induced functionalization of polymers toward separating BFR-containing components from microplastics. ACS Appl. Mater. Interfaces 12:36755–67
    [Google Scholar]
  111. 111.
    Villagomez-Salas S, Manikandan P, Acuna Guzman SF, Pol VG 2018. Amorphous carbon chips Li-ion battery anodes produced through polyethylene waste upcycling. ACS Omega 3:17520–27
    [Google Scholar]
  112. 112.
    Algozeeb WA, Savas PE, Luong DX, Chen W, Kittrell C et al. 2020. Flash graphene from plastic waste. ACS Nano 14:15595–604
    [Google Scholar]
  113. 113.
    Chang Y, Pang Y, Dang Q, Kumar A, Zhang G et al. 2018. Converting polyvinyl chloride plastic wastes to carbonaceous materials via room-temperature dehalogenation for high-performance supercapacitor. ACS Appl. Energy Mater. 1:5685–93
    [Google Scholar]
  114. 114.
    Jaksland C, Rasmussen E, Rohde T. 2000. A new technology for treatment of PVC waste. Waste Manag. 20:463–67
    [Google Scholar]
  115. 115.
    Bora RR, Wang R, You FQ. 2020. Waste polypropylene plastic recycling toward climate change mitigation and circular economy: energy, environmental, and technoeconomic perspectives. ACS Sustain. Chem. Eng. 8:16350–63
    [Google Scholar]
  116. 116.
    Chaudhari US, Lin YQ, Thompson VS, Handler RM, Pearce JM et al. 2021. Systems analysis approach to polyethylene terephthalate and olefin plastics supply chains in the circular economy: a review of data sets and models. ACS Sustain. Chem. Eng. 9:7403–21
    [Google Scholar]
  117. 117.
    Marczak H. 2019. Analysis of the energetic use of fuel fractions made of plastic waste. J. Ecol. Eng. 20:100–6
    [Google Scholar]
  118. 118.
    Kaiser K, Schmid M, Schlummer M 2017. Recycling of polymer-based multilayer packaging: a review. Recycling 3:1
    [Google Scholar]
  119. 119.
    Kosior E. 2021. A guide to designing plastic bottles for maximum recyclability. Plastics Today Jan. 14. https://www.plasticstoday.com/packaging/guide-designing-plastic-bottles-maximum-recyclability
    [Google Scholar]
  120. 120.
    Sherman LM. 2019. Recyclable all-PE pouches: sustainable opportunity for film extruders. Plastics Technology Nov. 1. https://www.ptonline.com/articles/recyclable-all-pe-pouches-sustainable-opportunity-for-film-extruders
    [Google Scholar]
  121. 121.
    Schmidt Rivera XC, Leadley C, Potter L, Azapagic A. 2019. Aiding the design of innovative and sustainable food packaging: integrating techno-environmental and circular economy criteria. Energy Procedia 161:190–97
    [Google Scholar]
  122. 122.
    Plast. News 2021. Plastics resin pricing - recycled plastics. Plastics News. https://www.plasticsnews.com/resin/historicPricing/recycled-plastics
    [Google Scholar]
  123. 123.
    Millican JM, Agarwal S. 2021. Plastic pollution: a material problem?. Macromolecules 54:4455–69
    [Google Scholar]
  124. 124.
    Lambert S, Wagner M. 2017. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem. Soc. Rev. 46:6855–71
    [Google Scholar]
  125. 125.
    Rujnic-Sokele M, Pilipovic A. 2017. Challenges and opportunities of biodegradable plastics: a mini review. Waste Manag. Res. 35:132–40
    [Google Scholar]
  126. 126.
    Meereboer KW, Misra M, Mohanty AK. 2020. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 22:5519–58
    [Google Scholar]
  127. 127.
    Choe S, Kim Y, Won Y, Myung J 2021. Bridging three gaps in biodegradable plastics: misconceptions and truths about biodegradation. Front. Chem. 9:671750
    [Google Scholar]
  128. 128.
    Harrison JP, Boardman C, O'Callaghan K, Delort AM, Song J. 2018. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. R. Soc. Open Sci. 5:171792
    [Google Scholar]
  129. 129.
    Bass GF, Epps TH III 2021. Recent developments towards performance-enhancing lignin-based polymers. Polym. Chem. 12:4130–58
    [Google Scholar]
  130. 130.
    Post W, Susa A, Blaauw R, Molenveld K, Knoop RJI. 2019. A review on the potential and limitations of recyclable thermosets for structural applications. Polym. Rev. 60:359–88
    [Google Scholar]
  131. 131.
    Zhang Q, Deng Y, Shi C-Y, Feringa BL, Tian H, Qu D-H 2021. Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides). Matter 4:1352–64
    [Google Scholar]
  132. 132.
    Vora N, Christensen PR, Demarteau J, Baral NR, Keasling JD et al. 2021. Leveling the cost and carbon footprint of circular polymers that are chemically recycled to monomer. Sci. Adv. 7:eabf0187
    [Google Scholar]
  133. 133.
    Abel BA, Snyder RL, Coates GW. 2021. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373:783–89
    [Google Scholar]
  134. 134.
    Hong M, Chen EY. 2016. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 8:42–49
    [Google Scholar]
  135. 135.
    Berto P, Pointet A, Le Coz C, Grelier S, Peruch F 2018. Recyclable telechelic cross-linked polybutadiene based on reversible Diels–Alder chemistry. Macromolecules 51:651–59
    [Google Scholar]
  136. 136.
    Samanta S, Kim S, Saito T, Sokolov AP. 2021. Polymers with dynamic bonds: adaptive functional materials for a sustainable future. J. Phys. Chem. B 125:9389–401
    [Google Scholar]
  137. 137.
    Szántó L, Feng Y, Zhong F, Hees T, van Ruymbeke E et al. 2019. Ultra-broad molecular weight distribution effects on viscoelastic properties of linear multimodal PE. J. Rheol. 63:773–84
    [Google Scholar]
  138. 138.
    Samuel C, Parpaite T, Lacrampe M-F, Soulestin J, Lhost O. 2019. Melt compatibility between polyolefins: evaluation and reliability of interfacial/surface tensions obtained by various techniques. Polym. Test. 78:105995
    [Google Scholar]
  139. 139.
    Lee W-T, Bobbink FD, van Muyden AP, Lin K-H, Corminboeuf C et al. 2021. Catalytic hydrocracking of synthetic polymers into grid-compatible gas streams. Cell Rep. Phys. Sci. 2:100332
    [Google Scholar]
  140. 140.
    Osman AI, Farrell C, Al-Muhtaseb AH, Al-Fatesh AS, Harrison J, Rooney DW 2020. Pyrolysis kinetic modelling of abundant plastic waste (PET) and in-situ emission monitoring. Environ. Sci. Eur. 32:112
    [Google Scholar]
  141. 141.
    Dou B, Lim S, Kang P, Hwang J, Song S et al. 2007. Kinetic study in modeling pyrolysis of refuse plastic fuel. Energy Fuels 21:1442–47
    [Google Scholar]
  142. 142.
    Wiesinger H, Wang Z, Hellweg S. 2021. Deep dive into plastic monomers, additives, and processing aids. Environ. Sci. Technol. 55:9339–51
    [Google Scholar]
  143. 143.
    Bai P, Jeon MY, Ren L, Knight C, Deem MW et al. 2015. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling. Nat. Commun. 6:5912
    [Google Scholar]
  144. 144.
    Smit B, Maesen TLM. 2008. Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem. Rev. 108:4125–84
    [Google Scholar]
  145. 145.
    Bai P, Tsapatsis M, Siepmann JI. 2013. TraPPE-zeo: transferable potentials for phase equilibria force field for all-silica zeolites. J. Phys. Chem. C 117:24375–87
    [Google Scholar]
  146. 146.
    Ren Q, Rybicki M, Sauer J. 2020. Interaction of C3–C5 alkenes with zeolitic Brønsted sites: π-complexes, alkoxides, and carbenium ions in H-FER. J. Phys. Chem. C 124:10067–78
    [Google Scholar]
  147. 147.
    Ganesan V, Jayaraman A. 2014. Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites. Soft Matter 10:13–38
    [Google Scholar]
  148. 148.
    Bai P, Neurock M, Siepmann JI. 2021. First-principles grand-canonical simulations of water adsorption in proton-exchanged zeolites. J. Phys. Chem. C 125:6090–98
    [Google Scholar]
  149. 149.
    Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L et al. 2020. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369:1515–18
    [Google Scholar]
  150. 150.
    Adeleke O, Akinlabi SA, TC Jen, Dunmade I. 2021. Application of artificial neural networks for predicting the physical composition of municipal solid waste: an assessment of the impact of seasonal variation. Waste Manag. Res. 39:1058–68
    [Google Scholar]
  151. 151.
    Kim C, Chandrasekaran A, Huan TD, Das D, Ramprasad R. 2018. Polymer genome: a data-powered polymer informatics platform for property predictions. J. Phys. Chem. C 122:17575–85
    [Google Scholar]
  152. 152.
    Chidepatil A, Bindra P, Kulkarni D, Qazi M, Kshirsagar M, Sankaran K. 2020. From trash to cash: how blockchain and multi-sensor-driven artificial intelligence can transform circular economy of plastic waste?. Adm. Sci. 10:23. Erratum. 2021 Adm. Sci. 11:67
    [Google Scholar]
  153. 153.
    Jensen Z, Kim E, Kwon S, Gani TZH, Román-Leshkov Y et al. 2019. A machine learning approach to zeolite synthesis enabled by automatic literature data extraction. ACS Cent. Sci. 5:892–99
    [Google Scholar]
  154. 154.
    de Pablo JJ, Jackson NE, Webb MA, Chen L-Q, Moore JE et al. 2019. New frontiers for the Materials Genome Initiative. npj Comput. Mater 5:41
    [Google Scholar]
  155. 155.
    Suh C, Fare C, Warren JA, Pyzer-Knapp EO. 2020. Evolving the materials genome: how machine learning is fueling the next generation of materials discovery. Annu. Rev. Mater. Res. 50:1–25
    [Google Scholar]
  156. 156.
    Morgan D, Jacobs R. 2020. Opportunities and challenges for machine learning in materials science. Annu. Rev. Mater. Res. 50:71–103
    [Google Scholar]
  157. 157.
    Davidson MG, Furlong RA, McManus MC. 2021. Developments in the life cycle assessment of chemical recycling of plastic waste – a review. J. Clean. Prod. 293:126163
    [Google Scholar]
  158. 158.
    Alhazmi H, Almansour FH, Aldhafeeri Z 2021. Plastic waste management: a review of existing life cycle assessment studies. Sustainability 13:5340
    [Google Scholar]
  159. 159.
    Romero-Hernández O, Romero S. 2018. Maximizing the value of waste: from waste management to the circular economy. Thunderbird Int. Bus. Rev. 60:757–64
    [Google Scholar]
  160. 160.
    Veleva V, Bodkin G. 2018. Corporate-entrepreneur collaborations to advance a circular economy. J. Clean. Prod. 188:20–37
    [Google Scholar]
  161. 161.
    Simon N, Raubenheimer K, Urho N, Unger S, Azoulay D et al. 2021. A binding global agreement to address the life cycle of plastics. Science 373:43–47
    [Google Scholar]
  162. 162.
    Stanton T, Kay P, Johnson M, Chan FKS, Gomes RL et al. 2020. It's the product not the polymer: rethinking plastic pollution. WIREs Water 8:e1490
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081320-032344
Loading
/content/journals/10.1146/annurev-matsci-081320-032344
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error