1932

Abstract

Molecular magnetism, though distinctly a field within chemistry, encompasses much more than synthesis and has strong links with other disciplines across the physical sciences. Research goals in this area are currently dominated by magnetic memory and quantum information processing but extend in other directions toward medical diagnostics and catalysis. This review focuses on two popular subtopics, single-molecule magnetism and molecular spin qubits, outlining their design and study and some of the latest outstanding results in the field. The above topics are complemented by an overview of pertinent electronic structure methods and, in a look towards the future, an overview of the state of the art in measurement and modeling of molecular spin–phonon coupling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081420-042553
2022-07-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081420-042553.html?itemId=/content/journals/10.1146/annurev-matsci-081420-042553&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Harriman KLM, Errulat D, Murugesu M. 2019. Magnetic axiality: design principles from molecules to materials. Trends Chem 1:4425–39
    [Google Scholar]
  2. 2.
    Clérac R, Miyasaka H, Yamashita M, Coulon C. 2002. Evidence for single-chain magnet behavior in a MnIII−NiII chain designed with high spin magnetic units:a route to high temperature metastable magnets. J. Am. Chem. Soc. 124:4312837–44
    [Google Scholar]
  3. 3.
    Pedersen KS, Perlepe P, Aubrey ML, Woodruff DN, Reyes-Lillo SE et al. 2018. Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry. Nat. Chem. 10:101056–61
    [Google Scholar]
  4. 4.
    Chen W-P, Singleton J, Qin L, Camón A, Engelhardt L et al. 2018. Quantum Monte Carlo simulations of a giant {Ni21Gd20} cage with a S = 91 spin ground state. Nat. Commun. 9:2107
    [Google Scholar]
  5. 5.
    Kahn O. 1996. Spin-crossover molecular materials. Curr. Opin. Solid State Mater. Sci. 1:4547–54
    [Google Scholar]
  6. 6.
    Boča R, Herchel R. 2010. Antisymmetric exchange in polynuclear metal complexes. Coord. Chem. Rev. 254:232973–3025
    [Google Scholar]
  7. 7.
    Lu G, Liu Y, Deng W, Huang G-Z, Chen Y-C et al. 2020. A perfect triangular dysprosium single-molecule magnet with virtually antiparallel Ising-like anisotropy. Inorg. Chem. Front. 7:162941–48
    [Google Scholar]
  8. 8.
    Chibotaru LF, Ungur L, Soncini A. 2008. The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. Angew. Chem. Int. Ed. 47:224126–29
    [Google Scholar]
  9. 9.
    Baker ML, Guidi T, Carretta S, Ollivier J, Mutka H et al. 2012. Spin dynamics of molecular nanomagnets unravelled at atomic scale by four-dimensional inelastic neutron scattering. Nat. Phys. 8:12906–11
    [Google Scholar]
  10. 10.
    Ghirri A, Chiesa A, Carretta S, Troiani F, van Tol J et al. 2015. Coherent spin dynamics in molecular Cr8Zn wheels. J. Phys. Chem. Lett. 6:245062–66
    [Google Scholar]
  11. 11.
    Ardavan A, Rival O, Morton JJL, Blundell SJ, Tyryshkin AM et al. 2007. Will spin-relaxation times in molecular magnets permit quantum information processing?. Phys. Rev. Lett. 98:5057201
    [Google Scholar]
  12. 12.
    Bertaina S, Gambarelli S, Mitra T, Tsukerblat B, Müller A, Barbara B. 2008. Quantum oscillations in a molecular magnet. Nature 453:7192203–6
    [Google Scholar]
  13. 13.
    Sessoli R. 2017. Materials science: magnetic molecules back in the race. Nature 548:7668400–1
    [Google Scholar]
  14. 14.
    Gaita-Ariño A, Luis F, Hill S, Coronado E. 2019. Molecular spins for quantum computation. Nat. Chem. 11:4301–9
    [Google Scholar]
  15. 15.
    Bogani L, Wernsdorfer W. 2008. Molecular spintronics using single-molecule magnets. Nat. Mater. 7:3179–86
    [Google Scholar]
  16. 16.
    Parker D, Suturina EA, Kuprov I, Chilton NF. 2020. How the ligand field in lanthanide coordination complexes determines magnetic susceptibility anisotropy, paramagnetic NMR shift, and relaxation behavior. Acc. Chem. Res. 53:81520–34
    [Google Scholar]
  17. 17.
    Perlepe P, Oyarzabal I, Mailman A, Yquel M, Platunov M et al. 2020. Metal-organic magnets with large coercivity and ordering temperatures up to 242°C. Science 370:6516587–92
    [Google Scholar]
  18. 18.
    Caneschi A, Gatteschi D, Sessoli R. 1991. Alternating current susceptibility, high field magnetization, and millimeter band EPR evidence for a ground S = 10 state in [Mn12O12(CH3COO)16(H2O)4]·2CH3COOH·4H2O. J. Am. Chem. Soc. 113:5873–74
    [Google Scholar]
  19. 19.
    Sessoli R, Gatteschi D, Caneschi A, Novak MA. 1993. Magnetic bistability in a metal-ion cluster. Nature 365:141–43
    [Google Scholar]
  20. 20.
    Sessoli R, Tsai H-L, Schake AR, Wang S, Vincent JB et al. 1993. High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 115:1804–16
    [Google Scholar]
  21. 21.
    Bagai R, Christou G. 2009. The Drosophila of single-molecule magnetism: [Mn12O12(O2CR)16(H2O)4]. Chem. Soc. Rev. 38:41011–26
    [Google Scholar]
  22. 22.
    Villain J, Hartman-Boutron F, Sessoli R, Rettori A. 1994. Magnetic relaxation in big magnetic molecules. Europhys. Lett. 27:2159–64
    [Google Scholar]
  23. 23.
    Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y. 2003. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125:298694–95
    [Google Scholar]
  24. 24.
    Woodruff DN, Winpenny REP, Layfield RA. 2013. Lanthanide single-molecule magnets. Chem. Rev. 113:75110–48
    [Google Scholar]
  25. 25.
    Abragam A, Bleaney B. 1970. Electron Paramagnetic Resonance of Transition Ions Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  26. 26.
    Rinehart JD, Long JR. 2011. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2:112078–85
    [Google Scholar]
  27. 27.
    Sievers J. 1982. Asphericity of 4f-shells in their Hund's rule ground states. Z. Phys. B Condens. Matter 45:4289–96
    [Google Scholar]
  28. 28.
    Chilton NF, Collison D, McInnes EJL, Winpenny REP, Soncini A. 2013. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nat. Commun. 4:2551
    [Google Scholar]
  29. 29.
    Chilton NF, Goodwin CAP, Mills DP, Winpenny REP. 2015. The first near-linear bis(amide) f-block complex: a blueprint for a high temperature single molecule magnet. Chem. Commun. 51:1101–3
    [Google Scholar]
  30. 30.
    Chilton NF. 2015. Design criteria for high-temperature single-molecule magnets. Inorg. Chem. 54:52097–99
    [Google Scholar]
  31. 31.
    Giansiracusa MJ, Kostopoulos AK, Collison D, Winpenny REP, Chilton NF. 2019. Correlating blocking temperatures with relaxation mechanisms in monometallic single-molecule magnets with high energy barriers (Ueff > 600 K). Chem. Commun. 55:7025–28
    [Google Scholar]
  32. 32.
    Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP 2017. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548:7668439–42
    [Google Scholar]
  33. 33.
    Day BM, Guo F-S, Layfield RA. 2018. Cyclopentadienyl ligands in lanthanide single-molecule magnets: one ring to rule them all?. Acc. Chem. Res. 51:81880–89
    [Google Scholar]
  34. 34.
    Demir S, Zadrozny JM, Long JR. 2014. Large spin-relaxation barriers for the low-symmetry organolanthanide complexes [Cp*2Ln(BPh4)] (Cp* = pentamethylcyclopentadienyl; Ln = Tb, Dy). Chem. Eur. J 20:319524–29
    [Google Scholar]
  35. 35.
    Meng Y-S, Zhang Y-Q, Wang Z-M, Wang B-W, Gao S. 2016. Weak ligand-field effect from ancillary ligands on enhancing single-ion magnet performance. Chem. Eur. J. 22:3612724–31
    [Google Scholar]
  36. 36.
    Demir S, Boshart MD, Corbey JF, Woen DH, Gonzalez MI et al. 2017. Slow magnetic relaxation in a dysprosium ammonia metallocene complex. Inorg. Chem. 56:2415049–56
    [Google Scholar]
  37. 37.
    McClain KR, Gould CA, Chakarawet K, Teat S, Groshens TJ et al. 2018. High-temperature magnetic blocking and magneto-structural correlations in a series of dysprosium(III) metallocenium single-molecule magnets. Chem. Sci. 9:8492–503
    [Google Scholar]
  38. 38.
    Guo F-S, Day BM, Chen Y-C, Tong M-L, Mansikkamäki A, Layfield RA. 2018. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 362:64211400–3
    [Google Scholar]
  39. 39.
    Evans P, Reta D, Whitehead GFS, Chilton NF, Mills DP. 2019. Bis-monophospholyl dysprosium cation showing magnetic hysteresis at 48 K. J. Am. Chem. Soc. 141:5019935–40
    [Google Scholar]
  40. 40.
    Gould CA, McClain KR, Yu JM, Groshens TJ, Furche F et al. 2019. Synthesis and magnetism of neutral, linear metallocene complexes of terbium(II) and dysprosium(II). J. Am. Chem. Soc. 141:3312967–73
    [Google Scholar]
  41. 41.
    Reta D, Kragskow JGC, Chilton NF. 2021. Ab initio prediction of high-temperature magnetic relaxation rates in single-molecule magnets. J. Am. Chem. Soc. 143:155943–50
    [Google Scholar]
  42. 42.
    Chiesa A, Cugini F, Hussain R, Macaluso E, Allodi G et al. 2020. Understanding magnetic relaxation in single-ion magnets with high blocking temperature. Phys. Rev. B 101:17174402
    [Google Scholar]
  43. 43.
    Sessoli R, Gatteschi D, Caneschi A, Novak MA. 1993. Magnetic bistability in a metal-ion cluster. Nature 365:141–43
    [Google Scholar]
  44. 44.
    Ganivet CR, Ballesteros B, delaTorre G, Clemente-Juan JM, Coronado E, Torres T 2013. Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic TbIII bis(phthalocyaninate). Chem. Eur. J. 19:41457–65
    [Google Scholar]
  45. 45.
    Ding Y-S, Chilton NF, Winpenny REP, Zheng Y-Z. 2016. On approaching the limit of molecular magnetic anisotropy: a near-perfect pentagonal bipyramidal dysprosium(III) single-molecule magnet. Angew. Chem. Int. Ed. 55:5216071–74
    [Google Scholar]
  46. 46.
    Gould CA, McClain KR, Reta D, Kragskow JGC, Marchiori DA et al. 2022. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science 375:6577198–202
    [Google Scholar]
  47. 47.
    Giansiracusa MJ, Al-Badran S, Kostopoulos AK, Whitehead GFS, Collison D et al. 2019. A large barrier single-molecule magnet without magnetic memory. Dalton Trans 48:2910795–98
    [Google Scholar]
  48. 48.
    Escalera-Moreno L, Baldoví JJ, Gaita-Ariño A, Coronado E. 2018. Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective. Chem. Sci. 9:133265–75
    [Google Scholar]
  49. 49.
    Friedman JR, Sarachik MP, Tejada J, Ziolo R. 1996. Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 76:203830–33
    [Google Scholar]
  50. 50.
    Garanin DA, Chudnovsky EM. 1997. Thermally activated resonant magnetization tunneling in molecular magnets: Mn12Ac and others. Phys. Rev. B 56:1711102–18
    [Google Scholar]
  51. 51.
    Giansiracusa MJ, Moreno-Pineda E, Hussain R, Marx R, Martínez Prada M et al. 2018. Measurement of magnetic exchange in asymmetric lanthanide dimetallics: toward a transferable theoretical framework. J. Am. Chem. Soc. 140:72504–13
    [Google Scholar]
  52. 52.
    Blagg RJ, Ungur L, Tuna F, Speak J, Comar P et al. 2013. Magnetic relaxation pathways in lanthanide single-molecule magnets. Nat. Chem. 5:8673–78
    [Google Scholar]
  53. 53.
    Demir S, Jeon I-R, Long JR, Harris TD. 2015. Radical ligand-containing single-molecule magnets. Coord. Chem. Rev 289–290:149–76
    [Google Scholar]
  54. 54.
    Rinehart JD, Fang M, Evans WJ, Long JR. 2011. A N23 radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J. Am. Chem. Soc. 133:3614236–39
    [Google Scholar]
  55. 55.
    Demir S, Gonzalez MI, Darago LE, Evans WJ, Long JR. 2017. Giant coercivity and high magnetic blocking temperatures for N23 radical-bridged dilanthanide complexes upon ligand dissociation. Nat. Commun. 8:12144
    [Google Scholar]
  56. 56.
    Liu J-L, Chen Y-C, Tong M-L. 2018. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 47:72431–53
    [Google Scholar]
  57. 57.
    Ortu F, Reta D, Ding Y-S, Goodwin CAP, Gregson MP et al. 2019. Studies of hysteresis and quantum tunnelling of the magnetisation in dysprosium(III) single molecule magnets. Dalton Trans 48:248541–45
    [Google Scholar]
  58. 58.
    Demir S, Zadrozny JM, Nippe M, Long JR. 2012. Exchange coupling and magnetic blocking in bipyrimidyl radical-bridged dilanthanide complexes. J. Am. Chem. Soc. 134:4518546–49
    [Google Scholar]
  59. 59.
    Gould CA, Darago LE, Gonzalez MI, Demir S, Long JR. 2017. A trinuclear radical-bridged lanthanide single-molecule magnet. Angew. Chem. Int. Ed. 56:3410103–7
    [Google Scholar]
  60. 60.
    Liu F, Krylov DS, Spree L, Avdoshenko SM, Samoylova NA et al. 2017. Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene. Nat. Commun. 8:16098
    [Google Scholar]
  61. 61.
    DiVincenzo DP. 2000. The physical implementation of quantum computation. Fortschr. Phys. 48:9–11771–83
    [Google Scholar]
  62. 62.
    Hahn EL. 1950. Spin echoes. Phys. Rev. 80:4580–94
    [Google Scholar]
  63. 63.
    Bader K, Dengler D, Lenz S, Endeward B, Jiang S-D et al. 2014. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 5:5304
    [Google Scholar]
  64. 64.
    Atzori M, Tesi L, Morra E, Chiesa M, Sorace L, Sessoli R. 2016. Room-temperature quantum coherence and rabi oscillations in vanadyl phthalocyanine: toward multifunctional molecular spin qubits. J. Am. Chem. Soc. 138:72154–57
    [Google Scholar]
  65. 65.
    Ariciu A-M, Woen DH, Huh DN, Nodaraki LE, Kostopoulos AK et al. 2019. Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum. Nat. Commun. 10:13330
    [Google Scholar]
  66. 66.
    Zadrozny JM, Niklas J, Poluektov OG, Freedman DE. 2015. Millisecond coherence time in a tunable molecular electronic spin qubit. ACS Cent. Sci. 1:9488–92
    [Google Scholar]
  67. 67.
    Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R et al. 2009. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8:5383–87
    [Google Scholar]
  68. 68.
    Miao KC, Blanton JP, Anderson CP, Bourassa A, Crook AL et al. 2020. Universal coherence protection in a solid-state spin qubit. Science 396:65101493–97
    [Google Scholar]
  69. 69.
    Whitehead GFS, Moro F, Timco GA, Wernsdorfer W, Teat SJ, Winpenny REP. 2013. A ring of rings and other multicomponent assemblies of cages. Angew. Chem. Int. Ed. 52:389932–35
    [Google Scholar]
  70. 70.
    Fernandez A, Ferrando-Soria J, Pineda EM, Tuna F, Vitorica-Yrezabal IJ et al. 2016. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits. Nat. Commun. 7:10240
    [Google Scholar]
  71. 71.
    Zadrozny JM, Gallagher AT, Harris TD, Freedman DE. 2017. A porous array of clock qubits. J. Am. Chem. Soc. 139:207089–94
    [Google Scholar]
  72. 72.
    Yamabayashi T, Atzori M, Tesi L, Cosquer G, Santanni F et al. 2018. Scaling up electronic spin qubits into a three-dimensional metal-organic framework. J. Am. Chem. Soc. 140:3812090–101
    [Google Scholar]
  73. 73.
    Yu C-J, von Kugelgen S, Krzyaniak MD, Ji W, Dichtel WR et al. 2020. Spin and phonon design in modular arrays of molecular qubits. Chem. Mater. 32:2310200–206
    [Google Scholar]
  74. 74.
    Moreno-Pineda E, Godfrin C, Balestro F, Wernsdorfer W, Ruben M. 2018. Molecular spin qudits for quantum algorithms. Chem. Soc. Rev. 47:2501–13
    [Google Scholar]
  75. 75.
    Aguilà D, Barrios LA, Velasco V, Roubeau O, Repollés A et al. 2014. Heterodimetallic [LnLn′] lanthanide complexes: toward a chemical design of two-qubit molecular spin quantum gates. J. Am. Chem. Soc. 136:4014215–22
    [Google Scholar]
  76. 76.
    Atzori M, Chiesa A, Morra E, Chiesa M, Sorace L et al. 2018. A two-qubit molecular architecture for electron-mediated nuclear quantum simulation. Chem. Sci. 9:296183–92
    [Google Scholar]
  77. 77.
    Luis F, Alonso PJ, Roubeau O, Velasco V, Zueco D et al. 2020. A dissymmetric [Gd2] coordination molecular dimer hosting six addressable spin qubits. Commun. Chem. 3:176
    [Google Scholar]
  78. 78.
    Macaluso E, Rubín M, Aguilà D, Chiesa A, Barrios LA et al. 2020. A heterometallic [LnLn′Ln] lanthanide complex as a qubit with embedded quantum error correction. Chem. Sci. 11:10337–43
    [Google Scholar]
  79. 79.
    Wasielewski MR, Forbes MDE, Frank NL, Kowalski K, Scholes GD et al. 2020. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 4:9490–504
    [Google Scholar]
  80. 80.
    Yu C-J, von Kugelgen S, Laorenza DW, Freedman DE. 2021. A molecular approach to quantum sensing. ACS Cent. Sci. 7:5712–23
    [Google Scholar]
  81. 81.
    Awschalom DD, Hanson R, Wrachtrup J, Zhou BB. 2018. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12:9516–27
    [Google Scholar]
  82. 82.
    Bayliss SL, Laorenza DW, Mintun PJ, Kovos BD, Freedman DE, Awschalom DD. 2020. Optically addressable molecular spins for quantum information processing. Science 370:65221309–12
    [Google Scholar]
  83. 83.
    Mabbs FE, Machin DJ. 1973. Magnetism and Transition Metal Complexes London: Chapman and Hall
    [Google Scholar]
  84. 84.
    Fataftah MS, Bayliss SL, Laorenza DW, Wang X, Phelan BT et al. 2020. Trigonal bipyramidal V3+ complex as an optically addressable molecular qubit candidate. J. Am. Chem. Soc. 142:4820400–8
    [Google Scholar]
  85. 85.
    Shiddiq M, Komijani D, Duan Y, Gaita-Ariño A, Coronado E, Hill S. 2016. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531:7594348–51
    [Google Scholar]
  86. 86.
    Bollinger JJ, Prestage JD, Itano WM, Wineland DJ. 1985. Laser-cooled-atomic frequency standard. Phys. Rev. Lett. 54:101000–3
    [Google Scholar]
  87. 87.
    Kundu K, White JRK, Moehring SA, Yu JM, Ziller JW et al. 2021. Clock transition due to a record 1240 G hyperfine interaction in a Lu(II) molecular spin qubit. ChemRxiv. https://doi.org/10.26434/chemrxiv.14399333.v1
    [Crossref]
  88. 88.
    Atzori M, Tesi L, Benci S, Lunghi A, Righini R et al. 2017. Spin dynamics and low energy vibrations: insights from vanadyl-based potential molecular qubits. J. Am. Chem. Soc. 139:124338–41
    [Google Scholar]
  89. 89.
    Atzori M, Benci S, Morra E, Tesi L, Chiesa M et al. 2018. Structural effects on the spin dynamics of potential molecular qubits. Inorg. Chem. 57:2731–40
    [Google Scholar]
  90. 90.
    Santanni F, Albino A, Atzori M, Ranieri D, Salvadori E et al. 2021. Probing vibrational symmetry effects and nuclear spin economy principles in molecular spin qubits. Inorg. Chem. 60:1140–51
    [Google Scholar]
  91. 91.
    Bayliss SL, Laorenza DW, Mintun PJ, Kovos BD, Freedman DE, Awschalom DD. 2020. Optically addressable molecular spins for quantum information processing. Science 370:65221309–12
    [Google Scholar]
  92. 92.
    Shiddiq M, Komijani D, Duan Y, Gaita-Ariño A, Coronado E, Hill S. 2016. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531:348–51
    [Google Scholar]
  93. 93.
    Vincent R, Klyatskaya S, Ruben M, Wernsdorfer W, Balestro F. 2012. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488:357–60
    [Google Scholar]
  94. 94.
    Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, Affronte M. 2011. Graphene spintronic devices with molecular nanomagnets. Nano Lett 11:72634–39
    [Google Scholar]
  95. 95.
    Urdampilleta M, Klyatskaya S, Cleuziou J-P, Ruben M, Wernsdorfer W 2011. Supramolecular spin valves. Nat. Mater. 10:7502–6
    [Google Scholar]
  96. 96.
    Deleted in proof
  97. 97.
    Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W 2014. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344:61881135–38
    [Google Scholar]
  98. 98.
    Godfrin C, Ferhat A, Ballou R, Klyatskaya S, Ruben M et al. 2017. Operating quantum states in single magnetic molecules: implementation of Grover's quantum algorithm. Phys. Rev. Lett. 119:18187702
    [Google Scholar]
  99. 99.
    Koike N, Uekusa H, Ohashi Y, Harnoode C, Kitamura F et al. 1996. Relationship between the skew angle and interplanar distance in four bis(phthalocyaninato)lanthanide(III) tetrabutylammonium salts ([NBun4][LnIIIPc2]; Ln = Nd, Gd, Ho, Lu). Inorg. Chem 35:205798–804
    [Google Scholar]
  100. 100.
    Molloy KC 2013. Ferrocene. Group Theory for Chemists K Molloy 109–18 Cambridge, UK: Woodhead Publ. , 2nd ed..
    [Google Scholar]
  101. 101.
    Robin MB, Day P 1968. Mixed valence chemistry-a survey and classification. Advances in Inorganic Chemistry and Radiochemistry, Vol. 10 HJ Emeléus, AG Sharpe 247–422 New York: Academic
    [Google Scholar]
  102. 102.
    Edelstein NM, Allen PG, Bucher JJ, Shuh DK, Sofield CD et al. 1996. The oxidation state of Ce in the sandwich molecule cerocene. J. Am. Chem. Soc. 118:5113115–16
    [Google Scholar]
  103. 103.
    Kerridge A, Kaltsoyannis N. 2010. All-electron CASPT2 study of Ce(η8–C8H6)2. C. R. Chim. 13:6853–59
    [Google Scholar]
  104. 104.
    MacDonald MR, Bates JE, Ziller JW, Furche F, Evans WJ. 2013. Completing the series of +2 ions for the lanthanide elements: synthesis of molecular complexes of Pr2+, Gd2+, Tb2+, and Lu2+. J. Am. Chem. Soc. 135:269857–68
    [Google Scholar]
  105. 105.
    Meihaus KR, Fieser ME, Corbey JF, Evans WJ, Long JR. 2015. Record high single-ion magnetic moments through 4fn5d1 electron configurations in the divalent lanthanide complexes [(C5H4SiMe3)3Ln]. J. Am. Chem. Soc. 137:319855–60
    [Google Scholar]
  106. 106.
    Slater JC. 1929. The theory of complex spectra. Phys. Rev. 34:101293–322
    [Google Scholar]
  107. 107.
    Condon EU. 1930. The theory of complex spectra. Phys. Rev. 36:7112133
    [Google Scholar]
  108. 108.
    Racah G. 1942. Theory of complex spectra. I. Phys. Rev. 61:3–4186–97
    [Google Scholar]
  109. 109.
    Racah G. 1942. Theory of complex spectra. II. Phys. Rev. 62:9–10438–62
    [Google Scholar]
  110. 110.
    Bethe H. 1929. Termaufspaltung in Kristallen. Ann. Phys. 395:2133–208
    [Google Scholar]
  111. 111.
    Figgis BN, Hitchman MA. 1999. Ligand Field Theory and Its Applications New York: Wiley-VCH. , 1st ed..
    [Google Scholar]
  112. 112.
    Mulak J, Gajek Z. 2000. The Effective Crystal Field Potential Oxford, UK: Elsevier
    [Google Scholar]
  113. 113.
    Ryabov I. 2009. On the operator equivalents and the crystal-field and spin Hamiltonian parameters. Appl. Magn. Reson. 35:3481–94
    [Google Scholar]
  114. 114.
    Rudowicz C, Sung HWF. 2001. Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters?. Phys. B Condens. Matter 300:11–26
    [Google Scholar]
  115. 115.
    Stoll S, Schweiger A. 2006. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178:142–55
    [Google Scholar]
  116. 116.
    Speldrich M, Schilder H, Lueken H, Kögerler P. 2011. A computational framework for magnetic polyoxometalates and molecular spin structures: CONDON 2.0. Isr. J. Chem. 51:2215–27
    [Google Scholar]
  117. 117.
    Chilton NF, Anderson RP, Turner LD, Soncini A, Murray KS. 2013. PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 34:131164–75
    [Google Scholar]
  118. 118.
    Roos BO, Taylor PR, Sigbahn PEM. 1980. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48:2157–73
    [Google Scholar]
  119. 119.
    Ungur L, Chibotaru LF 2015. Computational modelling of the magnetic properties of lanthanide compounds. Lanthanides and Actinides in Molecular Magnetism RA Layfield, M Murugesu 153–84 Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  120. 120.
    Anisimov VI, Zaanen J, Andersen OK. 1991. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44:3943–54
    [Google Scholar]
  121. 121.
    Liechtenstein AI, Anisimov VI, Zaanen J. 1995. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52:8R5467–70
    [Google Scholar]
  122. 122.
    Stein CJ, von Burg V, Reiher M. 2016. The delicate balance of static and dynamic electron correlation. J. Chem. Theory Comput. 12:83764–73
    [Google Scholar]
  123. 123.
    Andersson K, Malmqvist P-Å, Roos BO, Sadlej AJ, Wolinski K. 1990. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 94:145483–88
    [Google Scholar]
  124. 124.
    Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu J-P. 2001. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 114:2310252–64
    [Google Scholar]
  125. 125.
    Scherthan L, Pfleger RF, Auerbach H, Hochdörffer T, Wolny JA et al. 2020. Exploring the vibrational side of spin-phonon coupling in single-molecule magnets via 161Dy nuclear resonance vibrational spectroscopy. Angew. Chem. Int. Ed. 59:238818–22
    [Google Scholar]
  126. 126.
    Waldmann O, Güdel H. 2005. Many-spin effects in inelastic neutron scattering and electron paramagnetic resonance of molecular nanomagnets. Phys. Rev. B 72:9094422
    [Google Scholar]
  127. 127.
    Stavretis SE, Atanasov M, Podlesnyak AA, Hunter SC, Neese F, Xue Z-L. 2015. Magnetic transitions in iron porphyrin halides by inelastic neutron scattering and ab initio studies of zero-field splittings. Inorg. Chem. 54:209790–801
    [Google Scholar]
  128. 128.
    Vonci M, Giansiracusa MJ, Gable RW, den Heuvel WV, Latham K et al. 2015. Ab initio calculations as a quantitative tool in the inelastic neutron scattering study of a single-molecule magnet analogue. Chem. Commun. 52:2091–94
    [Google Scholar]
  129. 129.
    Garlatti E, Tesi L, Lunghi A, Atzori M, Voneshen DJ et al. 2020. Unveiling phonons in a molecular qubit with four-dimensional inelastic neutron scattering and density functional theory. Nat. Commun. 11:11751
    [Google Scholar]
  130. 130.
    Liedy F, Eng J, McNab R, Inglis R, Penfold TJ et al. 2020. Vibrational coherences in manganese single-molecule magnets after ultrafast photoexcitation. Nat. Chem. 12:5452–58
    [Google Scholar]
  131. 131.
    Paulus BC, Adelman SL, Jamula LL, McCusker JK. 2020. Leveraging excited-state coherence for synthetic control of ultrafast dynamics. Nature 582:7811214–18
    [Google Scholar]
  132. 132.
    Fishman RS. 2018. Spin-Wave Theory and Its Applications to Neutron Scattering and THz Spectroscopy Bristol, UK: IOP Publ.
    [Google Scholar]
  133. 133.
    Moseley DH, Stavretis SE, Thirunavukkuarasu K, Ozerov M, Cheng Y et al. 2018. Spin-phonon couplings in transition metal complexes with slow magnetic relaxation. Nat. Commun. 9:12572
    [Google Scholar]
  134. 134.
    Stavretis SE, Moseley DH, Fei F, Cui H, Cheng Y et al. 2019. Spectroscopic studies of the magnetic excitation and spin-phonon couplings in a single-molecule magnet. Chem. Eur. J. 25:6915846–57
    [Google Scholar]
  135. 135.
    Moseley DH, Stavretis SE, Zhu Z, Guo M, Brown CM et al. 2020. Inter-Kramers transitions and spin-phonon couplings in a lanthanide-based single-molecule magnet. Inorg. Chem. 59:75218–30
    [Google Scholar]
  136. 136.
    Rechkemmer Y, Breitgoff FD, van der Meer M, Atanasov M, Hakl M et al. 2016. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier. Nat. Commun. 7:10467
    [Google Scholar]
  137. 137.
    Kragskow JGC, Marbey J, Buch CD, Nehrkorn J, Ozerov M et al. 2022. Analysis of vibronic coupling in a 4f molecular magnet with FIRMS. . Nat. Commun. 13:825
    [Google Scholar]
  138. 138.
    Dresselhaus T, Bungey CBA, Knowles PJ, Manby FR. 2020. Coupling electrons and vibrations in molecular quantum chemistry. J. Chem. Phys. 153:21214114
    [Google Scholar]
  139. 139.
    Bardeen J, Cooper LN, Schrieffer JR. 1957. Theory of superconductivity. Phys. Rev. 108:51175–204
    [Google Scholar]
  140. 140.
    Lunghi A, Sanvito S. 2019. How do phonons relax molecular spins?. Sci. Adv. 5:9eaax7163
    [Google Scholar]
  141. 141.
    Lejaeghere K, Bihlmayer G, Bjorkman T, Blaha P, Blugel S et al. 2016. Reproducibility in density functional theory calculations of solids. Science 351:6280aad3000
    [Google Scholar]
  142. 142.
    Dove MT. 1993. Introduction to Lattice Dynamics Cambridge; UK: Cambridge Univ. Press
    [Google Scholar]
  143. 143.
    Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A 2014. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14:52584–90
    [Google Scholar]
  144. 144.
    Lunghi A, Totti F, Sessoli R, Sanvito S. 2017. The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets. Nat. Commun. 8:14620
    [Google Scholar]
  145. 145.
    Lunghi A, Totti F, Sanvito S, Sessoli R. 2017. Intra-molecular origin of the spin-phonon coupling in slow-relaxing molecular magnets. Chem. Sci. 8:96051–59
    [Google Scholar]
  146. 146.
    Albino A, Benci S, Tesi L, Atzori M, Torre R et al. 2019. First-principles investigation of spin-phonon coupling in vanadium-based molecular spin quantum bits. Inorg. Chem. 58:1510260–68
    [Google Scholar]
  147. 147.
    Escalera-Moreno L, Suaud N, Gaita-Ariño A, Coronado E. 2017. Determining key local vibrations in the relaxation of molecular spin qubits and single-molecule magnets. J. Phys. Chem. Lett. 8:1695–700
    [Google Scholar]
  148. 148.
    Escalera-Moreno L, Baldoví JJ, Gaita-Ariño A, Coronado E. 2020. Design of high-temperature f-block molecular nanomagnets through the control of vibration-induced spin relaxation. Chem. Sci. 11:61593–98
    [Google Scholar]
  149. 149.
    Lunghi A, Sanvito S. 2020. The limit of spin lifetime in solid-state electronic spins. J. Phys. Chem. Lett. 11:156273–78
    [Google Scholar]
  150. 150.
    Yu K-X, Kragskow JGC, Ding Y-S, Zhai Y-Q, Reta D et al. 2020. Enhancing magnetic hysteresis in single-molecule magnets by ligand functionalization. Chemistry 6:71777–93
    [Google Scholar]
  151. 151.
    Moreno-Pineda E, Damjanović M, Fuhr O, Wernsdorfer W, Ruben M. 2017. Nuclear spin isomers: engineering a Et4N[DyPc2] spin qudit. Angew. Chem. Int. Ed. 56:339915–19
    [Google Scholar]
  152. 152.
    Pointillart F, Bernot K, Golhen S, LeGuennic B, Guizouarn T et al. 2015. Magnetic memory in an isotopically enriched and magnetically isolated mononuclear dysprosium complex. Angew. Chem. Int. Ed. 54:51504–7
    [Google Scholar]
  153. 153.
    Kishi Y, Pointillart F, Lefeuvre B, Riobé F, Guennic BL et al. 2017. Isotopically enriched polymorphs of dysprosium single molecule magnets. Chem. Commun. 53:253575–78
    [Google Scholar]
  154. 154.
    Ding Y-S, Yu K-X, Reta D, Ortu F, Winpenny REP et al. 2018. Field- and temperature-dependent quantum tunnelling of the magnetisation in a large barrier single-molecule magnet. Nat. Commun. 9:13134
    [Google Scholar]
  155. 155.
    Irländer K, Schnack J. 2020. Spin-phonon interaction induces tunnel splitting in single-molecule magnets. Phys. Rev. B 102:5054407
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081420-042553
Loading
/content/journals/10.1146/annurev-matsci-081420-042553
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error