1932

Abstract

Recent advances in the synthesis of block copolymers have enabled the creation of smart and functional designer polymers possessing specific intermolecular interactions. The long-range nature of these interactions strongly affects the molecular packings and microstructures of such polymers, which are intimately related to their properties. In addition to various applications, their unique physicochemical properties, distinguished from conventional block copolymers, are attracting significant attention from polymer and materials scientists. In this review, we describe the current understanding of the structure-property relationship of block copolymers having long-range interactions and suggest possible directions of technological development. We particularly focus on how specific interactions, such as Coulombic, π-π stacking, hydrogen-bonding, and metal/ion-dipole interactions, affect the molecular arrangements of block copolymers on the nanometer and molecular scales. Such information could lead to block copolymers with more advanced functions for future nanotechnologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081519-020046
2020-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-081519-020046.html?itemId=/content/journals/10.1146/annurev-matsci-081519-020046&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Balazs AC, Emrick T, Russell TP 2006. Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–10
    [Google Scholar]
  2. 2. 
    Hoheisel TN, Hur K, Wiesner UB 2015. Block copolymer-nanoparticle hybrid self-assembly. Prog. Polym. Sci. 40:3–32
    [Google Scholar]
  3. 3. 
    Kim SO, Solak HH, Stoykovich MP, Ferrier NJ, de Pablo JJ, Nealey PF 2003. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424:411–14
    [Google Scholar]
  4. 4. 
    Kim SY, Gwyther J, Manners I, Chaikin PM, Register RA 2014. Metal-containing block copolymer thin films yield wire grid polarizers with high aspect ratio. Adv. Mater. 26:791–95
    [Google Scholar]
  5. 5. 
    Kataoka K, Harada A, Nagasaki Y 2012. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 64:37–48
    [Google Scholar]
  6. 6. 
    Seo M, Hillmyer MA. 2012. Reticulated nanoporous polymers by controlled polymerization-induced microphase separation. Science 336:1422–25
    [Google Scholar]
  7. 7. 
    Kim O, Kim H, Choi UH, Park MJ 2016. One-volt-driven superfast polymer actuators based on single-ion conductors. Nat. Commun. 7:13576
    [Google Scholar]
  8. 8. 
    Kim O, Shin TJ, Park MJ 2013. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes. Nat. Commun. 4:2208
    [Google Scholar]
  9. 9. 
    Bates FS, Fredrickson GH. 1990. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 41:525–57
    [Google Scholar]
  10. 10. 
    Tang CB, Lennon EM, Fredrickson GH, Kramer EJ, Hawker CJ 2008. Evolution of block copolymer lithography to highly ordered square arrays. Science 322:429–32
    [Google Scholar]
  11. 11. 
    Ruokolainen J, Mäkinen R, Torkkeli M, Mäkela T, Serimaa R et al. 1998. Switching supramolecular polymeric materials with multiple length scales. Science 280:557–60
    [Google Scholar]
  12. 12. 
    Burnworth M, Tang LM, Kumpfer JR, Duncan AJ, Beyer FL et al. 2011. Optically healable supramolecular polymers. Nature 472:334–37
    [Google Scholar]
  13. 13. 
    Moon HC, Lodge TP, Frisbie CD 2014. Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic. J. Am. Chem. Soc. 136:3705–12
    [Google Scholar]
  14. 14. 
    Park MJ, Downing KH, Jackson A, Gomez ED, Minor AM et al. 2007. Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation. Nano Lett 7:3547–52
    [Google Scholar]
  15. 15. 
    Park MJ, Balsara NP. 2008. Phase behavior of symmetric sulfonated block copolymers. Macromolecules 41:3678–87
    [Google Scholar]
  16. 16. 
    Kim O, Kim SY, Lee J, Park MJ 2016. Building less tortuous ion-conduction pathways using block copolymer electrolytes with a well-defined cubic symmetry. Chem. Mater. 28:318–25
    [Google Scholar]
  17. 17. 
    Jung HY, Kim O, Park MJ 2016. Ion transport in nanostructured phosphonated block copolymers containing ionic liquids. Macromol. Rapid Commun. 37:1116–23
    [Google Scholar]
  18. 18. 
    Kim O, Kim SY, Ahn H, Kim CW, Rhee YM, Park MJ 2012. Phase behavior and conductivity of sulfonated block copolymers containing heterocyclic diazole-based ionic liquids. Macromolecules 45:8702–13
    [Google Scholar]
  19. 19. 
    Kim SY, Yoon E, Joo T, Park MJ 2011. Morphology and conductivity in ionic liquid incorporated sulfonated block copolymers. Macromolecules 44:5289–98
    [Google Scholar]
  20. 20. 
    Jung HY, Kim SY, Kim O, Park MJ 2015. Effect of the protogenic group on the phase behavior and ion transport properties of acid-bearing block copolymers. Macromolecules 48:6142–52
    [Google Scholar]
  21. 21. 
    Jung HY, Park MJ. 2017. Thermodynamics and phase behavior of acid-tethered block copolymers with ionic liquids. Soft Matter 13:250–57
    [Google Scholar]
  22. 22. 
    Sing CE, Zwanikken JW, de la Cruz MO 2014. Electrostatic control of block copolymer morphology. Nat. Mater. 13:694–98
    [Google Scholar]
  23. 23. 
    Young WS, Epps TH III 2009. Salt doping in PEO-containing block copolymers: counterion and concentration effects. Macromolecules 42:2672–78
    [Google Scholar]
  24. 24. 
    Wanakule NS, Virgili JM, Teran AA, Wang ZG, Balsara NP 2010. Thermodynamic properties of block copolymer electrolytes containing imidazolium and lithium salts. Macromolecules 43:8282–89
    [Google Scholar]
  25. 25. 
    Nakamura I, Balsara NP, Wang ZG 2011. Thermodynamics of ion-containing polymer blends and block copolymers. Phys. Rev. Lett. 107:198301
    [Google Scholar]
  26. 26. 
    Teran AA, Balsara NP. 2014. Thermodynamics of block copolymers with and without salt. J. Phys. Chem. B 118:4–17
    [Google Scholar]
  27. 27. 
    Gartner TE, Morris MA, Shelton CK, Dura JA, Epps TH III 2018. Quantifying lithium salt and polymer density distributions in nanostructured ion-conducting block polymers. Macromolecules 51:1917–26
    [Google Scholar]
  28. 28. 
    Kharel A, Lodge TP. 2019. Effect of ionic liquid components on the coil dimensions of PEO. Macromolecules 52:3123–30
    [Google Scholar]
  29. 29. 
    Liu FY, Lv YX, Liu JJ, Yan ZC, Zhang BQ et al. 2016. Crystallization and rheology of poly(ethylene oxide) in imidazolium ionic liquids. Macromolecules 49:6106–15
    [Google Scholar]
  30. 30. 
    Wang WQ, Tudryn GJ, Colby RH, Winey KI 2011. Thermally driven ionic aggregation in poly(ethylene oxide)-based sulfonate ionomers. J. Am. Chem. Soc. 133:10826–31
    [Google Scholar]
  31. 31. 
    Seitz ME, Chan CD, Opper KL, Baughman TW, Wagener KB, Winey KI 2010. Nanoscale morphology in precisely sequenced poly(ethylene-co-acrylic acid) zinc ionomers. J. Am. Chem. Soc. 132:8165–74
    [Google Scholar]
  32. 32. 
    Hall LM, Seitz ME, Winey KI, Opper KL, Wagener KB et al. 2012. Ionic aggregate structure in ionomer melts: effect of molecular architecture on aggregates and the ionomer peak. J. Am. Chem. Soc. 134:574–87
    [Google Scholar]
  33. 33. 
    Buitrago CF, Jenkins JE, Opper KL, Aitken BS, Wagener KB et al. 2013. Room temperature morphologies of precise acid- and ion-containing polyethylenes. Macromolecules 46:9003–12
    [Google Scholar]
  34. 34. 
    Trigg EB, Gaines TW, Maréchal M, Moed DE, Rannou P et al. 2018. Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport. Nat. Mater. 17:725–31
    [Google Scholar]
  35. 35. 
    Jang S, Kim SY, Jung HY, Park MJ 2018. Phosphonated polymers with fine-tuned ion clustering behavior: toward efficient proton conductors. Macromolecules 51:1120–28
    [Google Scholar]
  36. 36. 
    Kim SY, Park MJ, Balsara NP, Jackson A 2010. Confinement effects on watery domains in hydrated block copolymer electrolyte membranes. Macromolecules 43:8128–35
    [Google Scholar]
  37. 37. 
    Chen L, Hallinan DT, Elabd YA, Hillmyer MA 2009. Highly selective polymer electrolyte membranes from reactive block polymers. Macromolecules 42:6075–85
    [Google Scholar]
  38. 38. 
    Ye YS, Sharick S, Davis EM, Winey KI, Elabd YA 2013. High hydroxide conductivity in polymerized ionic liquid block copolymers. ACS Macro Lett 2:575–80
    [Google Scholar]
  39. 39. 
    Kim SY, Kim S, Park MJ 2010. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions. Nat. Commun. 1:88
    [Google Scholar]
  40. 40. 
    Hoarfrost ML, Tyagi MS, Segalman RA, Reimer JA 2012. Effect of confinement on proton transport mechanisms in block copolymer/ionic liquid membranes. Macromolecules 45:3112–20
    [Google Scholar]
  41. 41. 
    Sax J, Ottino JM. 1983. Modeling of transport of small molecules in polymer blends: application of effective medium theory. Polym. Eng. Sci. 23:165–76
    [Google Scholar]
  42. 42. 
    Choi JH, Ye YS, Elabd YA, Winey KI 2013. Network structure and strong microphase separation for high ion conductivity in polymerized ionic liquid block copolymers. Macromolecules 46:5290–300
    [Google Scholar]
  43. 43. 
    Young W-S, Epps TH III 2012. Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations. Macromolecules 45:4689–97
    [Google Scholar]
  44. 44. 
    Shen K-H, Brown JR, Hall LM 2018. Diffusion in lamellae, cylinders, and double gyroid block copolymer nanostructures. ACS Macro Lett 7:1092–98
    [Google Scholar]
  45. 45. 
    Arges CG, Kambe Y, Dolejsi M, Wu GP, Segal-Pertz T et al. 2017. Interconnected ionic domains enhance conductivity in microphase separated block copolymer electrolytes. J. Mater. Chem. A 5:5619–29
    [Google Scholar]
  46. 46. 
    Hoarfrost ML, Segalman RA. 2012. Conductivity scaling relationships for nanostructured block copolymer/ionic liquid membranes. ACS Macro Lett 1:937–43
    [Google Scholar]
  47. 47. 
    Wanakule NS, Panday A, Mullin SA, Gann E, Hexemer A, Balsara NP 2009. Ionic conductivity of block copolymer electrolytes in the vicinity of order-disorder and order-order transitions. Macromolecules 42:5642–51
    [Google Scholar]
  48. 48. 
    Ruzette A-VG, Soo PP, Sadoway DR, Mayes AM 2001. Melt-formable block copolymer electrolytes for lithium rechargeable batteries. J. Electrochem. Soc. 148:A537–43
    [Google Scholar]
  49. 49. 
    Chintapalli M, Chen XC, Thelen JL, Teran AA, Wang X et al. 2014. Effect of grain size on the ionic conductivity of a block copolymer electrolyte. Macromolecules 47:5424–31
    [Google Scholar]
  50. 50. 
    Chintapalli M, Le TNP, Venkatesan NR, Mackay NG, Rojas AA et al. 2016. Structure and ionic conductivity of polystyrene-block-poly(ethylene oxide) electrolytes in the high salt concentration limit. Macromolecules 49:1770–80
    [Google Scholar]
  51. 51. 
    Zardalidis G, Gatsouli K, Pispas S, Mezger M, Floudas G 2015. Ionic conductivity, self-assembly, and viscoelasticity in poly(styrene-b-ethylene oxide) electrolytes doped with LiTf. Macromolecules 48:7164–71
    [Google Scholar]
  52. 52. 
    Majewski PW, Gopinadhan M, Osuji CO 2013. Understanding anisotropic transport in self-assembled membranes and maximizing ionic conductivity by microstructure alignment. Soft Matter 9:7106–16
    [Google Scholar]
  53. 53. 
    Majewski PW, Gopinadhan M, Jang WS, Lutkenhaus JL, Osuji CO 2010. Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. J. Am. Chem. Soc. 132:17516–22
    [Google Scholar]
  54. 54. 
    Teran AA, Mullin SA, Hallinan DT, Balsara NP 2012. Discontinuous changes in ionic conductivity of a block copolymer electrolyte through an order-disorder transition. ACS Macro Lett 1:305–9
    [Google Scholar]
  55. 55. 
    Huang J, Tong ZZ, Zhou B, Xu JT, Fan ZQ 2013. Salt-induced microphase separation in poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymer. Polymer 54:3098–106
    [Google Scholar]
  56. 56. 
    Huang J, Tong ZZ, Zhou B, Xu JT, Fan ZQ 2014. Phase behavior of LiClO4-doped poly(ε-caprolactone)-b-poly(ethylene oxide) hybrids in the presence of competitive interactions. Polymer 55:1070–77
    [Google Scholar]
  57. 57. 
    Gomez ED, Panday A, Feng EH, Chen V, Stone GM et al. 2009. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett 9:1212–16
    [Google Scholar]
  58. 58. 
    Gilbert JB, Luo M, Shelton CK, Rubner MF, Cohen RE, Epps TH III 2015. Determination of lithium-ion distributions in nanostructured block polymer electrolyte thin films by X-ray photoelectron spectroscopy depth profiling. ACS Nano 9:512–20
    [Google Scholar]
  59. 59. 
    Panday A, Mullin S, Gomez ED, Wanakule N, Chen VL et al. 2009. Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes. Macromolecules 42:4632–37
    [Google Scholar]
  60. 60. 
    Bouchet R, Phan TNT, Beaudoin E, Devaux D, Davidson P et al. 2014. Charge transport in nanostructured PS-PEO-PS triblock copolymer electrolytes. Macromolecules 47:2659–65
    [Google Scholar]
  61. 61. 
    Nakamura I, Balsara NP, Wang ZG 2013. First-order disordered-to-lamellar phase transition in lithium salt-doped block copolymers. ACS Macro Lett 2:478–81
    [Google Scholar]
  62. 62. 
    Thelen JL, Teran AA, Wang X, Garetz BA, Nakamura I et al. 2014. Phase behavior of a block copolymer/salt mixture through the order-to-disorder transition. Macromolecules 47:2666–73
    [Google Scholar]
  63. 63. 
    Cho JH, Lee J, He YY, Kim BS, Lodge TP, Frisbie CD 2008. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 20:686–90
    [Google Scholar]
  64. 64. 
    Ueki T, Usui R, Kitazawa Y, Lodge TP, Watanabe M 2015. Thermally reversible ion gels with photohealing properties based on triblock copolymer self-assembly. Macromolecules 48:5928–33
    [Google Scholar]
  65. 65. 
    Porcarelli L, Shaplov AS, Salsamendi M, Nair JR, Vygodskii YS et al. 2016. Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS Appl. Mater. Interfaces 8:10350–59
    [Google Scholar]
  66. 66. 
    Ryu S-W, Trapa PE, Olugebefola SC, Gonzalez-Leon JA, Sadoway DR, Mayes AM 2005. Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes. J. Electrochem. Soc. 152:A158–63
    [Google Scholar]
  67. 67. 
    Park JB, Isik M, Park HJ, Jung IH, Mecerreyes D, Hwang D-H 2018. Polystyrene-block-poly(ionic liquid) copolymers as work function modifiers in inverted organic photovoltaic cells. ACS Appl. Mater. Interfaces 10:4887–94
    [Google Scholar]
  68. 68. 
    Margaretta E, Fahs GB, Inglefield DL, Jangu C, Wang D et al. 2016. Imidazolium-containing ABA triblock copolymers as electroactive devices. ACS Appl. Mater. Interfaces 8:1280–88
    [Google Scholar]
  69. 69. 
    Lin SH, Wu SJ, Ho CC, Su WF 2013. Rational design of versatile self-assembly morphology of rod-coil block copolymer. Macromolecules 46:2725–32
    [Google Scholar]
  70. 70. 
    Yu HF. 2014. Photoresponsive liquid crystalline block copolymers: from photonics to nanotechnology. Prog. Polym. Sci. 39:781–815
    [Google Scholar]
  71. 71. 
    Olsen BD, Segalman RA. 2005. Structure and thermodynamics of weakly segregated rod-coil block copolymers. Macromolecules 38:10127–37
    [Google Scholar]
  72. 72. 
    Olsen BD, Segalman RA. 2006. Phase transitions in asymmetric rod-coil block copolymers. Macromolecules 39:7078–83
    [Google Scholar]
  73. 73. 
    Olsen BD, Segalman RA. 2007. Nonlamellar phases in asymmetric rod-coil block copolymers at increased segregation strengths. Macromolecules 40:6922–29
    [Google Scholar]
  74. 74. 
    Ho CC, Lee YH, Dai CA, Segalman RA, Su WF 2009. Synthesis and self-assembly of poly(diethylhexyloxy-p-phenylenevinylene)-b-poly(methyl methacrylate) rod-coil block copolymers. Macromolecules 42:4208–19
    [Google Scholar]
  75. 75. 
    Sary N, Rubatat L, Brochon C, Hadziioannou G, Ruokolainen J, Mezzenga R 2007. Self-assembly of poly(diethylhexyloxy-p-phenylenevinylene)-b-poly(4-vinylpyridine) rod-coil block copolymer systems. Macromolecules 40:6990–97
    [Google Scholar]
  76. 76. 
    Kim J-S, Han J, Kim Y, Park H, Coote JP et al. 2018. Domain structures of poly(3-dodecylthiophene)-based block copolymers depend on regioregularity. Macromolecules 51:4077–84
    [Google Scholar]
  77. 77. 
    Loo YL, Register RA, Ryan AJ 2002. Modes of crystallization in block copolymer microdomains: breakout, templated, and confined. Macromolecules 35:2365–74
    [Google Scholar]
  78. 78. 
    Kim J-S, Kim Y, Kim H-J, Kim HJ, Yang H et al. 2017. Regioregularity-driven morphological transition of poly(3-hexylthiophene)-based block copolymers. Macromolecules 50:1902–8
    [Google Scholar]
  79. 79. 
    Kim J-S, Lee YJ, Coote JP, Stein GE, Kim BJ 2019. Confined, templated, and break-through crystallization modes in poly(3-dodecylthiophene)-block-poly(ethyl methacrylate) block copolymers. Macromolecules 52:4475–82
    [Google Scholar]
  80. 80. 
    Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K et al. 1999. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685–88
    [Google Scholar]
  81. 81. 
    Davidson EC, Beckingham BS, Ho V, Segalman RA 2016. Confined crystallization in lamellae forming poly(3-(2′-ethyl)hexylthiophene) (P3EHT) block copolymers. J. Polym. Sci. B Polym. Phys. 54:205–15
    [Google Scholar]
  82. 82. 
    Davidson EC, Segalman RA. 2017. Confined crystallization within cylindrical P3EHT block copolymer microdomains. Macromolecules 50:6128–36
    [Google Scholar]
  83. 83. 
    Hufnagel M, Fischer M, Thurn-Albrecht T, Thelakkat M 2016. Influence of fullerene grafting density on structure, dynamics, and charge transport in P3HT-b-PPC61BM block copolymers. Macromolecules 49:1637–47
    [Google Scholar]
  84. 84. 
    Guo CH, Lin Y-H, Witman MD, Smith KA, Wang C et al. 2013. Conjugated block copolymer photovoltaics with near 3% efficiency through microphase separation. Nano Lett 13:2957–63
    [Google Scholar]
  85. 85. 
    Smith KA, Lin Y-H, Mok JW, Yager KG, Strzalka J et al. 2015. Molecular origin of photovoltaic performance in donor-block-acceptor all-conjugated block copolymers. Macromolecules 48:8346–53
    [Google Scholar]
  86. 86. 
    Lee Y, Aplan MP, Seibers ZD, Xie RX, Culp TE et al. 2018. Random copolymers allow control of crystallization and microphase separation in fully conjugated block copolymers. Macromolecules 51:8844–52
    [Google Scholar]
  87. 87. 
    Lee Y, Gomez ED. 2015. Challenges and opportunities in the development of conjugated block copolymers for photovoltaics. Macromolecules 48:7385–95
    [Google Scholar]
  88. 88. 
    Mok JW, Kipp D, Hasbun LR, Dolocan A, Strzalka J et al. 2016. Parallel bulk heterojunction photovoltaics based on all-conjugated block copolymer additives. J. Mater. Chem. A 4:14804–13
    [Google Scholar]
  89. 89. 
    Mok JW, Lin Y-H, Yager KG, Mohite AD, Nie W et al. 2015. Linking group influences charge separation and recombination in all-conjugated block copolymer photovoltaics. Adv. Funct. Mater. 25:5578–85
    [Google Scholar]
  90. 90. 
    Aplan MP, Grieco C, Lee Y, Munro JM, Lee W et al. 2019. Conjugated block copolymers as model systems to examine mechanisms of charge generation in donor–acceptor materials. Adv. Funct. Mater. 29:1804858
    [Google Scholar]
  91. 91. 
    Moon HC, Bae D, Kim JK 2012. Self-assembly of poly(3-dodecylthiophene)-block-poly(methyl methacrylate) copolymers driven by competition between microphase separation and crystallization. Macromolecules 45:5201–7
    [Google Scholar]
  92. 92. 
    Park J, Moon HC, Choi C, Kim JK 2015. Synthesis and characterization of [poly(3-dodecylthiophene)]2poly(methyl methacrylate) miktoarm star copolymer. Macromolecules 48:3523–30
    [Google Scholar]
  93. 93. 
    Kim HJ, Paek K, Yang H, Cho C-H, Kim J-S et al. 2013. Molecular design of “graft” assembly for ordered microphase separation of P3HT-based rod-coil copolymers. Macromolecules 46:8472–78
    [Google Scholar]
  94. 94. 
    Lee W, Kim J-S, Kim HJ, Shin JM, Ku KH et al. 2015. Graft architectured rod-coil copolymers based on alternating conjugated backbone: morphological and optical properties. Macromolecules 48:5563–69
    [Google Scholar]
  95. 95. 
    Lin ZW, Yang X, Xu H, Sakurai T, Matsuda W et al. 2017. Topologically directed assemblies of semiconducting sphere-rod conjugates. J. Am. Chem. Soc. 139:18616–22
    [Google Scholar]
  96. 96. 
    Berrocal JA, Zha RH, de Waal BFM, Lugger JAM, Lutz M, Meijer EW 2017. Unraveling the driving forces in the self-assembly of monodisperse naphthalenediimide-oligodimethylsiloxane block molecules. ACS Nano 11:3733–41
    [Google Scholar]
  97. 97. 
    Ho RM, Li MC, Lin SC, Wang HF, Lee YD et al. 2012. Transfer of chirality from molecule to phase in self-assembled chiral block copolymers. J. Am. Chem. Soc. 134:10974–86
    [Google Scholar]
  98. 98. 
    Wen T, Lee JY, Li MC, Tsai JC, Ho RM 2017. Competitive interactions of π-π junctions and their role on microphase separation of chiral block copolymers. Chem. Mater. 29:4493–501
    [Google Scholar]
  99. 99. 
    Li ZY, Ying L, Zhu P, Zhong WK, Li N et al. 2019. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci. 12:157–63
    [Google Scholar]
  100. 100. 
    Baek P, Aydemir N, An Y, Chan EWC, Sokolova A et al. 2017. Molecularly engineered intrinsically healable and stretchable conducting polymers. Chem. Mater. 29:8850–58
    [Google Scholar]
  101. 101. 
    Wang JT, Saito K, Wu HC, Sun HS, Hung CC et al. 2016. High-performance stretchable resistive memories using donor-acceptor block copolymers with fluorene rods and pendent isoindigo coils. NPG Asia Mater 8:e298
    [Google Scholar]
  102. 102. 
    Yoshida K, Tian L, Miyagi K, Yamazaki A, Mamiya H et al. 2018. Facile and efficient modification of polystyrene-block-poly(methyl methacrylate) for achieving sub-10 nm feature size. Macromolecules 51:8064–72
    [Google Scholar]
  103. 103. 
    Yu DM, Mapas JKD, Kim H, Choi J, Ribbe AE et al. 2018. Evaluation of the interaction parameter for poly(solketal methacrylate)-block-polystyrene copolymers. Macromolecules 51:1031–40
    [Google Scholar]
  104. 104. 
    Zha RH, de Waal BFM, Lutz M, Teunissen AJP, Meijer EW 2016. End groups of functionalized siloxane oligomers direct block-copolymeric or liquid-crystalline self-assembly behavior. J. Am. Chem. Soc. 138:5693–98
    [Google Scholar]
  105. 105. 
    Kwak J, Han SH, Moon HC, Kim JK, Koo J et al. 2015. Phase behavior of binary blend consisting of asymmetric polystyrene-block-poly(2-vinylpyridine) copolymer and asymmetric deuterated polystyrene-block-poly(4-hydroxystyrene) copolymer. Macromolecules 48:1262–66
    [Google Scholar]
  106. 106. 
    Kwak J, Han SH, Moon HC, Kim JK, Pryamitsyn V, Ganesan V 2015. Effect of the degree of hydrogen bonding on asymmetric lamellar microdomains in binary block copolymer blends. Macromolecules 48:6347–52
    [Google Scholar]
  107. 107. 
    Isono T, Ree BJ, Tajima K, Borsali R, Satoh T 2018. Highly ordered cylinder morphologies with 10 nm scale periodicity in biomass-based block copolymers. Macromolecules 51:428–37
    [Google Scholar]
  108. 108. 
    Otsuka I, Zhang Y, Isono T, Rochas C, Kakuchi T et al. 2015. Sub-10 nm scale nanostructures in self-organized linear di- and triblock copolymers and miktoarm star copolymers consisting of maltoheptaose and polystyrene. Macromolecules 48:1509–17
    [Google Scholar]
  109. 109. 
    Jo G, Ahn H, Park MJ 2013. Simple route for tuning the morphology and conductivity of polymer electrolytes: One end functional group is enough. ACS Macro Lett 2:990–95
    [Google Scholar]
  110. 110. 
    Jung HY, Mandal P, Jo G, Kim O, Kim M et al. 2017. Modulating ion transport and self-assembly of polymer electrolytes via end-group chemistry. Macromolecules 50:3224–33
    [Google Scholar]
  111. 111. 
    Yoshida K, Tanaka S, Yamamoto T, Tajima K, Borsali R et al. 2018. Chain-end functionalization with a saccharide for 10 nm microphase separation: “classical” PS-b-PMMA versus PS-b-PMMA-saccharide. Macromolecules 51:8870–77
    [Google Scholar]
  112. 112. 
    Junnila S, Houbenov N, Hanski S, Iatrou H, Hirao A et al. 2010. Hierarchical smectic self-assembly of an ABC miktoarm star terpolymer with a helical polypeptide arm. Macromolecules 43:9071–76
    [Google Scholar]
  113. 113. 
    Gkikas M, Haataja JS, Seitsonen J, Ruokolainen J, Ikkala O et al. 2014. Extended self-assembled long periodicity and zig-zag domains from helix-helix diblock copolymer poly(γ-benzyl-L-glutamate)-block-poly(O-benzyl-L-hydroxyproline). Biomacromolecules 15:3923–30
    [Google Scholar]
  114. 114. 
    Sun J, Teran AA, Liao XX, Balsara NP, Zuckermann RN 2014. Crystallization in sequence-defined peptoid diblock copolymers induced by microphase separation. J. Am. Chem. Soc. 136:2070–77
    [Google Scholar]
  115. 115. 
    Houbenov N, Haataja JS, Iatrou H, Hadjichristidis N, Ruokolainen J et al. 2011. Self-assembled polymeric supramolecular frameworks. Angew. Chem. Int. Ed. 50:2516–20
    [Google Scholar]
  116. 116. 
    Valkama S, Kosonen H, Ruokolainen J, Haatainen T, Torkkeli M et al. 2004. Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching. Nat. Mater. 3:872–76
    [Google Scholar]
  117. 117. 
    Hofman AH, Reza M, Ruokolainen J, tenBrinke G, Loos K 2016. Hierarchical layer engineering using supramolecular double-comb diblock copolymers. Angew. Chem. Int. Ed. 55:13081–85
    [Google Scholar]
  118. 118. 
    Zhou CQ, Ren YY, Han J, Gong XX, Wei ZX et al. 2018. Controllable supramolecular chiral twisted nanoribbons from achiral conjugated oligoaniline derivatives. J. Am. Chem. Soc. 140:9417–25
    [Google Scholar]
  119. 119. 
    Wang RY, Huang J, Guo XS, Cao XH, Zou SF et al. 2018. Closed-loop phase behavior of block copolymers in the presence of competitive hydrogen-bonding and Coulombic interaction. Macromolecules 51:4727–34
    [Google Scholar]
  120. 120. 
    Wang RY, Guo XS, Fan B, Zou SF, Cao XH et al. 2018. Design and regulation of lower disorder-to-order transition behavior in the strongly interacting block copolymers. Macromolecules 51:2302–11
    [Google Scholar]
  121. 121. 
    Song DP, Li C, Li WH, Watkins JJ 2016. Block copolymer nanocomposites with high refractive index contrast for one-step photonics. ACS Nano 10:1216–23
    [Google Scholar]
  122. 122. 
    Hentschel J, Kushner AM, Ziller J, Guan ZB 2012. Self-healing supramolecular block copolymers. Angew. Chem. Int. Ed. 51:10561–65
    [Google Scholar]
  123. 123. 
    Zhu ZC, Gao N, Wang HJ, Sukhishvili SA 2013. Temperature-triggered on-demand drug release enabled by hydrogen-bonded multilayers of block copolymer micelles. J. Control. Release 171:73–80
    [Google Scholar]
  124. 124. 
    Chiu JJ, Kim BJ, Kramer EJ, Pine DJ 2005. Control of nanoparticle location in block copolymers. J. Am. Chem. Soc. 127:5036–37
    [Google Scholar]
  125. 125. 
    Kim BJ, Bang J, Hawker CJ, Chiu JJ, Pine DJ et al. 2007. Creating surfactant nanoparticles for block copolymer composites through surface chemistry. Langmuir 23:12693–703
    [Google Scholar]
  126. 126. 
    Kim BJ, Given-Beck S, Bang J, Hawker CJ, Kramer EJ 2007. Importance of end-group structure in controlling the interfacial activity of polymer-coated nanoparticles. Macromolecules 40:1796–98
    [Google Scholar]
  127. 127. 
    Li QF, He JB, Glogowski E, Li XF, Wang J et al. 2008. Responsive assemblies: gold nanoparticles with mixed ligands in microphase separated block copolymers. Adv. Mater. 20:1462–66
    [Google Scholar]
  128. 128. 
    Jang SG, Kim BJ, Hawker CJ, Kramer EJ 2011. Bicontinuous block copolymer morphologies produced by interfacially active, thermally stable nanoparticles. Macromolecules 44:9366–73
    [Google Scholar]
  129. 129. 
    Kim BJ, Chiu JJ, Yi GR, Pine DJ, Kramer EJ 2005. Nanoparticle-induced phase transitions in diblock-copolymer films. Adv. Mater. 17:2618–22
    [Google Scholar]
  130. 130. 
    Kao J, Xu T. 2015. Nanoparticle assemblies in supramolecular nanocomposite thin films: concentration dependence. J. Am. Chem. Soc. 137:6356–65
    [Google Scholar]
  131. 131. 
    Lee J, Kwak J, Choi C, Han SH, Kim JK 2017. Phase behavior of poly(2-vinylpyridine)-block-poly(4-vinylpyridine) copolymers containing gold nanoparticles. Macromolecules 50:9373–79
    [Google Scholar]
  132. 132. 
    Thompson RB, Ginzburg VV, Matsen MW, Balazs AC 2001. Predicting the mesophases of copolymer-nanoparticle composites. Science 292:2469–72
    [Google Scholar]
  133. 133. 
    Lin Y, Böker A, He JB, Sill K, Xiang HQ et al. 2005. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434:55–59
    [Google Scholar]
  134. 134. 
    Zhang LY, Cui TT, Cao X, Zhao CJ, Chen Q et al. 2017. Inorganic-macroion-induced formation of bicontinuous block copolymer nanocomposites with enhanced conductivity and modulus. Angew. Chem. Int. Ed. 56:9013–17
    [Google Scholar]
  135. 135. 
    Chai SC, Cao X, Xu FR, Zhai L, Qian HJ et al. 2019. Multiscale self-assembly of mobile-ligand molecular nanoparticles for hierarchical nanocomposites. ACS Nano 13:7135–45
    [Google Scholar]
  136. 136. 
    Yue K, Huang MJ, Marson RL, He JL, Huang JH et al. 2016. Geometry induced sequence of nanoscale Frank-Kasper and quasicrystal mesophases in giant surfactants. PNAS 113:14195–200
    [Google Scholar]
  137. 137. 
    Hou XS, Zhu GL, Ren LJ, Huang ZH, Zhang RB et al. 2018. Mesoscale graphene-like honeycomb mono- and multilayers constructed via self-assembly of coclusters. J. Am. Chem. Soc. 140:1805–11
    [Google Scholar]
  138. 138. 
    Villaluenga I, Inceoglu S, Jiang X, Chen XC, Chintapalli M et al. 2017. Nanostructured single-ion-conducting hybrid electrolytes based on salty nanoparticles and block copolymers. Macromolecules 50:1998–2005
    [Google Scholar]
  139. 139. 
    Kumpfer JR, Wie JJ, Swanson JP, Beyer FL, Mackay ME, Rowan SJ 2012. Influence of metal ion and polymer core on the melt rheology of metallosupramolecular films. Macromolecules 45:473–80
    [Google Scholar]
  140. 140. 
    Al-Badri ZM, Maddikeri RR, Zha YP, Thaker HD, Dobriyal P et al. 2011. Room temperature magnetic materials from nanostructured diblock copolymers. Nat. Commun. 2:482
    [Google Scholar]
  141. 141. 
    Zha YP, Thaker HD, Maddikeri RR, Gido SP, Tuominen MT, Tew GN 2012. Nanostructured block-random copolymers with tunable magnetic properties. J. Am. Chem. Soc. 134:14534–41
    [Google Scholar]
  142. 142. 
    Ahmed R, Patra SK, Hamley IW, Manners I, Faul CFJ 2013. Tetragonal and helical morphologies from polyferrocenylsilane block polyelectrolytes via ionic self-assembly. J. Am. Chem. Soc. 135:2455–58
    [Google Scholar]
  143. 143. 
    Qiu HB, Hudson ZM, Winnik MA, Manners I 2015. Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 347:1329–32
    [Google Scholar]
  144. 144. 
    Qiu H, Gao Y, Boott CE, Gould OEC, Harniman RL et al. 2016. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352:697–701
    [Google Scholar]
  145. 145. 
    Filippidi E, Cristiani TR, Eisenbach CD, Waite JH, Israelachvili JN et al. 2017. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 358:502–5
    [Google Scholar]
  146. 146. 
    Thorkelsson K, Nelson JH, Alivisatos AP, Xu T 2013. End-to-end alignment of nanorods in thin films. Nano Lett 13:4908–13
    [Google Scholar]
  147. 147. 
    Werner JG, Rodríguez-Calero GG, Abruña HD, Wiesner U 2018. Block copolymer derived 3-D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage. Energy Environ. Sci. 11:1261–70
    [Google Scholar]
  148. 148. 
    Robbins SW, Beaucage PA, Sai H, Tan KW, Werner JG et al. 2016. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors. Sci. Adv. 2:e1501119
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081519-020046
Loading
/content/journals/10.1146/annurev-matsci-081519-020046
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error