1932

Abstract

Solid-state nuclear magnetic resonance (NMR) spectroscopy has increasingly been used for materials characterization as it enables selective detection of elements of interest, as well as their local structure and dynamic properties. Nevertheless, utilization of NMR is limited by its inherent low sensitivity. The development of dynamic nuclear polarization (DNP) approaches, which provide enormous sensitivity gain in NMR through the transfer of polarization from electron spins, has transformed the application of solid-state NMR in materials science. In this review, we outline the opportunities for materials characterization that DNP has opened up. We describe the main DNP mechanisms available, their implementation, and the kinds of insight they can provide across different materials classes, from surfaces and interfaces to defects in the bulk of solids. Finally, we discuss the current limitations of the approach and provide an outlook on future developments for DNP-enhanced NMR spectroscopy in materials science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081720-085634
2022-07-01
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081720-085634.html?itemId=/content/journals/10.1146/annurev-matsci-081720-085634&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Carver TR, Slichter CP. 1953. Polarization of nuclear spins in metals. Phys. Rev. 92:1212–13
    [Google Scholar]
  2. 2.
    Bajaj VS, Farrar CT, Hornstein MK, Mastovsky I, Vieregg J et al. 2003. Dynamic nuclear polarization at 9 T using a novel 250 GHz gyrotron microwave source. J. Magn. Reson. 160:285–90
    [Google Scholar]
  3. 3.
    Chien P-H, Griffith KJ, Liu H, Gan Z, Hu Y-Y. 2020. Recent advances in solid-state nuclear magnetic resonance techniques for materials research. Annu. Rev. Mater. Res. 50:493–520
    [Google Scholar]
  4. 4.
    Atsarkin VA, Kessenikh AV. 2012. Dynamic nuclear polarization in solids: the birth and development of the many-particle concept. Appl. Magn. Reson. 43:17–19
    [Google Scholar]
  5. 5.
    Thankamony ASL, Wittmann JJ, Kaushik M, Corzilius B. 2017. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 102–103:120–95
    [Google Scholar]
  6. 6.
    Rankin AGM, Trébosc J, Pourpoint F, Amoureux J-P, Lafon O. 2019. Recent developments in MAS DNP-NMR of materials. Solid State Nucl. Magn. Reson. 101:116–43
    [Google Scholar]
  7. 7.
    Abraham M, McCausland MAH, Robinson FNH. 1959. Dynamic nuclear polarization. Phys. Rev. Lett. 2:11449–51
    [Google Scholar]
  8. 8.
    Becerra LR, Gerfen GJ, Bellew BF, Bryant JA, Hall DA et al. 1995. A spectrometer for dynamic nuclear polarization and electron paramagnetic resonance at high frequencies. J. Magn. Reson. A 117:128–40
    [Google Scholar]
  9. 9.
    Corzilius B, Smith AA, Barnes AB, Luchinat C, Bertini I, Griffin RG. 2011. High-field dynamic nuclear polarization with high-spin transition metal ions. J. Am. Chem. Soc. 133:155648–51
    [Google Scholar]
  10. 10.
    Corzilius B, Michaelis VK, Penzel SA, Ravera E, Smith AA et al. 2014. Dynamic nuclear polarization of 1H, 13C, and 59Co in a tris(ethylenediamine)cobalt(III) crystalline lattice doped with Cr(III). J. Am. Chem. Soc. 136:3311716–27
    [Google Scholar]
  11. 11.
    Chakrabarty T, Goldin N, Feintuch A, Houben L, Leskes M. 2018. Paramagnetic metal-ion dopants as polarization agents for dynamic nuclear polarization NMR spectroscopy in inorganic solids. ChemPhysChem 19:172139–42
    [Google Scholar]
  12. 12.
    Wolf T, Kumar S, Singh H, Chakrabarty T, Aussenac F et al. 2019. Endogenous dynamic nuclear polarization for natural abundance 17O and lithium NMR in the bulk of inorganic solids. J. Am. Chem. Soc. 141:1451–62
    [Google Scholar]
  13. 13.
    Harchol A, Reuveni G, Ri V, Thomas B, Carmieli R et al. 2020. Endogenous dynamic nuclear polarization for sensitivity enhancement in solid-state NMR of electrode materials. J. Phys. Chem. C 124:137082–90
    [Google Scholar]
  14. 14.
    Corzilius B. 2018. Paramagnetic metal ions for dynamic nuclear polarization. eMagRes 7:179–94
    [Google Scholar]
  15. 15.
    Carnahan SL, Venkatesh A, Perras FA, Wishart JF, Rossini AJ. 2019. High-field magic angle spinning dynamic nuclear polarization using radicals created by γ-irradiation. J. Phys. Chem. Lett. 10:174770–76
    [Google Scholar]
  16. 16.
    Rej E, Gaebel T, Waddington DEJ, Reilly DJ. 2017. Hyperpolarized nanodiamond surfaces. J. Am. Chem. Soc. 139:1193–99
    [Google Scholar]
  17. 17.
    Cassidy MC, Ramanathan C, Cory DG, Ager JW, Marcus CM. 2013. Radical-free dynamic nuclear polarization using electronic defects in silicon. Phys. Rev. B 87:16161306
    [Google Scholar]
  18. 18.
    Shimon D, van Schooten KJ, Paul S, Peng Z, Takahashi S et al. 2019. DNP-NMR of surface hydrogen on silicon microparticles. Solid State Nucl. Magn. Reson. 101:68–75
    [Google Scholar]
  19. 19.
    Ha M, Thiessen AN, Sergeyev I V, Veinot JGC, Michaelis VK. 2019. Endogenous dynamic nuclear polarization NMR of hydride-terminated silicon nanoparticles. Solid State Nucl. Magn. Reson. 100:77–84
    [Google Scholar]
  20. 20.
    Riikonen J, Rigolet S, Marichal C, Aussenac F, Lalevée J et al. 2015. Endogenous stable radicals for characterization of thermally carbonized porous silicon by solid-state dynamic nuclear polarization 13C NMR. J. Phys. Chem. C 119:3319272–78
    [Google Scholar]
  21. 21.
    Yoon D, Soundararajan M, Sekatski S, Genoud J, Alberti S, Ansermet JP. 2019. High-field 13C dynamic nuclear polarization in nanodiamond. J. Phys. Chem. C 123:3421237–43
    [Google Scholar]
  22. 22.
    Hovav Y, Feintuch A, Vega S. 2012. Theoretical aspects of dynamic nuclear polarization in the solid state – the cross effect. J. Magn. Reson. 214:29–41
    [Google Scholar]
  23. 23.
    Hu K-N, Yu H, Swager TM, Griffin RG. 2004. Dynamic nuclear polarization with biradicals. J. Am. Chem. Soc. 126:3510844–45
    [Google Scholar]
  24. 24.
    Matsuki Y, Maly T, Ouari O, Karoui H, Le Moigne F et al. 2009. Dynamic nuclear polarization with a rigid biradical. Angew. Chem. Int. Ed. 48:274996–5000
    [Google Scholar]
  25. 25.
    Zagdoun A, Casano G, Ouari O, Schwarzwälder M, Rossini AJ et al. 2013. Large molecular weight nitroxide biradicals providing efficient dynamic nuclear polarization at temperatures up to 200 K. J. Am. Chem. Soc. 135:3412790–97
    [Google Scholar]
  26. 26.
    Can TV, Caporini MA, Mentink-Vigier F, Corzilius B, Walish JJ et al. 2014. Overhauser effects in insulating solids. J. Chem. Phys. 141:664202
    [Google Scholar]
  27. 27.
    Pylaeva S, Ivanov KL, Baldus M, Sebastiani D, Elgabarty H. 2017. Molecular mechanism of Overhauser dynamic nuclear polarization in insulating solids. J. Phys. Chem. Lett. 8:102137–42
    [Google Scholar]
  28. 28.
    Can TV, Ni QZ, Griffin RG. 2015. Mechanisms of dynamic nuclear polarization in insulating solids. J. Magn. Reson. 253:23–35
    [Google Scholar]
  29. 29.
    Ji X, Can TV, Mentink-Vigier F, Bornet A, Milani J et al. 2018. Overhauser effects in non-conducting solids at 1.2 K. J. Magn. Reson. 286:138–42
    [Google Scholar]
  30. 30.
    Fujiwara S, Hosoyamada M, Tateishi K, Uesaka T, Ideta K et al. 2018. Dynamic nuclear polarization of metal-organic frameworks using photoexcited triplet electrons. J. Am. Chem. Soc. 140:4615606–10
    [Google Scholar]
  31. 31.
    Lesage A, Lelli M, Gajan D, Caporini MA, Vitzthum V et al. 2010. Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J. Am. Chem. Soc. 132:4415459–61
    [Google Scholar]
  32. 32.
    Rossini AJ, Zagdoun A, Lelli M, Lesage A, Copéret C, Emsley L. 2013. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc. Chem. Res. 46:91942–51
    [Google Scholar]
  33. 33.
    Zagdoun A, Rossini AJ, Gajan D, Bourdolle A, Ouari O et al. 2012. Non-aqueous solvents for DNP surface enhanced NMR spectroscopy. Chem. Commun. 48:5654–56
    [Google Scholar]
  34. 34.
    Lund A, Casano G, Menzildjian G, Kaushik M, Stevanato G et al. 2020. TinyPols: a family of water-soluble binitroxides tailored for dynamic nuclear polarization enhanced NMR spectroscopy at 18.8 and 21.1T. Chem. Sci. 11:12810–18
    [Google Scholar]
  35. 35.
    Wisser D, Karthikeyan G, Lund A, Casano G, Karoui H et al. 2018. BDPA-nitroxide biradicals tailored for efficient dynamic nuclear polarization enhanced solid-state NMR at magnetic fields up to 21.1 T. J. Am. Chem. Soc. 140:4113340–49
    [Google Scholar]
  36. 36.
    Wolf P, Valla M, Rossini AJ, Comas-Vives A, Núñez-Zarur F et al. 2014. NMR signatures of the active sites in Sn-β zeolite. Angew. Chem. Int. Ed. 53:3810179–83
    [Google Scholar]
  37. 37.
    Conley MP, Rossini AJ, Comas-Vives A, Valla M, Casano G et al. 2014. Silica-surface reorganization during organotin grafting evidenced by 119Sn DNP SENS: a tandem reaction of gem-silanols and strained siloxane bridges. Phys. Chem. Chem. Phys. 16:3317822–27
    [Google Scholar]
  38. 38.
    Ong T-C, Liao W-C, Mougel V, Gajan D, Lesage A et al. 2016. Atomistic description of reaction intermediates for supported metathesis catalysts enabled by DNP SENS. Angew. Chem. Int. Ed. 55:154743–47
    [Google Scholar]
  39. 39.
    Venkatesh A, Lund A, Rochlitz L, Jabbour R, Gordon CP et al. 2020. The structure of molecular and surface platinum sites determined by DNP-SENS and fast MAS 195Pt solid-state NMR spectroscopy. J. Am. Chem. Soc. 142:4418936–45
    [Google Scholar]
  40. 40.
    Perras FA, Boteju KC, Slowing II, Sadow AD, Pruski M. 2018. Direct 17O dynamic nuclear polarization of single-site heterogeneous catalysts. Chem. Commun. 54:283472–75
    [Google Scholar]
  41. 41.
    Hamzaoui B, Bendjeriou-Sedjerari A, Pump E, Abou-Hamad E, Sougrat R et al. 2016. Atomic-level organization of vicinal acid-base pairs through the chemisorption of aniline and derivatives onto mesoporous SBA15. Chem. Sci. 7:96099–105
    [Google Scholar]
  42. 42.
    Klet RC, Kaphan DM, Liu C, Yang C, Kropf AJ et al. 2018. Evidence for redox mechanisms in organometallic chemisorption and reactivity on sulfated metal oxides. J. Am. Chem. Soc. 140:206308–16
    [Google Scholar]
  43. 43.
    Moroz IB, Larmier K, Liao W-C, Copéret C. 2018. Discerning γ-alumina surface sites with nitrogen-15 dynamic nuclear polarization surface enhanced NMR spectroscopy of adsorbed pyridine. J. Phys. Chem. C 122:2010871–82
    [Google Scholar]
  44. 44.
    Perras FA, Wang Z, Kobayashi T, Baiker A, Huang J, Pruski M. 2019. Shedding light on the atomic-scale structure of amorphous silica-alumina and its Brønsted acid sites. Phys. Chem. Chem. Phys. 21:3519529–37
    [Google Scholar]
  45. 45.
    Valla M, Rossini AJ, Caillot M, Chizallet C, Raybaud P et al. 2015. Atomic description of the interface between silica and alumina in aluminosilicates through dynamic nuclear polarization surface-enhanced NMR spectroscopy and first-principles calculations. J. Am. Chem. Soc. 137:3310710–19
    [Google Scholar]
  46. 46.
    Rankin AGM, Webb PB, Dawson DM, Viger-Gravel J, Walder BJ et al. 2017. Determining the surface structure of silicated alumina catalysts via isotopic enrichment and dynamic nuclear polarization surface-enhanced NMR spectroscopy. J. Phys. Chem. C 121:4122977–84
    [Google Scholar]
  47. 47.
    Li W, Wang Q, Xu J, Aussenac F, Qi G et al. 2018. Probing the surface of γ-Al2O3 by oxygen-17 dynamic nuclear polarization enhanced solid-state NMR spectroscopy. Phys. Chem. Chem. Phys. 20:2517218–25
    [Google Scholar]
  48. 48.
    Hope MA, Halat DM, Magusin PCMM, Paul S, Peng L, Grey CP. 2017. Surface-selective direct 17O DNP NMR of CeO2 nanoparticles. Chem. Commun. 53:132142–45
    [Google Scholar]
  49. 49.
    Lee D, Duong NT, Lafon O, De Paëpe G. 2014. Primostrato solid-state NMR enhanced by dynamic nuclear polarization: Pentacoordinated Al3+ ions are only located at the surface of hydrated γ-alumina. J. Phys. Chem. C 118:4325065–76
    [Google Scholar]
  50. 50.
    Johnson RL, Perras FA, Kobayashi T, Schwartz TJ, Dumesic JA et al. 2016. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR. Chem. Commun. 52:91859–62
    [Google Scholar]
  51. 51.
    Klimavicius V, Neumann S, Kunz S, Gutmann T, Buntkowsky G. 2019. Room temperature CO oxidation catalysed by supported Pt nanoparticles revealed by solid-state NMR and DNP spectroscopy. Catal. Sci. Technol. 9:143743–52
    [Google Scholar]
  52. 52.
    Copéret C, Chabanas M, Petroff Saint-Arroman R, Basset J-M 2003. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed. 42:2156–81
    [Google Scholar]
  53. 53.
    Copéret C, Comas-Vives A, Conley MP, Estes DP, Fedorov A et al. 2016. Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem. Rev. 116:2323–421
    [Google Scholar]
  54. 54.
    Pump E, Viger-Gravel J, Abou-Hamad E, Samantaray MK, Hamzaoui B et al. 2016. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy. Chem. Sci. 8:1284–90
    [Google Scholar]
  55. 55.
    Pump E, Bendjeriou-Sedjerari A, Viger-Gravel J, Gajan D, Scotto B et al. 2018. Predicting the DNP-SENS efficiency in reactive heterogeneous catalysts from hydrophilicity. Chem. Sci. 9:214866–72
    [Google Scholar]
  56. 56.
    Mohandas JC, Abou-Hamad E, Callens E, Samantaray MK, Gajan D et al. 2017. From single-site tantalum complexes to nanoparticles of TaxNy and TaOxNy supported on silica: elucidation of synthesis chemistry by dynamic nuclear polarization surface enhanced NMR spectroscopy and X-ray absorption spectroscopy. Chem. Sci. 8:85650–61
    [Google Scholar]
  57. 57.
    Eedugurala N, Wang Z, Chaudhary U, Nelson N, Kandel K et al. 2015. Mesoporous silica-supported amidozirconium-catalyzed carbonyl hydroboration. ACS Catal 5:127399–414
    [Google Scholar]
  58. 58.
    Gutmann T, Liu J, Rothermel N, Xu Y, Jaumann E et al. 2015. Natural abundance 15N NMR by dynamic nuclear polarization: fast analysis of binding sites of a novel amine-carboxyl-linked immobilized dirhodium catalyst. Chem. Eur. J. 21:93798–805
    [Google Scholar]
  59. 59.
    Thankamony ASL, Lion C, Pourpoint F, Singh B, Perez Linde AJ et al. 2015. Insights into the catalytic activity of nitridated fibrous silica (KCC-1) nanocatalysts from 15N and 29Si NMR spectroscopy enhanced by dynamic nuclear polarization. Angew. Chem. Int. Ed. 54:72190–93
    [Google Scholar]
  60. 60.
    Kim SM, Liao W-C, Kierzkowska AM, Margossian T, Hosseini D et al. 2018. In situ XRD and dynamic nuclear polarization surface enhanced NMR spectroscopy unravel the deactivation mechanism of CaO-based, Ca3Al2O6-stabilized CO2 sorbents. Chem. Mater. 30:41344–52
    [Google Scholar]
  61. 61.
    Akbey Ü, Altin B, Linden A, Özçelik S, Gradzielski M, Oschkinat H. 2013. Dynamic nuclear polarization of spherical nanoparticles. Phys. Chem. Chem. Phys. 15:4720706–16
    [Google Scholar]
  62. 62.
    Kobayashi T, Pruski M. 2021. Indirectly detected DNP-enhanced 17O NMR spectroscopy: observation of non-protonated near-surface oxygen at naturally abundant silica and silica-alumina. ChemPhysChem 22:141441–45
    [Google Scholar]
  63. 63.
    Blanc F, Sperrin L, Jefferson DA, Pawsey S, Rosay M, Grey CP. 2013. Dynamic nuclear polarization enhanced natural abundance 17O spectroscopy. J. Am. Chem. Soc. 135:82975–78
    [Google Scholar]
  64. 64.
    Perras FA, Wang Z, Naik P, Slowing II, Pruski M. 2017. Natural abundance 17O DNP NMR provides precise O−H distances and insights into the Brønsted acidity of heterogeneous catalysts. Angew. Chem. Int. Ed. 129:319293–97
    [Google Scholar]
  65. 65.
    Leskes M, Kim G, Liu T, Michan AL, Aussenac F et al. 2017. Surface-sensitive NMR detection of the solid electrolyte interphase layer on reduced graphene oxide. J. Phys. Chem. Lett. 8:51078–85
    [Google Scholar]
  66. 66.
    Jin Y, Kneusels N-JH, Marbella LE, Castillo-Martínez E, Magusin PCMM et al. 2018. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. J. Am. Chem. Soc. 140:319854–67
    [Google Scholar]
  67. 67.
    Hestenes JC, Ells AW, Navarro Goldaraz M, Sergeyev IV, Itin B, Marbella LE 2020. Reversible deposition and stripping of the cathode electrolyte interphase on Li2RuO3. Front. Chem. 8:681
    [Google Scholar]
  68. 68.
    Rosy, Haber S, Evenstein E, Saha A, Brontvein O et al. 2020. Alkylated LixSiyOz coating for stabilization of Li-rich layered oxide cathodes. Energy Storage Mater 33:268–75
    [Google Scholar]
  69. 69.
    Haber S, Rosy, Saha A, Brontvein O, Carmieli R et al. 2021. Structure and functionality of an alkylated LixSiyOz interphase for high-energy cathodes from DNP-ssNMR spectroscopy. J. Am. Chem. Soc. 143:124694–704
    [Google Scholar]
  70. 70.
    Hope MA, Rinkel BLD, Gunnarsdóttir AB, Märker K, Menkin S et al. 2020. Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal. Nat. Commun. 11:12224
    [Google Scholar]
  71. 71.
    Lee D, Monin G, Duong NT, Lopez IZ, Bardet M et al. 2014. Untangling the condensation network of organosiloxanes on nanoparticles using 2D 29Si–29Si solid-state NMR enhanced by dynamic nuclear polarization. J. Am. Chem. Soc. 136:3913781–88
    [Google Scholar]
  72. 72.
    Sangodkar RP, Smith BJ, Gajan D, Rossini AJ, Roberts LR et al. 2015. Influences of dilute organic adsorbates on the hydration of low-surface-area silicates. J. Am. Chem. Soc. 137:258096–112
    [Google Scholar]
  73. 73.
    Kumari B, John D, Hoffmann P, Spende A, Toimil-Molares ME et al. 2018. Surface enhanced DNP assisted solid-state NMR of functionalized SiO2 coated polycarbonate membranes. Z. Phys. Chem. 232:7–81173–86
    [Google Scholar]
  74. 74.
    Kumar A, Walder BJ, Kunhi Mohamed A, Hofstetter A, Srinivasan B et al. 2017. The atomic-level structure of cementitious calcium silicate hydrate. J. Phys. Chem. C 121:3217188–96
    [Google Scholar]
  75. 75.
    Lee D, Leroy C, Crevant C, Bonhomme-Coury L, Babonneau F et al. 2017. Interfacial Ca2+ environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced 43Ca NMR spectroscopy. Nat. Commun. 8:14104
    [Google Scholar]
  76. 76.
    Guy ML, van Schooten KJ, Zhu L, Ramanathan C. 2017. Chemisorption of water on the surface of silicon microparticles measured by dynamic nuclear polarization enhanced NMR. J. Phys. Chem. C 121:52748–54
    [Google Scholar]
  77. 77.
    Werner M, Heil A, Rothermel N, Breitzke H, Groszewicz PB et al. 2015. Synthesis and solid state NMR characterization of novel peptide/silica hybrid materials. Solid State Nucl. Magn. Reson. 72:73–78
    [Google Scholar]
  78. 78.
    Piveteau L, Ong TC, Rossini AJ, Emsley L, Copéret C, Kovalenko MV. 2015. Structure of colloidal quantum dots from dynamic nuclear polarization surface enhanced NMR spectroscopy. J. Am. Chem. Soc. 137:4313964–71
    [Google Scholar]
  79. 79.
    Piveteau L, Ong TC, Walder BJ, Dirin DN, Moscheni D et al. 2018. Resolving the core and the surface of CdSe quantum dots and nanoplatelets using dynamic nuclear polarization enhanced PASS-PIETA NMR spectroscopy. ACS Cent. Sci. 4:91113–25
    [Google Scholar]
  80. 80.
    Chen Y, Dorn RW, Hanrahan MP, Wei L, Blome-Fernández R et al. 2021. Revealing the surface structure of CdSe nanocrystals by dynamic nuclear polarization-enhanced 77Se and 113Cd solid-state NMR spectroscopy. J. Am. Chem. Soc. 143:238747–60
    [Google Scholar]
  81. 81.
    Hanrahan MP, Stein JL, Park N, Cossairt BM, Rossini AJ. 2021. Elucidating the location of Cd2+ in post-synthetically treated InP quantum dots using dynamic nuclear polarization 31P and 113Cd solid-state NMR spectroscopy. J. Phys. Chem. C 125:52956–65
    [Google Scholar]
  82. 82.
    de Oliveira M, Herr K, Brodrecht M, Haro-Mares NB, Wissel T et al. 2021. Solvent-free dynamic nuclear polarization enhancements in organically modified mesoporous silica. Phys. Chem. Chem. Phys. 23:2212559–68
    [Google Scholar]
  83. 83.
    Grüning WR, Rossini AJ, Zagdoun A, Gajan D, Lesage A et al. 2013. Molecular-level characterization of the structure and the surface chemistry of periodic mesoporous organosilicates using DNP-surface enhanced NMR spectroscopy. Phys. Chem. Chem. Phys. 15:3213270–74
    [Google Scholar]
  84. 84.
    Kobayashi T, Singappuli-Arachchige D, Wang Z, Slowing II, Pruski M. 2017. Spatial distribution of organic functional groups supported on mesoporous silica nanoparticles: a study by conventional and DNP-enhanced 29Si solid-state NMR. Phys. Chem. Chem. Phys. 19:31781–89
    [Google Scholar]
  85. 85.
    Kobayashi T, Slowing II, Pruski M. 2017. Measuring long-range 13C–13C correlations on a surface under natural abundance using dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance. J. Phys. Chem. C 121:4424687–91
    [Google Scholar]
  86. 86.
    Lelli M, Gajan D, Lesage A, Caporini MA, Vitzthum V et al. 2011. Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. J. Am. Chem. Soc. 133:72104–7
    [Google Scholar]
  87. 87.
    Lafon O, Thankamony ASL, Kobayashi T, Carnevale D, Vitzthum V et al. 2013. Mesoporous silica nanoparticles loaded with surfactant: low temperature magic angle spinning 13C and 29Si NMR enhanced by dynamic nuclear polarization. J. Phys. Chem. C 117:31375–82
    [Google Scholar]
  88. 88.
    Lund A, Hsieh M-F, Siaw T-A, Han S-I. 2015. Direct dynamic nuclear polarization targeting catalytically active 27Al sites. Phys. Chem. Chem. Phys. 17:3825449–54
    [Google Scholar]
  89. 89.
    Zhao EW, Maligal-Ganesh R, Mentink-Vigier F, Zhao TY, Du Y et al. 2019. Atomic-scale structure of mesoporous silica-encapsulated Pt and PtSn nanoparticles revealed by dynamic nuclear polarization-enhanced 29Si MAS NMR spectroscopy. J. Phys. Chem. C 123:127299–307
    [Google Scholar]
  90. 90.
    Thankamony ASL, Lafon O, Lu X, Aussenac F, Rosay M et al. 2012. Solvent-free high-field dynamic nuclear polarization of mesoporous silica functionalized with TEMPO. Appl. Magn. Reson. 43:1–2237–50
    [Google Scholar]
  91. 91.
    Gajan D, Bornet A, Vuichoud B, Milani J, Melzi R et al. 2014. Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization. PNAS 111:4114693–97
    [Google Scholar]
  92. 92.
    Gajan D, Schwarzwälder M, Conley MP, Grüning WR, Rossini AJ et al. 2013. Solid-phase polarization matrixes for dynamic nuclear polarization from homogeneously distributed radicals in mesostructured hybrid silica materials. J. Am. Chem. Soc. 135:4115459–66
    [Google Scholar]
  93. 93.
    Vuichoud B, Canet E, Milani J, Bornet A, Baudouin D et al. 2016. Hyperpolarization of frozen hydrocarbon gases by dynamic nuclear polarization at 1.2 K. J. Phys. Chem. Lett. 7:163235–39
    [Google Scholar]
  94. 94.
    Baudouin D, Van Kalkeren HA, Bornet A, Vuichoud B, Veyre L et al. 2016. Cubic three-dimensional hybrid silica solids for nuclear hyperpolarization. Chem. Sci. 7:116846–50
    [Google Scholar]
  95. 95.
    Gunther WR, Michaelis VK, Caporini MA, Griffin RG, Román-Leshkov Y. 2014. Dynamic nuclear polarization NMR enables the analysis of Sn-Beta zeolite prepared with natural abundance 119Sn precursors. J. Am. Chem. Soc. 136:176219–22
    [Google Scholar]
  96. 96.
    Wolf P, Valla M, Núñez-Zarur F, Comas-Vives A, Rossini AJ et al. 2016. Correlating synthetic methods, morphology, atomic-level structure, and catalytic activity of Sn-β catalysts. ACS Catal 6:74047–63
    [Google Scholar]
  97. 97.
    Harris JW, Liao WC, Di Iorio JR, Henry AM, Ong TC et al. 2017. Molecular structure and confining environment of Sn sites in single-site chabazite zeolites. Chem. Mater. 29:208824–37
    [Google Scholar]
  98. 98.
    Jain SK, Tabassum T, Li L, Ren L, Fan W et al. 2021. P-site structural diversity and evolution in a Zeosil catalyst. J. Am. Chem. Soc. 143:41968–83
    [Google Scholar]
  99. 99.
    Berkson ZJ, Messinger RJ, Na K, Seo Y, Ryoo R, Chmelka BF. 2017. Non-topotactic transformation of silicate nanolayers into mesostructured MFI zeolite frameworks during crystallization. Angew. Chem. Int. Ed. 56:195164–69
    [Google Scholar]
  100. 100.
    Xiao D, Xu S, Brownbill NJ, Paul S, Chen L-H et al. 2018. Fast detection and structural identification of carbocations on zeolites by dynamic nuclear polarization enhanced solid-state NMR. Chem. Sci. 9:438184–93
    [Google Scholar]
  101. 101.
    Fu D, Lucini Paioni A, Lian C, van der Heijden O, Baldus M, Weckhuysen BM 2020. Elucidating zeolite channel geometry-reaction intermediate relationships for the methanol-to-hydrocarbon process. Angew. Chem. Int. Ed. 59:4520024–30
    [Google Scholar]
  102. 102.
    Pourpoint F, Thankamony ASL, Volkringer C, Loiseau T, Trébosc J et al. 2014. Probing 27Al–13C proximities in metal-organic frameworks using dynamic nuclear polarization enhanced NMR spectroscopy. Chem. Commun. 50:8933–35
    [Google Scholar]
  103. 103.
    Rossini AJ, Zagdoun A, Lelli M, Canivet J, Aguado S et al. 2012. Dynamic nuclear polarization enhanced solid-state NMR spectroscopy of functionalized metal-organic frameworks. Angew. Chem. Int. Ed. 51:1123–27
    [Google Scholar]
  104. 104.
    Guo Z, Kobayashi T, Wang L-L, Goh TW, Xiao C et al. 2014. Selective host-guest interaction between metal ions and metal-organic frameworks using dynamic nuclear polarization enhanced solid-state NMR spectroscopy. Chem. Eur. J. 20:4916308–13
    [Google Scholar]
  105. 105.
    Todorova TK, Rozanska X, Gervais C, Legrand A, Ho LN et al. 2016. Molecular level characterization of the structure and interactions in peptide-functionalized metal-organic frameworks. Chem. Eur. J. 22:4616531–38
    [Google Scholar]
  106. 106.
    Kobayashi T, Perras FA, Goh TW, Metz TL, Huang W, Pruski M. 2016. DNP-enhanced ultrawideline solid-state NMR spectroscopy: studies of platinum in metal-organic frameworks. J. Phys. Chem. Lett. 7:132322–27
    [Google Scholar]
  107. 107.
    Carnevale D, Mouchaham G, Wang S, Baudin M, Serre C et al. 2021. Natural abundance oxygen-17 solid-state NMR of metal organic frameworks enhanced by dynamic nuclear polarization. Phys. Chem. Chem. Phys. 23:32245–51
    [Google Scholar]
  108. 108.
    Björgvinsdóttir S, Walder BJ, Pinon AC, Emsley L. 2018. Bulk nuclear hyperpolarization of inorganic solids by relay from the surface. J. Am. Chem. Soc. 140:257946–51
    [Google Scholar]
  109. 109.
    Björgvinsdóttir S, Moutzouri P, Berruyer P, Hope MA, Emsley L. 2020. Sensitivity enhancements in lithium titanates by incipient wetness impregnation DNP NMR. J. Phys. Chem. C 124:3016524–28
    [Google Scholar]
  110. 110.
    Björgvinsdóttir S, Moutzouri P, Walder BJ, Matthey N, Emsley L. 2021. Hyperpolarization transfer pathways in inorganic materials. J. Magn. Reson. 323:106888
    [Google Scholar]
  111. 111.
    Dementyev AE, Cory DG, Ramanathan C. 2008. Dynamic nuclear polarization in silicon microparticles. Phys. Rev. Lett. 100:12127601
    [Google Scholar]
  112. 112.
    Kwiatkowski G, Polyhach Y, Jähnig F, Shiroka T, Starsich FHL et al. 2018. Exploiting endogenous surface defects for dynamic nuclear polarization of silicon micro- and nanoparticles. J. Phys. Chem. C 122:4425668–80
    [Google Scholar]
  113. 113.
    Bretschneider CO, Akbey Ü, Aussenac F, Olsen GL, Feintuch A et al. 2016. On the potential of dynamic nuclear polarization enhanced diamonds in solid-state and dissolution 13C NMR spectroscopy. ChemPhysChem 17:172691–701
    [Google Scholar]
  114. 114.
    Spence RD, Cowen JA. 1960. Concentration dependence of the polarization and relaxation time of 27Al nuclei in ruby. J. Chem. Phys. 32:2624–25
    [Google Scholar]
  115. 115.
    Brun E, Derighetti B, Hundt EE, Niebuhr HH. 1970. NMR of 17O in ruby with dynamic polarization techniques. Phys. Lett. A 31:8416–17
    [Google Scholar]
  116. 116.
    Jacquinot JF, Wenckebach WT, Goldman M, Abragam A. 1974. Polarization and NMR observation of 43Ca nuclei in CaF2. Phys. Rev. Lett. 32:201096–97
    [Google Scholar]
  117. 117.
    Derighetti B, Hafner S, Marxer H, Rager H. 1978. NMR of 29Si and 25Mg In Mg2SiO4 with dynamic polarization technique. Phys. Lett. A 66:2150–52
    [Google Scholar]
  118. 118.
    Wenk P, Kaushik M, Richter D, Vogel M, Suess B, Corzilius B. 2015. Dynamic nuclear polarization of nucleic acid with endogenously bound manganese. J. Biomol. NMR 63:197–109
    [Google Scholar]
  119. 119.
    Jardón-Álvarez D, Kahn N, Houben L, Leskes M. 2021. Oxygen vacancy distribution in yttrium-doped ceria from 89Y–89Y correlations via dynamic nuclear polarization solid-state NMR. J. Phys. Chem. Lett. 12:112964–69
    [Google Scholar]
  120. 120.
    Jain SK, Yu CJ, Wilson CB, Tabassum T, Freedman DE, Han S 2021. Dynamic nuclear polarization with vanadium(IV) metal centers. Chemistry 7:2421–35
    [Google Scholar]
  121. 121.
    Ouari O, Phan T, Ziarelli F, Casano G, Aussenac F et al. 2013. Improved structural elucidation of synthetic polymers by dynamic nuclear polarization solid-state NMR spectroscopy. ACS Macro Lett 2:8715–19
    [Google Scholar]
  122. 122.
    Brownbill NJ, Sprick RS, Bonillo B, Pawsey S, Aussenac F et al. 2018. Structural elucidation of amorphous photocatalytic polymers from dynamic nuclear polarization enhanced solid state NMR. Macromolecules 51:83088–96
    [Google Scholar]
  123. 123.
    Grätz S, de Olivera M, Gutmann T, Borchardt L. 2020. A comprehensive approach for the characterization of porous polymers using 13C and 15N dynamic nuclear polarization NMR spectroscopy. Phys. Chem. Chem. Phys. 22:4023307–14
    [Google Scholar]
  124. 124.
    Chaudhari SR, Griffin JM, Broch K, Lesage A, Lemaur V et al. 2017. Donor-acceptor stacking arrangements in bulk and thin-film high-mobility conjugated polymers characterized using molecular modelling and MAS and surface-enhanced solid-state NMR spectroscopy. Chem. Sci. 8:43126–36
    [Google Scholar]
  125. 125.
    Blanc F, Chong SY, McDonald TO, Adams DJ, Pawsey S et al. 2013. Dynamic nuclear polarization NMR spectroscopy allows high-throughput characterization of microporous organic polymers. J. Am. Chem. Soc. 135:4115290–93
    [Google Scholar]
  126. 126.
    Le D, Casano G, Phan TNT, Ziarelli F, Ouari O et al. 2014. Optimizing sample preparation methods for dynamic nuclear polarization solid-state NMR of synthetic polymers. Macromolecules 47:123909–16
    [Google Scholar]
  127. 127.
    Tanaka S, Liao W-C, Ogawa A, Sato K, Copéret C. 2020. DNP NMR spectroscopy of cross-linked organic polymers: rational guidelines towards optimal sample preparation. Phys. Chem. Chem. Phys. 22:63184–90
    [Google Scholar]
  128. 128.
    Le D, Ziarelli F, Phan TNT, Mollica G, Thureau P et al. 2015. Up to 100% improvement in dynamic nuclear polarization solid-state NMR sensitivity enhancement of polymers by removing oxygen. Macromol. Rapid Commun. 36:151416–21
    [Google Scholar]
  129. 129.
    Märker K, Pingret M, Mouesca JM, Gasparutto D, Hediger S, De Paëpe G. 2015. A new tool for NMR crystallography: complete 13C/15N assignment of organic molecules at natural isotopic abundance using DNP-enhanced solid-state NMR. J. Am. Chem. Soc. 137:4313796–99
    [Google Scholar]
  130. 130.
    Mollica G, Dekhil M, Ziarelli F, Thureau P, Viel S. 2015. Quantitative structural constraints for organic powders at natural isotopic abundance using dynamic nuclear polarization solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 54:206028–31
    [Google Scholar]
  131. 131.
    Ni QZ, Yang F, Can TV, Sergeyev IV, D'Addio SM et al. 2017. In situ characterization of pharmaceutical formulations by dynamic nuclear polarization enhanced MAS NMR. J. Phys. Chem. B 121:348132–41
    [Google Scholar]
  132. 132.
    Zhao L, Hanrahan MP, Chakravarty P, DiPasquale AG, Sirois LE et al. 2018. Characterization of pharmaceutical cocrystals and salts by dynamic nuclear polarization-enhanced solid-state NMR spectroscopy. Cryst. Growth Des. 18:42588–601
    [Google Scholar]
  133. 133.
    Rossini AJ, Widdifield CM, Zagdoun A, Lelli M, Schwarzwälder M et al. 2014. Dynamic nuclear polarization enhanced NMR spectroscopy for pharmaceutical formulations. J. Am. Chem. Soc. 136:62324–34
    [Google Scholar]
  134. 134.
    Märker K, Paul S, Fernández-de-Alba C, Lee D, Mouesca J-M et al. 2017. Welcoming natural isotopic abundance in solid-state NMR: probing π-stacking and supramolecular structure of organic nanoassemblies using DNP. Chem. Sci. 8:2974–87
    [Google Scholar]
  135. 135.
    Veinberg SL, Johnston KE, Jaroszewicz MJ, Kispal BM, Mireault CR et al. 2016. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs. Phys. Chem. Chem. Phys. 18:2617713–30
    [Google Scholar]
  136. 136.
    Hirsh DA, Rossini AJ, Emsley L, Schurko RW. 2016. 35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients. Phys. Chem. Chem. Phys. 18:3725893–904
    [Google Scholar]
  137. 137.
    Viger-Gravel J, Avalos CE, Kubicki DJ, Gajan D, Lelli M et al. 2019. 19F magic angle spinning dynamic nuclear polarization enhanced NMR spectroscopy. Angew. Chem. Int. Ed. 58:227249–53
    [Google Scholar]
  138. 138.
    Lelli M, Chaudhari SR, Gajan D, Casano G, Rossini AJ et al. 2015. Solid-state dynamic nuclear polarization at 9.4 and 18.8 T from 100 K to room temperature. J. Am. Chem. Soc. 137:4614558–61
    [Google Scholar]
  139. 139.
    Liao W-C, Ong T-C, Gajan D, Bernada F, Sauvée C et al. 2016. Dendritic polarizing agents for DNP SENS. Chem. Sci. 8:1416–22
    [Google Scholar]
  140. 140.
    Viger-Gravel J, Berruyer P, Gajan D, Basset J-M, Lesage A et al. 2017. Frozen acrylamide gels as dynamic nuclear polarization matrices. Angew. Chem. Int. Ed. 56:308726–30
    [Google Scholar]
  141. 141.
    Silverio DL, van Kalkeren HA, Ong T-C, Baudin M, Yulikov M et al. 2017. Tailored polarizing hybrid solids with nitroxide radicals localized in mesostructured silica walls. Helv. Chim. Acta 100:6e1700101
    [Google Scholar]
  142. 142.
    Cao W, Wang WD, Xu H-S, Sergeyev IV, Struppe J et al. 2018. Exploring applications of covalent organic frameworks: homogeneous reticulation of radicals for dynamic nuclear polarization. J. Am. Chem. Soc. 140:226969–77
    [Google Scholar]
  143. 143.
    Yakimov AV, Mance D, Searles K, Copéret C. 2020. A formulation protocol with pyridine to enable dynamic nuclear polarization surface-enhanced NMR spectroscopy on reactive surface sites: case study with olefin polymerization and metathesis catalysts. J. Phys. Chem. Lett. 11:93401–7
    [Google Scholar]
  144. 144.
    Kayser SA, Mester A, Mertens A, Jakes P, Eichel R-A, Granwehr J. 2018. Long-run in operando NMR to investigate the evolution and degradation of battery cells. Phys. Chem. Chem. Phys. 20:2013765–76
    [Google Scholar]
  145. 145.
    Märker K, Xu C, Grey CP. 2020. Operando NMR of NMC811/graphite lithium-ion batteries: structure, dynamics, and lithium metal deposition. J. Am. Chem. Soc. 142:4117447–56
    [Google Scholar]
  146. 146.
    Freytag AI, Pauric AD, Krachkovskiy SA, Goward GR. 2019. In situ magic-angle spinning 7Li NMR analysis of a full electrochemical lithium-ion battery using a jelly roll cell design. J. Am. Chem. Soc. 141:3513758–61
    [Google Scholar]
  147. 147.
    Walter ED, Qi L, Chamas A, Mehta HS, Sears JA et al. 2018. Operando MAS NMR reaction studies at high temperatures and pressures. J. Phys. Chem. C 122:158209–15
    [Google Scholar]
  148. 148.
    Hunger M. 2008. In situ flow MAS NMR spectroscopy: state of the art and applications in heterogeneous catalysis. Prog. Nucl. Magn. Reson. Spectrosc. 53:3105–27
    [Google Scholar]
  149. 149.
    Hu JZ, Sears JA, Mehta HS, Ford JJ, Kwak JH et al. 2012. A large sample volume magic angle spinning nuclear magnetic resonance probe for in situ investigations with constant flow of reactants. Phys. Chem. Chem. Phys. 14:72137–43
    [Google Scholar]
  150. 150.
    Arzumanov SS, Stepanov AG. 2013. Parahydrogen-induced polarization detected with continuous flow magic angle spinning NMR. J. Phys. Chem. C 117:62888–92
    [Google Scholar]
  151. 151.
    Wenzel M, Zaheer MA, Issayeva D, Poppitz D, Matysik J et al. 2021. Flow MAS NMR for in situ monitoring of carbon dioxide capture and hydrogenation using nanoporous solids. J. Phys. Chem. C 125:1910219–25
    [Google Scholar]
  152. 152.
    Geiger M-A, Orwick-Rydmark M, Märker K, Franks WT, Akhmetzyanov D et al. 2016. Temperature dependence of cross-effect dynamic nuclear polarization in rotating solids: advantages of elevated temperatures. Phys. Chem. Chem. Phys. 18:4430696–704
    [Google Scholar]
  153. 153.
    Hope MA, Björgvinsdóttir S, Halat DM, Menzildjian G, Wang Z et al. 2021. Endogenous 17O dynamic nuclear polarization of Gd-doped CeO2 from 100 to 370 K. J. Phys. Chem. C 125:3418799–809
    [Google Scholar]
  154. 154.
    Can TV, Walish JJ, Swager TM, Griffin RG. 2015. Time domain DNP with the NOVEL sequence. J. Chem. Phys. 143:5054201
    [Google Scholar]
  155. 155.
    Jain SK, Mathies G, Griffin RG. 2017. Off-resonance NOVEL. J. Chem. Phys. 147:16164201
    [Google Scholar]
  156. 156.
    Can TV, Weber RT, Walish JJ, Swager TM, Griffin RG. 2017. Frequency-swept integrated solid effect. Angew. Chem. Int. Ed. 56:246744–48
    [Google Scholar]
  157. 157.
    Tan KO, Yang C, Weber RT, Mathies G, Griffin RG. 2019. Time-optimized pulsed dynamic nuclear polarization. Sci. Adv. 5:1eaav6909
    [Google Scholar]
  158. 158.
    Equbal A, Tagami K, Han S 2019. Pulse-shaped dynamic nuclear polarization under magic-angle spinning. J. Phys. Chem. Lett. 10:247781–88
    [Google Scholar]
  159. 159.
    Gao C, Alaniva N, Saliba EP, Sesti EL, Judge PT et al. 2019. Frequency-chirped dynamic nuclear polarization with magic angle spinning using a frequency-agile gyrotron. J. Magn. Reson. 308:106586
    [Google Scholar]
  160. 160.
    Kouno H, Kawashima Y, Tateishi K, Uesaka T, Kimizuka N, Yanai N. 2019. Non-pentacene polarizing agents with improved air stability for triplet dynamic nuclear polarization at room temperature. J. Phys. Chem. Lett. 10:92208–13
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081720-085634
Loading
/content/journals/10.1146/annurev-matsci-081720-085634
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error