1932

Abstract

Portland cement concrete, the most used manufactured material in the world, is a significant contributor to anthropogenic carbon dioxide (CO) emissions. While strategies such as point-source CO capture, renewable fuels, alternative cements, and supplementary cementitious materials can yield substantial reductions in cement-related CO emissions, emerging biocement technologies based on the mechanisms of microbial biomineralization have the potential to radically transform the industry. In this work, we present a review and meta-analysis of the field of biomineralized building materials and their potential to improve the sustainability and durability of civil infrastructure. First, we review the mechanisms of microbial biomineralization, which underpin our discussion of current and emerging biomineralized material technologies and their applications within the construction industry. We conclude by highlighting the technical, economic, and environmental challenges that must be addressed before new, innovative biomineralized material technologies can scale beyond the laboratory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081720-105303
2022-07-01
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081720-105303.html?itemId=/content/journals/10.1146/annurev-matsci-081720-105303&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Architecture 2030 2022. Embodied carbon actions https://architecture2030.org/embodied-carbon-actions/
    [Google Scholar]
  2. 2.
    Deetman S, Marinova S, van der Voet E, van Vuuren DP, Edelenbosch O, Heijungs R. 2020. Modelling global material stocks and flows for residential and service sector buildings towards 2050. J. Clean. Prod. 245:118658
    [Google Scholar]
  3. 3.
    Rissman J, Bataille C, Masanet E, Aden N, Morrow WR et al. 2020. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl. Energy 266:114848
    [Google Scholar]
  4. 4.
    de Brito J, Kurda R. 2021. The past and future of sustainable concrete: a critical review and new strategies on cement-based materials. J. Clean. Prod. 281:123558
    [Google Scholar]
  5. 5.
    Int. Energy Agency (IEA) 2018. Technology roadmap: low-carbon transition in the cement industry Rep. IEA https://www.iea.org/reports/technology-roadmap-low-carbon-transition-in-the-cement-industry
    [Google Scholar]
  6. 6.
    Andrew RM. 2019. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 11:1675–710
    [Google Scholar]
  7. [Google Scholar]
  8. [Google Scholar]
  9. 9.
    Tennis P. 2018. Ordinary portland cement (OPC): overview: anything but ordinary Presentation Apr. 18. https://arpa-e.energy.gov/sites/default/files/4.%20Tennis_ARPA-E%20%20OPC%20Overview%20short.pdf
    [Google Scholar]
  10. 10.
    Li J, Geng G, Zhang W, Yu Y-S, Shapiro DA, Monteiro PJM. 2019. The hydration of β- and α′H-dicalcium silicates: an X-ray spectromicroscopic study. ACS Sustain. Chem. Eng. 7:22316–26
    [Google Scholar]
  11. 11.
    Baldermann A, Landler A, Mittermayr F, Letofsky-Papst I, Steindl F et al. 2019. Removal of heavy metals (Co, Cr, and Zn) during calcium-aluminium-silicate-hydrate and trioctahedral smectite formation. J. Mater. Sci. 54:139331–51
    [Google Scholar]
  12. 12.
    Lingyu T, Dongpo H, Jianing Z, Hongguang W. 2021. Durability of geopolymers and geopolymer concretes: a review. Rev. Adv. Mater. Sci. 60:11–14
    [Google Scholar]
  13. 13.
    ChemTube3D 2022. Calcium carbonate—CaCO3—polymorphs https://www.chemtube3d.com/ss-caco3/
    [Google Scholar]
  14. 14.
    DeRousseau MA, Arehart JH, Kasprzyk JR, Srubar WV. 2020. Statistical variation in the embodied carbon of concrete mixtures. J. Clean. Prod. 275:123088
    [Google Scholar]
  15. 15.
    van Deventer JSJ, Provis JL, Duxson P, Brice DG. 2010. Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valoriz 1:1145–55
    [Google Scholar]
  16. 16.
    Habert G, Billard C, Rossi P, Chen C, Roussel N. 2010. Cement production technology improvement compared to factor 4 objectives. Cem. Concr. Res. 40:5820–26
    [Google Scholar]
  17. 17.
    Yang K-H, Song J-K, Song K-I. 2013. Assessment of CO2 reduction of alkali-activated concrete. J. Clean. Prod. 39:265–72
    [Google Scholar]
  18. 18.
    McLellan BC, Williams RP, Lay J, van Riessen A, Corder GD. 2011. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 19:91080–90
    [Google Scholar]
  19. 19.
    Moseson AJ, Moseson DE, Barsoum MW. 2012. High volume limestone alkali-activated cement developed by design of experiment. Cem. Concr. Compos. 34:3328–36
    [Google Scholar]
  20. 20.
    Achal V, Mukherjee A. 2015. A review of microbial precipitation for sustainable construction. Constr. Build. Mater. 93:1224–35
    [Google Scholar]
  21. 21.
    Achal V, Mukherjee A, Kumari D, Zhang Q. 2015. Biomineralization for sustainable construction: a review of processes and applications. Earth Sci. Rev. 148:1–17
    [Google Scholar]
  22. 22.
    Rahman MM, Hora RN, Ahenkorah I, Beecham S, Karim MR, Iqbal A. 2020. State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications. Sustainability 12:156281
    [Google Scholar]
  23. 23.
    Krajewska B. 2018. Urease-aided calcium carbonate mineralization for engineering applications: a review. J. Adv. Res. 13:59–67
    [Google Scholar]
  24. 24.
    De Muynck W, De Belie N, Verstraete W. 2010. Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36:2118–36
    [Google Scholar]
  25. 25.
    Omoregie AI, Palombo EA, Nissom PM. 2021. Bioprecipitation of calcium carbonate mediated by ureolysis: a review. Environ. Eng. Res. 26:6200379
    [Google Scholar]
  26. 26.
    Dhami NK, Reddy MS, Mukherjee A. 2013. Biomineralization of calcium carbonates and their engineered applications: a review. Front. Microbiol. 4:314
    [Google Scholar]
  27. 27.
    Williams SL, Kirisits MJ, Ferron RD. 2017. Influence of concrete-related environmental stressors on biomineralizing bacteria used in self-healing concrete. Constr. Build. Mater. 139:611–18
    [Google Scholar]
  28. 28.
    Castro-Alonso MJ, Montañez-Hernandez LE, Sanchez-Muñoz MA, Macias Franco MR, Narayanasamy R, Balagurusamy N 2019. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Front. Mater 6:126
    [Google Scholar]
  29. 29.
    Weiner S, Dove PM. 2003. An overview of biomineralization processes and the problem of the vital effect. Rev. Mineral. Geochem. 54:11–29
    [Google Scholar]
  30. 30.
    Yu X, Jiang J, Liu J, Li W. 2021. Review on potential uses, cementing process, mechanism and syntheses of phosphate cementitious materials by the microbial mineralization method. Constr. Build. Mater. 273:121113
    [Google Scholar]
  31. 31.
    Yu X, Jiang J. 2018. Mineralization and cementing properties of bio-carbonate cement, bio-phosphate cement, and bio-carbonate/phosphate cement: a review. Environ. Sci. Pollut. Res. 25:2221483–97
    [Google Scholar]
  32. 32.
    Qin W, Wang C, Ma Y, Shen M, Li J et al. 2020. Microbe-mediated extracellular and intracellular mineralization: environmental, industrial, and biotechnological applications. Adv. Mater. 32:221907833
    [Google Scholar]
  33. 33.
    Parracha JL, Pereira AS, Velez da Silva R, Almeida N, Faria P. 2019. Efficacy of iron-based bioproducts as surface biotreatment for earth-based plastering mortars. J. Clean. Prod. 237:117803
    [Google Scholar]
  34. 34.
    Jain S, Arnepalli DN. 2019. Biominerlisation as a remediation technique: a critical review. Geotechnical Characterisation and Geoenvironmental Engineering VK Stalin, M Muttharam 155–62 Singapore: Springer
    [Google Scholar]
  35. 35.
    Rajasekar A, Wilkinson S, Moy CKS. 2021. MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: a review. Environ. Sci. Ecotechnol. 6:100096
    [Google Scholar]
  36. 36.
    Bhutange SP, Latkar MV. 2020. Microbially induced calcium carbonate precipitation in construction materials. J. Mater. Civ. Eng. 32:503120001
    [Google Scholar]
  37. 37.
    Heveran CM, Liang L, Nagarajan A, Hubler MH, Gill R et al. 2019. Engineered ureolytic microorganisms can tailor the morphology and nanomechanical properties of microbial-precipitated calcium carbonate. Sci. Rep. 9:114721
    [Google Scholar]
  38. 38.
    Mondal S, Ghosh AD. 2019. Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete. Constr. Build. Mater. 225:67–75
    [Google Scholar]
  39. 39.
    Almajed A, Lateef MA, Moghal AAB, Lemboye K. 2021. State-of-the-art review of the applicability and challenges of microbial-induced calcite precipitation (MICP) and enzyme-induced calcite precipitation (EICP) techniques for geotechnical and geoenvironmental applications. Crystals 11:4370
    [Google Scholar]
  40. 40.
    Qiu J, Artier J, Cook S, Srubar WV, Cameron JC, Hubler MH. 2021. Engineering living building materials for enhanced bacterial viability and mechanical properties. iScience 24:2102083
    [Google Scholar]
  41. 41.
    Heveran CM, Williams SL, Qiu J, Artier J, Hubler MH et al. 2020. Biomineralization and successive regeneration of engineered living building materials. Matter 2:2481–94
    [Google Scholar]
  42. 42.
    Rodriguez-Navarro C, Cizer Ö, Kudłacz K, Ibañez-Velasco A, Ruiz-Agudo C et al. 2019. The multiple roles of carbonic anhydrase in calcium carbonate mineralization. CrystEngComm 21:487407–23
    [Google Scholar]
  43. 43.
    Jansson C, Northen T. 2010. Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage. Curr. Opin. Biotechnol. 21:3365–71
    [Google Scholar]
  44. 44.
    Alshalif AF, Irwan JM, Othman N, Anneza LH. 2016. Isolation of sulphate reduction bacteria (SRB) to improve compress strength and water penetration of bio-concrete. MATEC Web Conf 47:01016
    [Google Scholar]
  45. 45.
    He J, Gray K, Norris A, Ewing AC, Jurgerson J, Shi X. 2020. Use of biological additives in concrete pavements: a review of opportunities and challenges. J. Transp. Eng. B 146:304020036
    [Google Scholar]
  46. 46.
    Chaurasia L, Bisht V, Singh LP, Gupta S. 2019. A novel approach of biomineralization for improving micro and macro-properties of concrete. Constr. Build. Mater. 195:340–51
    [Google Scholar]
  47. 47.
    Alshalif AF, Irwan JM, Othman N, Al-Gheethi AA, Shamsudin S, Nasser IM. 2021. Optimisation of carbon dioxide sequestration into bio-foamed concrete bricks pores using Bacillus tequilensis. J. CO2 Util. 44:101412
    [Google Scholar]
  48. 48.
    Erşan , Verbruggen H, De Graeve I, Verstraete W, De Belie N, Boon N. 2016. Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion. Cem. Concr. Res. 83:19–30
    [Google Scholar]
  49. 49.
    Jain S, Fang C, Achal V. 2021. A critical review on microbial carbonate precipitation via denitrification process in building materials. Bioengineered 12:17529–51
    [Google Scholar]
  50. 50.
    Kumari C, Das B, Jayabalan R, Davis R, Sarkar P. 2017. Effect of nonureolytic bacteria on engineering properties of cement mortar. J. Mater. Civ. Eng. 29:606016024
    [Google Scholar]
  51. 51.
    Rauf M, Khaliq W, Khushnood RA, Ahmed I 2020. Comparative performance of different bacteria immobilized in natural fibers for self-healing in concrete. Constr. Build. Mater. 258:119578
    [Google Scholar]
  52. 52.
    Al-Salloum Y, Abbas H, Sheikh QI, Hadi S, Alsayed S, Almusallam T. 2017. Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar. Saudi J. Biol. Sci. 24:2286–94
    [Google Scholar]
  53. 53.
    Fang C, Achal V. 2019. Biostimulation of calcite precipitation process by bacterial community in improving cement stabilized rammed earth as sustainable material. Appl. Microbiol. Biotechnol. 103:187719–27
    [Google Scholar]
  54. 54.
    Chuo SC, Mohamed SF, Mohd Setapar SH, Ahmad A, Jawaid M et al. 2020. Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials 13:214993
    [Google Scholar]
  55. 55.
    Wong LS. 2015. Microbial cementation of ureolytic bacteria from the genus Bacillus: a review of the bacterial application on cement-based materials for cleaner production. J. Clean. Prod. 93:5–17
    [Google Scholar]
  56. 56.
    Saeedi Javadi A, Badiee H, Sabermahani M. 2018. Mechanical properties and durability of bio-blocks with recycled concrete aggregates. Constr. Build. Mater. 165:859–65
    [Google Scholar]
  57. 57.
    Dhami NK, Reddy MS, Mukherjee A. 2012. Improvement in strength properties of ash bricks by bacterial calcite. Ecol. Eng. 39:31–35
    [Google Scholar]
  58. 58.
    Shaheen N, Jalil A, Adnan F, Khushnood RA 2021. Isolation of alkaliphilic calcifying bacteria and their feasibility for enhanced CaCO3 precipitation in bio-based cementitious composites. Microb. Biotechnol. 14:31044–59
    [Google Scholar]
  59. 59.
    Alonso MJC, Ortiz CEL, Perez SOG, Narayanasamy R, Fajardo San Miguel G et al. 2018. Improved strength and durability of concrete through metabolic activity of ureolytic bacteria. Environ. Sci. Pollut. Res. 25:2221451–58
    [Google Scholar]
  60. 60.
    Chahal N, Siddique R, Rajor A. 2012. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr. Build. Mater. 28:1351–56
    [Google Scholar]
  61. 61.
    Kim H, Son HM, Park S, Lee HK 2020. Effects of biological admixtures on hydration and mechanical properties of Portland cement paste. Constr. Build. Mater. 235:117461
    [Google Scholar]
  62. 62.
    Saxena S, Tembhurkar AR. 2020. Microbiological induced calcium carbonate process to enhance the properties of cement mortar. Mater. Today Proc. 21:1350–54
    [Google Scholar]
  63. 63.
    Bhutange SP, Latkar MV, Chakrabarti T. 2019. Role of biocementation to improve mechanical properties of mortar. Sādhanā 44:250
    [Google Scholar]
  64. 64.
    Charpe AU, Latkar MV, Chakrabarti T. 2019. Biocementation: an eco-friendly approach to strengthen concrete. Proc. Inst. Civ. Eng. Eng. Sustain. 172:8438–49
    [Google Scholar]
  65. 65.
    Tripathi E, Anand K, Goyal S, Reddy MS. 2019. Bacterial based admixed or spray treatment to improve properties of concrete. Sādhanā 44:119
    [Google Scholar]
  66. 66.
    Maheswaran S, Dasuru SS, Murthy ARC, Bhuvaneshwari B, Kumar VR et al. 2014. Strength improvement studies using new type wild strain Bacillus cereus on cement mortar. Curr. Sci. 106:150–57
    [Google Scholar]
  67. 67.
    Thiyagarajan H, Maheswaran S, Mapa M, Krishnamoorthy S, Balasubramanian B et al. 2016. Investigation of bacterial activity on compressive strength of cement mortar in different curing media. J. Adv. Concr. Technol. 14:4125–33
    [Google Scholar]
  68. 68.
    Schwantes-Cezario N, Porto MF, Sandoval GFB, Nogueira GFN, Couto AF, Toralles BM. 2019. Effects of Bacillus subtilis biocementation on the mechanical properties of mortars. Rev. IBRACON Estrut. Mater. 12:31–38
    [Google Scholar]
  69. 69.
    Marín S, Cabestrero O, Demergasso C, Olivares S, Zetola V, Vera M. 2021. An indigenous bacterium with enhanced performance of microbially-induced Ca-carbonate biomineralization under extreme alkaline conditions for concrete and soil-improvement industries. Acta Biomater 120:304–17
    [Google Scholar]
  70. 70.
    Ghosh P, Mandal S, Chattopadhyay BD, Pal S. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35:101980–83
    [Google Scholar]
  71. 71.
    Joshi S, Goyal S, Reddy MS. 2018. Influence of nutrient components of media on structural properties of concrete during biocementation. Constr. Build. Mater. 158:601–13
    [Google Scholar]
  72. 72.
    Montaño-Salazar SM, Lizarazo-Marriaga J, Brandão PFB. 2018. Isolation and potential biocementation of calcite precipitation inducing bacteria from Colombian buildings. Curr. Microbiol. 75:3256–65
    [Google Scholar]
  73. 73.
    Zamer MM, Irwan JM, Othman N, Faisal SK, Anneza LH et al. 2018. Biocalcification using ureolytic bacteria (UB) for strengthening interlocking compressed earth blocks (ICEB). IOP Conf. Ser. Mater. Sci. Eng. 311:012019
    [Google Scholar]
  74. 74.
    Kaur P, Joshi S, Shinde OA, Sudhakara Reddy M. 2021. Utilization of biomineralized steel slag in cement mortar to improve its properties. J. Mater. Civ. Eng. 33:604021116
    [Google Scholar]
  75. 75.
    Soffritti I, D'Accolti M, Lanzoni L, Volta A, Bisi M et al. 2019. The potential use of microorganisms as restorative agents: an update. Sustainability 11:143853
    [Google Scholar]
  76. 76.
    Ortega-Villamagua E, Gudiño-Gomezjurado M, Palma-Cando A. 2020. Microbiologically induced carbonate precipitation in the restoration and conservation of cultural heritage materials. Molecules 25:235499
    [Google Scholar]
  77. 77.
    Mujah D, Shahin MA, Cheng L. 2017. State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiol. J. 34:6524–37
    [Google Scholar]
  78. 78.
    Terzis D, Laloui L. 2019. A decade of progress and turning points in the understanding of bio-improved soils: a review. Geomech. Energy Environ. 19:100116
    [Google Scholar]
  79. 79.
    Portugal CRM, Fonyo C, Machado CC, Meganck R, Jarvis T 2020. Microbiologically induced calcite precipitation biocementation, green alternative for roads—is this the breakthrough? A critical review. J. Clean. Prod. 262:121372
    [Google Scholar]
  80. 80.
    Lee YS, Park W. 2018. Current challenges and future directions for bacterial self-healing concrete. Appl. Microbiol. Biotechnol. 102:73059–70
    [Google Scholar]
  81. 81.
    Kim H, Son HM, Seo J, Lee HK. 2021. Recent advances in microbial viability and self-healing performance in bacterial-based cementitious materials: a review. Constr. Build. Mater. 274:122094
    [Google Scholar]
  82. 82.
    Wang J, Ersan YC, Boon N, De Belie N. 2016. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. Appl. Microbiol. Biotechnol. 100:72993–3007
    [Google Scholar]
  83. 83.
    Saha P, Sikder A. 2019. Effect of bacteria on performance of concrete/mortar: a review. IJRTE 7:12–17
    [Google Scholar]
  84. 84.
    Munyao OM, Thiong'o JK, Wachira JM, Mutitu DK et al. 2019. Use of Bacillus species bacteria in protecting the concrete structures from sulphate attack: a review. J. Chem. Rev. 1:4287–99
    [Google Scholar]
  85. 85.
    Achal V, Pan X, Özyurt N. 2011. Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol. Eng. 37:4554–59
    [Google Scholar]
  86. 86.
    Jonkers HM, Schlangen E. 2007. Self-healing of cracked concrete: a bacterial approach. Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures1821–26
    [Google Scholar]
  87. 87.
    Basaran Z. 2013. Biomineralization in cement based materials: inoculation of vegetative cells PhD Thesis Dep. Civ. Archit. Environ. Eng., Univ. Texas Austin:
    [Google Scholar]
  88. 88.
    Skevi L, Reeksting BJ, Hoffmann TD, Gebhard S, Paine K. 2021. Incorporation of bacteria in concrete: the case against MICP as a means for strength improvement. Cem. Concr. Compos. 120:104056
    [Google Scholar]
  89. 89.
    Gupta S, Kua HW, Pang SD. 2018. Healing cement mortar by immobilization of bacteria in biochar: an integrated approach of self-healing and carbon sequestration. Cem. Concr. Compos. 86:238–54
    [Google Scholar]
  90. 90.
    Khushnood RA, Din S, Shaheen N, Ahmad S, Zarrar F 2019. Bio-inspired self-healing cementitious mortar using Bacillus subtilis immobilized on nano-/micro-additives. J. Intell. Mater. Syst. Struct. 30:13–15
    [Google Scholar]
  91. 91.
    Xu H, Lian J, Gao M, Fu D, Yan Y. 2019. Self-healing concrete using rubber particles to immobilize bacterial spores. Materials 12:142313
    [Google Scholar]
  92. 92.
    Mamo G, Mattiasson B 2020. Alkaliphiles: the emerging biological tools enhancing concrete durability. Alkaliphiles in Biotechnology G Mamo, B Mattiasson 293–342 Cham, Switz: Springer Int.
    [Google Scholar]
  93. 93.
    Xu J, Wang X. 2018. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material. Constr. Build. Mater. 167:1–14
    [Google Scholar]
  94. 94.
    Shaheen N, Khushnood RA, Khaliq W, Murtaza H, Iqbal R, Khan MH. 2019. Synthesis and characterization of bio-immobilized nano/micro inert and reactive additives for feasibility investigation in self-healing concrete. Constr. Build. Mater. 226:492–506
    [Google Scholar]
  95. 95.
    Basaran Bundur Z, Kirisits MJ, Ferron RD 2015. Biomineralized cement-based materials: impact of inoculating vegetative bacterial cells on hydration and strength. Cem. Concr. Res. 67:237–45
    [Google Scholar]
  96. 96.
    Chiu CH. 2019. Screening of microorganisms, calcium sources, and protective materials for self-healing concrete MS Thesis Dep. Biol. Sci., Purdue Univ., West Lafayette, IN
    [Google Scholar]
  97. 97.
    Wang J, Vandevyvere B, Vanhessche S, Schoon J, Boon N, De Belie N. 2017. Microbial carbonate precipitation for the improvement of quality of recycled aggregates. J. Clean. Prod. 156:355–66
    [Google Scholar]
  98. 98.
    Qiu J, Tng DQS, Yang E-H. 2014. Surface treatment of recycled concrete aggregates through microbial carbonate precipitation. Constr. Build. Mater. 57:144–50
    [Google Scholar]
  99. 99.
    Mukherjee A, Achal V. 2014. A biological route for producing low energy binders Presented at Australasian Conf. Mech. Struct. Mater. , , 23rd., South. Cross Univ. Lismore, NSW, Aust.: Dec. 9–12
    [Google Scholar]
  100. 100.
    Dhami NK, Mukherje A 2015. Can we benefit from the microbes present in rammed earth?. Rammed Earth Construction D Ciancio, C Beckett London: CRC Press
    [Google Scholar]
  101. 101.
    Zamer MM, Irwan JM, Othman N, Faisal S, Anneza LH et al. 2017. Influence of ureolytic bacteria toward interlocking compressed earth blocks (ICEB) in improving durability of ICEB. MATEC Web Conf. 103:01027
    [Google Scholar]
  102. 102.
    Nething C, Smirnova M, Gröning JAD, Haase W, Stolz A, Sobek W. 2020. A method for 3D printing bio-cemented spatial structures using sand and urease active calcium carbonate powder. Mater. Des. 195:109032
    [Google Scholar]
  103. 103.
    Charpe AU, Bhutange SP, Latkar MV, Chakrabarti T. 2021. Studies on biocementation of mortar and identification of causative bacteria. Arab. J. Sci. Eng. 46:54563–76
    [Google Scholar]
  104. 104.
    Mohd Azam RMA, Mohd Saman H, Kamaruddin K, Hussain NH 2016. Enhancement of thermophilic (Geobacillus stearothermophilus) cement-sand mortar properties. Regional Conference on Science, Technology and Social Sciences (RCSTSS 2014) N Yacob, M Mohamed, M Megat Hanafiah 79–92 Singapore: Springer
    [Google Scholar]
  105. 105.
    Park S-J, Park J-M, Kim W-J, Ghim S-Y. 2012. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar. J. Microbiol. Biotechnol. 22:111568–74
    [Google Scholar]
  106. 106.
    Bang SS, Galinat JK, Ramakrishnan V. 2001. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb. Technol. 28:4404–9
    [Google Scholar]
  107. 107.
    Ramachandran SK, Ramakrishnan V, Bang SS. 2001. Remediation of concrete using microorganisms. Mater. J. 98:13–9
    [Google Scholar]
  108. 108.
    Ghosh S, Biswas M, Chattopadhyay BD, Mandal S. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Compos. 31:293–98
    [Google Scholar]
  109. 109.
    Bang SS, Lippert JJ, Yerra U, Mulukutla S, Ramakrishnan V. 2010. Microbial calcite, a bio-based smart nanomaterial in concrete remediation. Int. J. Smart Nano Mater. 1:128–39
    [Google Scholar]
  110. 110.
    Park S-J, Park Y-M, Chun W-Y, Kim W-J, Ghim S-Y. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20:4782–88
    [Google Scholar]
  111. 111.
    Park S-J, Chun W-Y, Kim W-J, Ghim S-Y. 2012. Application of alkaliphilic biofilm-forming bacteria to improve compressive strength of cement-sand mortar. J. Microbiol. Biotechnol. 22:3385–89
    [Google Scholar]
  112. 112.
    Chahal N, Siddique R. 2013. Permeation properties of concrete made with fly ash and silica fume: influence of ureolytic bacteria. Constr. Build. Mater. 49:161–74
    [Google Scholar]
  113. 113.
    Pei R, Liu J, Wang S, Yang M 2013. Use of bacterial cell walls to improve the mechanical performance of concrete. Cem. Concr. Compos. 39:122–30
    [Google Scholar]
  114. 114.
    Erşan , Da Silva FB, Boon N, Verstraete W, De Belie N 2015. Screening of bacteria and concrete compatible protection materials. Constr. Build. Mater. 88:196–203
    [Google Scholar]
  115. 115.
    Krishnapriya S, Venkatesh Babu DL, Arulraj PG 2015. Isolation and identification of bacteria to improve the strength of concrete. Microbiol. Res. 174:48–55
    [Google Scholar]
  116. 116.
    Gandhimathi A, Suji D, Balasubramanian E. 2015. Bacterial concrete: development of concrete to increase the compressive and split-tensile strength using Bacillus sphaericus. Int. J. Appl. Eng. Res. 10:7125–32
    [Google Scholar]
  117. 117.
    Sarkar M, Alam N, Chaudhuri B, Chattopadhyay B, Mandal S. 2015. Development of an improved E. coli bacterial strain for green and sustainable concrete technology. RSC Adv 5:4132175–82
    [Google Scholar]
  118. 118.
    Anneza LH, Irwan JM, Othman N, Alshalif AF. 2016. Identification of bacteria and the effect on compressive strength of concrete. MATEC Web Conf 47:01008
    [Google Scholar]
  119. 119.
    Luo M, Qian C. 2016. Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength. Constr. Build. Mater. 121:659–63
    [Google Scholar]
  120. 120.
    Meera CM, Subha V. 2016. Strength and durability assessment of bacteria based self-healing concrete. IOSR J. Mech. Civ. Eng. 31–7
    [Google Scholar]
  121. 121.
    Siddique R, Nanda V, Kunal, Kadri E-H, Iqbal Khan M et al. 2016. Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust. Constr. Build. Mater. 106:461–69
    [Google Scholar]
  122. 122.
    Hosseini Balam N, Mostofinejad D, Eftekhar M. 2017. Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Constr. Build. Mater. 145:107–16
    [Google Scholar]
  123. 123.
    Bhaskar S, Anwar Hossain KM, Lachemi M, Wolfaardt G, Otini Kroukamp M. 2017. Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites. Cem. Concr. Compos. 82:23–33
    [Google Scholar]
  124. 124.
    Bundur ZB, Kirisits MJ, Ferron RD. 2017. Use of pre-wetted lightweight fine expanded shale aggregates as internal nutrient reservoirs for microorganisms in bio-mineralized mortar. Cem. Concr. Compos. 84:167–74
    [Google Scholar]
  125. 125.
    Kalhori H, Bagherpour R. 2017. Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete. Constr. Build. Mater. 148:249–60
    [Google Scholar]
  126. 126.
    Siddique R, Jameel A, Singh M, Barnat-Hunek D, Kunal, et al. 2017. Effect of bacteria on strength, permeation characteristics and micro-structure of silica fume concrete. Constr. Build. Mater. 142:92–100
    [Google Scholar]
  127. 127.
    Tripathi E, Arora RK, Srivastava M. 2017. Strength comparison of bio-concrete with conventional concrete. IJASRM 2:764–70
    [Google Scholar]
  128. 128.
    Mondal S, Ghosh A. 2018. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete. Constr. Build. Mater. 183:202–14
    [Google Scholar]
  129. 129.
    Seifan M, Sarmah AK, Samani AK, Ebrahiminezhad A, Ghasemi Y, Berenjian A. 2018. Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles. Appl. Microbiol. Biotechnol. 102:104489–98
    [Google Scholar]
  130. 130.
    Vashisht R, Attri S, Sharma D, Shukla A, Goel G. 2018. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete. Microbiol. Res. 207:226–31
    [Google Scholar]
  131. 131.
    Abdulkareem M, Ayeronfe F, Abd Majid MZ, Abdul AR, Kim J-HJ 2019. Evaluation of effects of multi-varied atmospheric curing conditions on compressive strength of bacterial (Bacillus subtilis) cement mortar. Constr. Build. Mater. 218:1–7
    [Google Scholar]
  132. 132.
    Alshalif AF, Juki MI, Othman N, Al-Gheethi AA, Khalid FS. 2018. Improvement of mechanical properties of bio-concrete using Enterococcus faecalis and Bacillus cereus. Environ. Eng. Res. 24:4630–37
    [Google Scholar]
  133. 133.
    Kala RS, Chandramouli DK, Pannirselvam DN, Varalakshmi DTVS, Anitha V. 2019. Strength studies on bio cement concrete. Int. J. Civ. Eng. Technol. 10:31300–7
    [Google Scholar]
  134. 134.
    Naik S. 2019. Influence of Pseudomonas putida bacteria on the strength characteristics of concrete incorporating G.G.B.S. IJRASET 7:52887–96
    [Google Scholar]
  135. 135.
    Nain N, Surabhi R, Yathish NV, Krishnamurthy V, Deepa T, Tharannum S. 2019. Enhancement in strength parameters of concrete by application of Bacillus bacteria. Constr. Build. Mater. 202:904–8
    [Google Scholar]
  136. 136.
    Reddy BMS, Revathi D. 2019. An experimental study on effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete. Mater. Today Proc. 19:803–9
    [Google Scholar]
  137. 137.
    Su Y, Feng J, Jin P, Qian C 2019. Influence of bacterial self-healing agent on early age performance of cement-based materials. Constr. Build. Mater. 218:224–34
    [Google Scholar]
  138. 138.
    Kunamineni V, Murmu M. 2019. Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete. Front. Struct. Civ. Eng. 13:3515–25
    [Google Scholar]
  139. 139.
    Charpe AU, Latkar MV. 2020. Effect of biocementation using soil bacteria to augment the mechanical properties of cementitious materials. Mater. Today Proc. 21:1218–22
    [Google Scholar]
  140. 140.
    Jafarnia MS, Khodadad Saryazdi M, Moshtaghioun SM 2020. Use of bacteria for repairing cracks and improving properties of concrete containing limestone powder and natural zeolite. Constr. Build. Mater. 242:118059
    [Google Scholar]
  141. 141.
    Jena S, Basa B, Panda KC, Sahoo NK. 2020. Impact of Bacillus subtilis bacterium on the properties of concrete. Mater. Today Proc. 32:651–56
    [Google Scholar]
  142. 142.
    Pachaivannan P, Hariharasudhan C, Mohanasundram M, Bhavani MA. 2020. Experimental analysis of self healing properties of bacterial concrete. Mater. Today Proc. 33:3148–54
    [Google Scholar]
  143. 143.
    Salmasi F, Mostofinejad D. 2020. Investigating the effects of bacterial activity on compressive strength and durability of natural lightweight aggregate concrete reinforced with steel fibers. Constr. Build. Mater. 251:119032
    [Google Scholar]
  144. 144.
    Raut SH, Sarode DD, Lele SS. 2014. Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures. World J. Microbiol. Biotechnol. 30:1191–200
    [Google Scholar]
  145. 145.
    Yoosathaporn S, Tiangburanatham P, Bovonsombut S, Chaipanich A, Pathom-aree W. 2016. A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties. Microbiol. Res. 186–187:132–38
    [Google Scholar]
  146. 146.
    Yoosathaporn S, Tiangburanatham P, Pathom-aree W. 2015. The influence of biocalcification on soil-cement interlocking block compressive strength. Biotechnol. Agron. Soc. Environ. 19:3262–69
    [Google Scholar]
  147. 147.
    Jeong J-H, Jo Y-S, Park C-S, Kang C-H, So J-S 2017. Biocementation of concrete pavements using microbially induced calcite precipitation. J. Microbiol. Biotechnol. 27:71331–35
    [Google Scholar]
  148. 148.
    Li M, Zhu X, Mukherjee A, Huang M, Achal V. 2017. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content. J. Hazard. Mater. 329:178–84
    [Google Scholar]
  149. 149.
    Huang Y-H, Chen H-J, Maity JP, Chen C-C, Sun A-C, Chen C-Y. 2020. Efficient option of industrial wastewater resources in cement mortar application with river-sand by microbial induced calcium carbonate precipitation. Sci. Rep. 10:6742
    [Google Scholar]
  150. 150.
    Charpe AU, Latkar MV, Chakrabarti T. 2017. Microbially assisted cementation: a biotechnological approach to improve mechanical properties of cement. Constr. Build. Mater. 135:472–76
    [Google Scholar]
  151. 151.
    Liu M, Xia J, Seong Chin C, Liu Z 2020. Improving the properties of recycled aggregate pervious pavement blocks through bio-mineralization. Constr. Build. Mater. 262:120065
    [Google Scholar]
  152. 152.
    Sahoo KK, Sathyan AK, Kumari C, Sarkar P, Davis R. 2016. Investigation of cement mortar incorporating Bacillus sphaericus. Int. J. Smart Nano Mater. 7:291–105
    [Google Scholar]
  153. 153.
    Sathyan AK. 2015. Study on mechanical properties of cement mortar by the addition of ureolytic bacteria MT Thesis Natl. Inst. Technol. Rourkela, India:
    [Google Scholar]
  154. 154.
    Pratap Reddy S, Seshagiri Rao M, Aparna P, Sasikala C 2010. Performance of ordinary grade bacterial (Bacillus subtilis) concrete. Int. J. Earth Sci. Eng. 3:116–24
    [Google Scholar]
  155. 155.
    Achal V, Mukherjee A, Reddy MS. 2011. Microbial concrete: way to enhance the durability of building structures. J. Mater. Civ. Eng. 23:6730–34
    [Google Scholar]
  156. 156.
    Chahal N, Siddique R, Rajor A. 2012. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume. Constr. Build. Mater. 37:645–51
    [Google Scholar]
  157. 157.
    Srubar WV. 2021. Engineered living materials: taxonomies and emerging trends. Trends Biotechnol 39:6574–83
    [Google Scholar]
  158. 158.
    Gleaton J, Lai Z, Xiao R, Chen Q, Zheng Y 2019. Microalga-induced biocementation of martian regolith simulant: effects of biogrouting methods and calcium sources. Constr. Build. Mater. 229:116885
    [Google Scholar]
  159. 159.
    Røyne A, Phua YJ, Le SB, Eikjeland IG, Josefsen KD et al. 2019. Towards a low CO2 emission building material employing bacterial metabolism (1/2): the bacterial system and prototype production. PLOS ONE 14:4e0212990
    [Google Scholar]
  160. 160.
    Chen X, Charrier M, Srubar WV. 2021. Nanoscale construction biotechnology for cementitious materials: a prospectus. Front. Mater. 7:594989
    [Google Scholar]
  161. 161.
    Ivanov V, Stabnikov V, Stabnikova O, Kawasaki S. 2019. Environmental safety and biosafety in construction biotechnology. World J. Microbiol. Biotechnol. 35:226
    [Google Scholar]
  162. 162.
    Gebeshuber IC 2015. Biomineralization in marine organisms. Springer Handbook of Marine Biotechnology S-K Kim 1279–300 Berlin/Heidelberg: Springer
    [Google Scholar]
  163. 163.
    Lambert SE, Randall DG. 2019. Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine. Water Res 160:158–66
    [Google Scholar]
  164. 164.
    Achal V, Mukherjee A, Basu PC, Reddy MS. 2009. Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J. Ind. Microbiol. Biotechnol. 36:3433–38
    [Google Scholar]
  165. 165.
    Fang C, He J, Achal V, Plaza G. 2019. Tofu wastewater as efficient nutritional source in biocementation for improved mechanical strength of cement mortars. Geomicrobiol. J. 36:6515–21
    [Google Scholar]
  166. 166.
    Brennan L, Owende P. 2010. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14:2557–77
    [Google Scholar]
  167. 167.
    Mistry AN, Ganta U, Chakrabarty J, Dutta S. 2019. A review on biological systems for CO2 sequestration: organisms and their pathways. Environ. Prog. Sustain. Energy 38:1127–36
    [Google Scholar]
  168. 168.
    Singh JS, Kumar A, Rai AN, Singh DP. 2016. Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front. Microbiol. 7:529
    [Google Scholar]
  169. 169.
    Morton L, Eigenbrode S, Martin T. 2015. Architectures of adaptive integration in large collaborative projects. Ecol. Soc. 20:5
    [Google Scholar]
  170. 170.
    Bechthold M, Weaver JC. 2017. Materials science and architecture. Nat. Rev. Mater. 2:1217082
    [Google Scholar]
  171. 171.
    Pacheco-Torgal F, Labrincha JA. 2014. Biotechnologies and bioinspired materials for the construction industry: an overview. Int. J. Sustain. Eng. 7:3235–44
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081720-105303
Loading
/content/journals/10.1146/annurev-matsci-081720-105303
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error