1932

Abstract

Microorganisms attach on all kinds of surfaces, spreading pathogens that affect human health and alter the properties of products and of the surface itself. These issues motivated the design of a broad set of antimicrobial polymers that have great versatility to be chemically modified, processed, and mixed with other compounds. This review presents an overview of these different strategies, including antimicrobial-release systems and inherently antimicrobial polymers, alongside novel approaches such as smart materials and topographical effects. These polymers can be used in any application affected by microbes, from biomaterials and coatings to food packaging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081720-105705
2022-07-01
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081720-105705.html?itemId=/content/journals/10.1146/annurev-matsci-081720-105705&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Marzoli F, Bortolami A, Pezzuto A, Mazzetto E, Piro R et al. 2021. A systematic review of human coronaviruses survival on environmental surfaces. Sci. Total Environ. 778:146191
    [Google Scholar]
  2. 2.
    Tuson HH, Weibel DB. 2013. Bacteria–surface interactions. Soft Matter 9:174368–80
    [Google Scholar]
  3. 3.
    Sender R, Fuchs S, Milo R. 2016. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol 14:8e1002533
    [Google Scholar]
  4. 4.
    Lindsay D, von Holy A 2006. Bacterial biofilms within the clinical setting: what healthcare professionals should know. J. Hosp. Infect. 64:4313–25
    [Google Scholar]
  5. 5.
    Hasan J, Crawford RJ, Ivanova EP 2013. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31:5295–304
    [Google Scholar]
  6. 6.
    Otter JA, Vickery K, Walker JT, deLancey Pulcini E, Stoodley P et al. 2015. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection. J. Hosp. Infect. 89:116–27
    [Google Scholar]
  7. 7.
    Garrett TR, Bhakoo M, Zhang Z. 2008. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18:91049–56
    [Google Scholar]
  8. 8.
    Hasan J, Xu Y, Yarlagadda T, Schuetz M, Spann K, Yarlagadda PK. 2020. Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications. ACS Biomater. Sci. Eng. 6:63608–18
    [Google Scholar]
  9. 9.
    Sharma D, Misba L, Khan AU. 2019. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 8:76
    [Google Scholar]
  10. 10.
    Balasubramaniam B, Prateek, Ranjan S, Saraf M, Kar P et al. 2021. Antibacterial and antiviral functional materials: chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacol. Transl. Sci. 4:18–54
    [Google Scholar]
  11. 11.
    World Health Organ 2020. Food safety. Fact sheet, World Health Organ., Geneva, Switz https://www.who.int/news-room/fact-sheets/detail/food-safety
    [Google Scholar]
  12. 12.
    de Carvalho CCCR. 2018. Marine biofilms: a successful microbial strategy with economic implications. Front. Mar. Sci. 5:126
    [Google Scholar]
  13. 13.
    Santos M, Fonseca A, Mendonça P, Branco R, Serra A et al. 2016. Recent developments in antimicrobial polymers: a review. Materials 9:7599
    [Google Scholar]
  14. 14.
    Curtis LT. 2008. Prevention of hospital-acquired infections: review of non-pharmacological interventions. J. Hosp. Infect. 69:3204–19
    [Google Scholar]
  15. 15.
    Echeverria C, Torres MDT, Fernández-García M, de la Fuente-Nunez C, Muñoz-Bonilla A. 2020. Physical methods for controlling bacterial colonization on polymer surfaces. Biotechnol. Adv. 43:107586
    [Google Scholar]
  16. 16.
    Cerrada ML, Serrano C, Sánchez-Chaves M, Fernández-García M, Fernández-Martín F et al. 2008. Self-sterilized EVOH-TiO2 nanocomposites: interface effects on biocidal properties. Adv. Funct. Mater. 18:131949–60
    [Google Scholar]
  17. 17.
    Caccavo D. 2019. An overview on the mathematical modeling of hydrogels' behavior for drug delivery systems. Int. J. Pharm. 560:175–90
    [Google Scholar]
  18. 18.
    Sánchez-González L, Cháfer M, Hernández M, Chiralt A, González-Martínez C. 2011. Antimicrobial activity of polysaccharide films containing essential oils. Food Control 22:81302–10
    [Google Scholar]
  19. 19.
    Gómez M, Palza H, Quijada R. 2016. Influence of organically-modified montmorillonite and synthesized layered silica nanoparticles on the properties of polypropylene and polyamide-6 nanocomposites. Polymers 8:11386
    [Google Scholar]
  20. 20.
    Basiron N, Sreekantan S, Akil HM, Saharudin KA, Harun NH et al. 2019. Effect of Li-TiO2 nanoparticles incorporation in LDPE polymer nanocomposites for biocidal activity. Nano-Struct. Nano-Objects 19:100359
    [Google Scholar]
  21. 21.
    Zheng K, Setyawati MI, Leong DT, Xie J. 2018. Antimicrobial silver nanomaterials. Coord. Chem. Rev. 357:1–17
    [Google Scholar]
  22. 22.
    Arendsen LP, Thakar R, Sultan AH 2019. The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin. Microbiol. Rev. 32:4e00125–18
    [Google Scholar]
  23. 23.
    Cheeseman S, Christofferson AJ, Kariuki R, Cozzolino D, Daeneke T et al. 2020. Antimicrobial metal nanomaterials: from passive to stimuli-activated applications. Adv. Sci. 7:101902913
    [Google Scholar]
  24. 24.
    Vincent M, Duval RE, Hartemann P, Engels-Deutsch M. 2018. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 124:51032–46
    [Google Scholar]
  25. 25.
    Palza H, Galarce N, Bejarano J, Beltran M, Caviedes P. 2017. Effect of copper nanoparticles on the cell viability of polymer composites. Int. J. Polym. Mater. Polym. Biomater. 66:9462–68
    [Google Scholar]
  26. 26.
    Dutta P, Wang B. 2019. Zeolite-supported silver as antimicrobial agents. Coord. Chem. Rev. 383:1–29
    [Google Scholar]
  27. 27.
    Palza H, Quijada R, Delgado K. 2015. Antimicrobial polymer composites with copper micro- and nanoparticles: effect of particle size and polymer matrix. J. Bioact. Compat. Polym. 30:4366–80
    [Google Scholar]
  28. 28.
    Fernández A, Soriano E, Hernández-Muñoz P, Gavara R. 2010. Migration of antimicrobial silver from composites of polylactide with silver zeolites. J. Food Sci. 75:3E186–93
    [Google Scholar]
  29. 29.
    Borkow G, Gabbay J. 2004. Putting copper into action: copper-impregnated products with potent biocidal activities. FASEB J 18:141728–30
    [Google Scholar]
  30. 30.
    Maneerung T, Tokura S, Rujiravanit R 2008. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 72:143–51
    [Google Scholar]
  31. 31.
    Wahid F, Zhong C, Wang H-S, Hu X-H, Chu L-Q. 2017. Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers (Basel) 9:12636
    [Google Scholar]
  32. 32.
    Gutierrez E, Burdiles PA, Quero F, Palma P, Olate-Moya F, Palza H. 2019. 3D printing of antimicrobial alginate/bacterial-cellulose composite hydrogels by incorporating copper nanostructures. ACS Biomater. Sci. Eng. 5:116290–99
    [Google Scholar]
  33. 33.
    Randazzo W, Fabra MJ, Falcó I, López-Rubio A, Sánchez G. 2018. Polymers and biopolymers with antiviral activity: potential applications for improving food safety. Compr. Rev. Food Sci. Food Saf. 17:3754–68
    [Google Scholar]
  34. 34.
    Gopal V, Nilsson-Payant BE, French H, Siegers JY, Yung W et al. 2021. Zinc-embedded polyamide fabrics inactivate SARS-CoV-2 and influenza A virus. ACS Appl. Mater. Interfaces 13:2630317–25
    [Google Scholar]
  35. 35.
    Bataglioli RA, Rocha Neto JBM, Calais GB, Lopes LM, Tsukamoto J et al. 2022. Hybrid alginate-copper sulfate textile coating for coronavirus inactivation. J. Am. Ceram. Soc. 105:1748–52
    [Google Scholar]
  36. 36.
    Daub NA, Aziz F, Aziz M, Jaafar J, Salleh WNW et al. 2020. A mini review on parameters affecting the semiconducting oxide photocatalytic microbial disinfection. Water Air Soil Pollut 231:9461
    [Google Scholar]
  37. 37.
    Zhang C, Li Y, Shuai D, Shen Y, Wang D. 2019. Progress and challenges in photocatalytic disinfection of waterborne viruses: a review to fill current knowledge gaps. Chem. Eng. J. 355:399–415
    [Google Scholar]
  38. 38.
    Foster HA, Ditta IB, Varghese S, Steele A 2011. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 90:61847–68
    [Google Scholar]
  39. 39.
    Habibi-Yangjeh A, Asadzadeh-Khaneghah S, Feizpoor S, Rouhi A 2020. Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses?. J. Colloid Interface Sci. 580:503–14
    [Google Scholar]
  40. 40.
    Romay M, Diban N, Rivero MJ, Urtiaga A, Ortiz I 2020. Critical issues and guidelines to improve the performance of photocatalytic polymeric membranes. Catalysts 10:5570
    [Google Scholar]
  41. 41.
    Saharudin K, Sreekantan S, Basiron N, Khor Y, Harun N et al. 2018. Bacteriostatic activity of LLDPE nanocomposite embedded with sol-gel synthesized TiO2/ZnO coupled oxides at various ratios. Polymers 10:8878
    [Google Scholar]
  42. 42.
    Gutierrez Cisneros C, Bloemen V, Mignon A 2021. Synthetic, natural, and semisynthetic polymer carriers for controlled nitric oxide release in dermal applications: a review. Polymers 13:5760
    [Google Scholar]
  43. 43.
    Rong F, Tang Y, Wang T, Feng T, Song J et al. 2019. Nitric oxide-releasing polymeric materials for antimicrobial applications: a review. Antioxidants 8:11556
    [Google Scholar]
  44. 44.
    Wo Y, Brisbois EJ, Bartlett RH, Meyerhoff ME. 2016. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomater. Sci. 4:81161–83
    [Google Scholar]
  45. 45.
    Hebert AA, Siegfried EC, Durham T, de León EN, Reams T et al. 2020. Efficacy and tolerability of an investigational nitric oxide–releasing topical gel in patients with molluscum contagiosum: a randomized clinical trial. J. Am. Acad. Dermatol. 82:4887–94
    [Google Scholar]
  46. 46.
    Wani AR, Yadav K, Khursheed A, Rather MA 2021. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb. Pathog. 152:104620
    [Google Scholar]
  47. 47.
    Hyldgaard M, Mygind T, Meyer RL 2012. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 3:12
    [Google Scholar]
  48. 48.
    Swamy MK, Akhtar MS, Sinniah UR. 2016. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid.-Based Complement. Altern. Med. 2016:3012462
    [Google Scholar]
  49. 49.
    Ribeiro-Santos R, Andrade M, de Melo NR, Sanches-Silva A. 2017. Use of essential oils in active food packaging: recent advances and future trends. Trends Food Sci. Technol. 61:132–40
    [Google Scholar]
  50. 50.
    Donnermeyer D, Bürklein S, Dammaschke T, Schäfer E 2019. Endodontic sealers based on calcium silicates: a systematic review. Odontology 107:4421–36
    [Google Scholar]
  51. 51.
    Drago L, Toscano M, Bottagisio M. 2018. Recent evidence on bioactive glass antimicrobial and antibiofilm activity: a mini-review. Materials 11:2326
    [Google Scholar]
  52. 52.
    Palza Cordero H, Castro Cid R, Diaz Dosque M, Cabello Ibacache R, Palma Fluxá P. 2021. Li-doped bioglass® 45S5 for potential treatment of prevalent oral diseases. J. Dent. 105:103575
    [Google Scholar]
  53. 53.
    Pourshahrestani S, Zeimaran E, Kadri NA, Gargiulo N, Jindal HM et al. 2019. Elastomeric biocomposite of silver-containing mesoporous bioactive glass and poly(1,8-octanediol citrate): physiochemistry and in vitro antibacterial capacity in tissue engineering applications. Mater. Sci. Eng. C 98:1022–33
    [Google Scholar]
  54. 54.
    Bejarano J, Detsch R, Boccaccini AR, Palza H. 2017. PDLLA scaffolds with Cu- and Zn-doped bioactive glasses having multifunctional properties for bone regeneration. J. Biomed. Mater. Res. Part A 105:3746–56
    [Google Scholar]
  55. 55.
    Zeimaran E, Pourshahrestani S, Djordjevic I, Pingguan-Murphy B, Kadri NA et al. 2016. Antibacterial properties of poly (octanediol citrate)/gallium-containing bioglass composite scaffolds. J. Mater. Sci. Mater. Med. 27:118
    [Google Scholar]
  56. 56.
    Korkut E, Torlak E, Altunsoy M 2016. Antimicrobial and mechanical properties of dental resin composite containing bioactive glass. J. Appl. Biomater. Funct. Mater. 14:3e296–301
    [Google Scholar]
  57. 57.
    Kwok CS, Wan C, Hendricks S, Bryers JD, Horbett TA, Ratner BD. 1999. Design of infection-resistant antibiotic-releasing polymers: I. Fabrication and formulation. J. Control. Release. 62:3289–99
    [Google Scholar]
  58. 58.
    Pritchard EM, Valentin T, Panilaitis B, Omenetto F, Kaplan DL 2013. Antibiotic-releasing silk biomaterials for infection prevention and treatment. Adv. Funct. Mater. 23:7854–61
    [Google Scholar]
  59. 59.
    Petersen RC. 2016. Triclosan antimicrobial polymers. AIMS Mol. Sci. 3:188–103
    [Google Scholar]
  60. 60.
    Zhong Y, Godwin P, Jin Y, Xiao H 2020. Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review. Adv. Ind. Eng. Polym. Res. 3:127–35
    [Google Scholar]
  61. 61.
    Fernandez-Saiz P, Lagaron JM, Hernandez-Muñoz P, Ocio MJ. 2008. Characterization of antimicrobial properties on the growth of S. aureus of novel renewable blends of gliadins and chitosan of interest in food packaging and coating applications. Int. J. Food Microbiol. 124:113–20
    [Google Scholar]
  62. 62.
    Jones DS, Djokic J, Gorman SP. 2005. The resistance of polyvinylpyrrolidone-iodine-poly(ε-caprolactone) blends to adherence of Escherichia coli. Biomaterials 26:142013–20
    [Google Scholar]
  63. 63.
    Xin Z, Du S, Zhao C, Chen H, Sun M et al. 2016. Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components. Appl. Surf. Sci. 365:99–107
    [Google Scholar]
  64. 64.
    Rowthu S, Hoffmann P 2019. Versatile micro- and nanotexturing techniques for antibacterial applications. Functional Nanostructured Interfaces for Environmental and Biomedical Applications V Dinca, M Suchea 27–62 Amsterdam: Elsevier
    [Google Scholar]
  65. 65.
    Cao Y, Jana S, Bowen L, Tan X, Liu H et al. 2019. Hierarchical rose petal surfaces delay the early-stage bacterial biofilm growth. Langmuir 35:4514670–80
    [Google Scholar]
  66. 66.
    Cheng Y, Feng G, Moraru CI. 2019. Micro- and nanotopography sensitive bacterial attachment mechanisms: a review. Front. Microbiol. 10:191
    [Google Scholar]
  67. 67.
    Gao K, Su Y, Zhou L, He M, Zhang R et al. 2018. Creation of active-passive integrated mechanisms on membrane surfaces for superior antifouling and antibacterial properties. J. Memb. Sci. 548:621–31
    [Google Scholar]
  68. 68.
    Pajerski W, Ochonska D, Brzychczy-Wloch M, Indyka P, Jarosz M et al. 2019. Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges. J. Nanopart. Res. 21:8186
    [Google Scholar]
  69. 69.
    Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. 2020. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front. Microbiol. 10:2993
    [Google Scholar]
  70. 70.
    Schandock F, Riber CF, Röcker A, Müller JA, Harms M et al. 2017. Macromolecular antiviral agents against Zika, Ebola, SARS, and other pathogenic viruses. Adv. Healthc. Mater. 6:231700748
    [Google Scholar]
  71. 71.
    Zander ZK, Becker ML. 2018. Antimicrobial and antifouling strategies for polymeric medical devices. ACS Macro Lett 7:116–25
    [Google Scholar]
  72. 72.
    Xing C-M, Meng F-N, Quan M, Ding K, Dang Y, Gong Y-K. 2017. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Acta Biomater 59:129–38
    [Google Scholar]
  73. 73.
    Mitra D, Kang E-T, Neoh KG. 2021. Polymer-based coatings with integrated antifouling and bactericidal properties for targeted biomedical applications. ACS Appl. Polym. Mater. 3:52233–63
    [Google Scholar]
  74. 74.
    Fan H, Guo Z 2020. Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomater. Sci. 8:61502–35
    [Google Scholar]
  75. 75.
    Seth M, Jana S 2020. Nanomaterials based superhydrophobic and antimicrobial coatings. NanoWorld J 6:226–28
    [Google Scholar]
  76. 76.
    Hasan J, Chatterjee K. 2015. Recent advances in engineering topography mediated antibacterial surfaces. Nanoscale 7:3815568–75
    [Google Scholar]
  77. 77.
    Chee E, Brown AC. 2020. Biomimetic antimicrobial material strategies for combating antibiotic resistant bacteria. Biomater. Sci. 8:41089–100
    [Google Scholar]
  78. 78.
    Rakowska PD, Tiddia M, Faruqui N, Bankier C, Pei Y et al. 2021. Antiviral surfaces and coatings and their mechanisms of action. Commun. Mater. 2:153
    [Google Scholar]
  79. 79.
    Wu S, Zhang B, Liu Y, Suo X, Li H. 2018. Influence of surface topography on bacterial adhesion: a review (Review). Biointerphases 13:6060801
    [Google Scholar]
  80. 80.
    Rajab FH, Liu Z, Wang T, Li L 2019. Controlling bacteria retention on polymer via replication of laser micro/nano textured metal mould. Opt. Laser Technol. 111:530–36
    [Google Scholar]
  81. 81.
    Silva-Leyton R, Quijada R, Bastías R, Zamora N, Olate-Moya F, Palza H. 2019. Polyethylene/graphene oxide composites toward multifunctional active packaging films. Compos. Sci. Technol. 184:107888
    [Google Scholar]
  82. 82.
    Arriagada P, Palza H, Palma P, Flores M, Caviedes P. 2018. Poly(lactic acid) composites based on graphene oxide particles with antibacterial behavior enhanced by electrical stimulus and biocompatibility. J. Biomed. Mater. Res. A 106:41051–60
    [Google Scholar]
  83. 83.
    Jeevahan J, Chandrasekaran M, Britto Joseph G, Durairaj RB, Mageshwaran G 2018. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 15:2231–50
    [Google Scholar]
  84. 84.
    Riedel J, Vucko MJ, Blomberg SP, Schwarzkopf L. 2020. Skin hydrophobicity as an adaptation for self-cleaning in geckos. Ecol. Evol. 10:114640–51
    [Google Scholar]
  85. 85.
    Morán G, Méallet-Renault R 2018. Superhydrophobic surfaces toward prevention of biofilm-associated infections. Bacterial Pathogenesis and Antibacterial Control S Kırmusaoğlu 95–109 London: IntechOpen
    [Google Scholar]
  86. 86.
    Gogte S, Vorobieff P, Truesdell R, Mammoli A, van Swol F et al. 2005. Effective slip on textured superhydrophobic surfaces. Phys. Fluids 17:5051701
    [Google Scholar]
  87. 87.
    Yao Y, Gellerich A, Zauner M, Wang X, Zhang K 2018. Differential antifungal effects from hydrophobic and superhydrophobic wood based on cellulose and glycerol stearoyl esters. Cellulose 25:21329–38
    [Google Scholar]
  88. 88.
    Sun Z, Ostrikov K. 2020. Future antiviral surfaces: lessons from COVID-19 pandemic. Sustain. Mater. Technol. 25:e00203
    [Google Scholar]
  89. 89.
    Zhang S, Wang L, Liang X, Vorstius J, Keatch R et al. 2019. Enhanced antibacterial and antiadhesive activities of silver-PTFE nanocomposite coating for urinary catheters. ACS Biomater. Sci. Eng. 5:2804–14
    [Google Scholar]
  90. 90.
    Ozkan E, Mondal A, Singha P, Douglass M, Hopkins SP et al. 2020. Fabrication of bacteria- and blood-repellent superhydrophobic polyurethane sponge materials. ACS Appl. Mater. Interfaces 12:4651160–73
    [Google Scholar]
  91. 91.
    Liu J, Ye L, Sun Y, Hu M, Chen F et al. 2020. Elastic superhydrophobic and photocatalytic active films used as blood repellent dressing. Adv. Mater. 32:111908008
    [Google Scholar]
  92. 92.
    Huan Y, Kong Q, Mou H, Yi H. 2020. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front. Microbiol. 11:582779
    [Google Scholar]
  93. 93.
    Raheem N, Straus SK. 2019. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front. Microbiol. 10:2866
    [Google Scholar]
  94. 94.
    Ma Y, Wisuthiphaet N, Bolt H, Nitin N, Zhao Q et al. 2021. N-halamine polypropylene nonwoven fabrics with rechargeable antibacterial and antiviral functions for medical applications. ACS Biomater. Sci. Eng. 7:62329–36
    [Google Scholar]
  95. 95.
    Hoque J, Akkapeddi P, Yadav V, Manjunath GB, Uppu DSSM et al. 2015. Broad spectrum antibacterial and antifungal polymeric paint materials: synthesis, structure–activity relationship, and membrane-active mode of action. ACS Appl. Mater. Interfaces 7:31804–15
    [Google Scholar]
  96. 96.
    Zhang B, Li M, Lin M, Yang X, Sun J 2020. A convenient approach for antibacterial polypeptoids featuring sulfonium and oligo(ethylene glycol) subunits. Biomater. Sci. 8:246969–77
    [Google Scholar]
  97. 97.
    Hisey B, Ragogna PJ, Gillies ER. 2017. Phosphonium-functionalized polymer micelles with intrinsic antibacterial activity. Biomacromolecules 18:3914–23
    [Google Scholar]
  98. 98.
    Monge FA, Jagadesan P, Bondu V, Donabedian PL, Ista L et al. 2020. Highly effective inactivation of SARS-CoV-2 by conjugated polymers and oligomers. ACS Appl. Mater. Interfaces 12:5055688–95
    [Google Scholar]
  99. 99.
    Judzewitsch PR, Nguyen TK, Shanmugam S, Wong EHH, Boyer C. 2018. Towards sequence-controlled antimicrobial polymers: effect of polymer block order on antimicrobial activity. Angew. Chem. Int. Ed. 57:174559–64
    [Google Scholar]
  100. 100.
    Wang H, Wei D, Ziaee Z, Xiao H, Zheng A, Zhao Y 2015. Preparation and properties of nonleaching antimicrobial linear low-density polyethylene films. Ind. Eng. Chem. Res. 54:61824–31
    [Google Scholar]
  101. 101.
    Yu Z, Rao G, Wei Y, Yu J, Wu S, Fang Y 2019. Preparation, characterization, and antibacterial properties of biofilms comprising chitosan and ε-polylysine. Int. J. Biol. Macromol. 141:545–52
    [Google Scholar]
  102. 102.
    Moakes RJA, Davies SP, Stamataki Z, Grover LM. 2021. Formulation of a composite nasal spray enabling enhanced surface coverage and prophylaxis of SARS-COV-2. Adv. Mater. 33:e2008304Describes the development of a polysaccharide-based nasal spray to prevent SARS-CoV-2 infection.
    [Google Scholar]
  103. 103.
    Kwon PS, Oh H, Kwon SJ, Jin W, Zhang F et al. 2020. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov. 6:14–7Reports the first study on IAMPs for SARS-CoV-2 inhibition.
    [Google Scholar]
  104. 104.
    Bianculli RH, Mase JD, Schulz MD. 2020. Antiviral polymers: past approaches and future possibilities. Macromolecules 53:219158–86
    [Google Scholar]
  105. 105.
    Aumsuwan N, Heinhorst S, Urban MW 2007. Antibacterial surfaces on expanded polytetrafluoroethylene; penicillin attachment. Biomacromolecules 8:2713–18
    [Google Scholar]
  106. 106.
    Luo B, Yao Y, Liao J, Chen Q, Ruan H, Shen J 2021. Imparting antimicrobial and antifouling properties to anion exchange membrane through the modification with gentamicin-based polymer. Adv. Mater. Interfaces 8:132100457
    [Google Scholar]
  107. 107.
    Lee CM, Weight AK, Haldar J, Wang L, Klibanov AM, Chen J 2012. Polymer-attached zanamivir inhibits synergistically both early and late stages of influenza virus infection. PNAS 109:5020385–90
    [Google Scholar]
  108. 108.
    Rauschenbach M, Lawrenson SB, Taresco V, Pearce AK, O'Reilly RK. 2020. Antimicrobial hyperbranched polymer–usnic acid complexes through a combined ROP-RAFT strategy. Macromol. Rapid Commun. 41:182000190
    [Google Scholar]
  109. 109.
    Li P, Zhou C, Rayatpisheh S, Ye K, Poon YF et al. 2012. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv. Mater. 24:304130–37
    [Google Scholar]
  110. 110.
    Milewska A, Chi Y, Szczepanski A, Barreto-Duran E, Dabrowska A et al. 2021. HTCC as a polymeric inhibitor of SARS-CoV-2 and MERS-CoV. J. Virol. 95:4e01622–20
    [Google Scholar]
  111. 111.
    Dimitrakellis P, Ellinas K, Kaprou GD, Mastellos DC, Tserepi A, Gogolides E 2021. Bactericidal action of smooth and plasma micro-nanotextured polymeric surfaces with varying wettability, enhanced by incorporation of a biocidal agent. Macromol. Mater. Eng. 306:42000694
    [Google Scholar]
  112. 112.
    Li X, Cheung GS, Watson GS, Watson JA, Lin S et al. 2016. The nanotipped hairs of gecko skin and biotemplated replicas impair and/or kill pathogenic bacteria with high efficiency. Nanoscale 8:4518860–69
    [Google Scholar]
  113. 113.
    Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS et al. 2012. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small 8:162489–94
    [Google Scholar]
  114. 114.
    Xue F, Liu J, Guo L, Zhang L, Li Q. 2015. Theoretical study on the bactericidal nature of nanopatterned surfaces. J. Theor. Biol. 385:1–7
    [Google Scholar]
  115. 115.
    Wu S, Zuber F, Maniura-Weber K, Brugger J, Ren Q. 2018. Nanostructured surface topographies have an effect on bactericidal activity. J. Nanobiotechnol. 16:20
    [Google Scholar]
  116. 116.
    Ahmetali E, Sen P, Süer NC, Aksu B, Nyokong T et al. 2020. Enhanced light-driven antimicrobial activity of cationic poly(oxanorbornene)s by phthalocyanine incorporation into polymer as pendants. Macromol. Chem. Phys. 221:242000386
    [Google Scholar]
  117. 117.
    Altinbasak I, Jijie R, Barras A, Golba B, Sanyal R et al. 2018. Reduced graphene-oxide-embedded polymeric nanofiber mats: an “on-demand” photothermally triggered antibiotic release platform. ACS Appl. Mater. Interfaces 10:4841098–106
    [Google Scholar]
  118. 118.
    Pérez-Köhler B, Pascual G, Benito-Martínez S, Bellón JM, Eglin D, Guillaume O 2020. Thermo-responsive antimicrobial hydrogel for the in-situ coating of mesh materials for hernia repair. Polymers 12:61245
    [Google Scholar]
  119. 119.
    Paschke S, Prediger R, Lavaux V, Eickenscheidt A, Lienkamp K 2021. Stimulus-responsive polyelectrolyte surfaces: switching surface properties from polycationic/antimicrobial to polyzwitterionic/protein-repellent. Macromol. Rapid Commun. 42:2100051
    [Google Scholar]
  120. 120.
    Liu P, Xu G, Pranantyo D, Xu LQ, Neoh K-G, Kang E-T. 2018. pH-sensitive zwitterionic polymer as an antimicrobial agent with effective bacterial targeting. ACS Biomater. Sci. Eng. 4:140–46
    [Google Scholar]
  121. 121.
    Li Y, Pi Q, You H, Li J, Wang P et al. 2018. A smart multifunctional coating based on anti-pathogen micelles tethered with copper nanoparticles via a biosynthesis method using l-vitamin C. RSC Adv 8:3318272–83
    [Google Scholar]
  122. 122.
    Li Y, Leung WK, Yeung KL, Lau PS, Kwan JKC. 2009. A multilevel antimicrobial coating based on polymer-encapsulated ClO2. Langmuir 25:2313472–80
    [Google Scholar]
  123. 123.
    Larson AM, Klibanov AM. 2013. Biocidal packaging for pharmaceuticals, foods, and other perishables. Annu. Rev. Chem. Biomol. Eng. 4:171–86
    [Google Scholar]
  124. 124.
    Tian R, Qiu X, Yuan P, Lei K, Wang L et al. 2018. Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration. ACS Appl. Mater. Interfaces 10:2017018–27
    [Google Scholar]
  125. 125.
    Palza H, Zapata P, Angulo-Pineda C. 2019. Electroactive smart polymers for biomedical applications. Materials 12:2277
    [Google Scholar]
  126. 126.
    Aslam M, Ahmad R, Kim J 2018. Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Sep. Purif. Technol. 206:297–315
    [Google Scholar]
  127. 127.
    Angulo-Pineda C, Srirussamee K, Palma P, Fuenzalida VM, Cartmell SH, Palza H. 2020. Electroactive 3D printed scaffolds based on percolated composites of polycaprolactone with thermally reduced graphene oxide for antibacterial and tissue engineering applications. Nanomaterials 10:3428
    [Google Scholar]
  128. 128.
    Li Y, Sun L, Webster TJ 2018. The investigation of ZnO/poly(vinylidene fluoride) nanocomposites with improved mechanical, piezoelectric, and antimicrobial properties for orthopedic applications. J. Biomed. Nanotechnol. 14:3536–45
    [Google Scholar]
  129. 129.
    Ando M, Takeshima S, Ishiura Y, Ando K, Onishi O 2017. Piezoelectric antibacterial fabric comprised of poly(l-lactic acid) yarn. Jpn. J. Appl. Phys. 56:10S10PG01
    [Google Scholar]
  130. 130.
    Surmenev RA, Orlova T, Chernozem RV, Ivanova AA, Bartasyte A et al. 2019. Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: a review. Nano Energy 62:475–506
    [Google Scholar]
  131. 131.
    Selim MS, Shenashen MA, El-Safty SA, Higazy SA, Selim MM et al. 2017. Recent progress in marine foul-release polymeric nanocomposite coatings. Prog. Mater. Sci. 87:1–32
    [Google Scholar]
  132. 132.
    Appendini P, Hotchkiss JH. 2002. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 3:2113–26
    [Google Scholar]
  133. 133.
    Yuan G, Cranston R. 2008. Recent advances in antimicrobial treatments of textiles. Text. Res. J. 78:160–72
    [Google Scholar]
  134. 134.
    Brooks BD, Brooks AE, Grainger DW 2013. Antimicrobial medical devices in preclinical development and clinical use. Biomaterials Associated Infection T Fintan Moriarty, SAJ Zaat, HJ Busscher 307–54 New York: Springer
    [Google Scholar]
  135. 135.
    Shirzaei Sani E, Portillo-Lara R, Spencer A, Yu W, Geilich BM et al. 2018. Engineering adhesive and antimicrobial hyaluronic acid/elastin-like polypeptide hybrid hydrogels for tissue engineering applications. ACS Biomater. Sci. Eng. 4:72528–40
    [Google Scholar]
  136. 136.
    Zhu J, Hou J, Zhang Y, Tian M, He T et al. 2018. Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J. Membr. Sci. 550:173–97
    [Google Scholar]
  137. 137.
    Palza H, Nuñez M, Bastías R, Delgado K. 2018. In situ antimicrobial behavior of materials with copper-based additives in a hospital environment. Int. J. Antimicrob. Agents 51:6912–17
    [Google Scholar]
  138. 138.
    GlobeNewswire. 2020. Global antimicrobial plastics market report 2020: impact of COVID-19 on the market & growing awareness for usage News Release, Oct. 10. https://www.globenewswire.com/news-release/2020/10/20/2110953/28124/en/Global-Antimicrobial-Plastics-Market-Report-2020-Impact-of-COVID-19-on-the-Market-Growing-Awareness-for-Usage.html
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081720-105705
Loading
/content/journals/10.1146/annurev-matsci-081720-105705
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error