1932

Abstract

The past decade was marked by significant advances in the development of severe plastic deformation (SPD) techniques to achieve new and superior properties in various materials. This review examines the achievements in these areas of study and explores promising trends in further research and development. SPD processing provides strong grain refinement at the nanoscale and produces very high dislocation and point defect densities as well as unusual phase transformations associated with particle dissolution, precipitation, or amorphization. Such SPD-induced nanostructural features strongly influence deformation and transport mechanisms and can substantially enhance the performance of advanced materials. Exploiting this knowledge, we discuss the concept of nanostructural design of metals and alloys for multifunctional properties such as high strength and electrical conductivity, superplasticity, increased radiation, and corrosion tolerance. Special emphasis is placed on advanced metallic biomaterials that promote innovative applications in medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081720-123248
2022-07-01
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081720-123248.html?itemId=/content/journals/10.1146/annurev-matsci-081720-123248&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV. 2000. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45:103–89
    [Google Scholar]
  2. 2.
    Langdon TG. 2013. Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater. 61:7035–59
    [Google Scholar]
  3. 3.
    Horita Z, Edalati K. 2020. Severe plastic deformation for nanostructure controls. Mater. Trans. 61:2241
    [Google Scholar]
  4. 4.
    Valiev RZ, Langdon TG. 2006. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51:881–981
    [Google Scholar]
  5. 5.
    Zhilyaev AP, Langdon TG. 2008. Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater. Sci. 53:893–979
    [Google Scholar]
  6. 6.
    Estrin Y, Vinogradov A. 2013. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61:782–817
    [Google Scholar]
  7. 7.
    Rosochowski A. 2017. Severe Plastic Deformation Technology Dunbeath, UK: Whittles. , 1st ed..
    [Google Scholar]
  8. 8.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT. 2006. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58:433–39
    [Google Scholar]
  9. 9.
    Beyerlein IJ, Toth LS. 2009. Texture evolution in equal-channel angular extrusion. Prog. Mater. Sci. 54:427–510
    [Google Scholar]
  10. 10.
    Zehetbauer MJ, Zhu YT, eds. 2009. Bulk Nanostructured Materials Weinheim, Ger: Wiley
    [Google Scholar]
  11. 11.
    Bachmaier A, Pippan R. 2013. Generation of metallic nanocomposites by severe plastic deformation. Int. Mater. Rev. 58:41–62
    [Google Scholar]
  12. 12.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT. 2016. Fundamentals of superior properties in bulk nanoSPD materials. Mater. Res. Lett. 4:1–21
    [Google Scholar]
  13. 13.
    Ovid'ko IA, Valiev RZ, Zhu YT 2018. Review on superior strength and enhanced ductility of metallic nanomaterials. Progress Mater. Sci. 94:462–540
    [Google Scholar]
  14. 14.
    Straumal BB, Kilmametov AR, Ivanisenko Yu, Mazilkin AA, Kogtenkova OA et al. 2015. Phase transitions induced by severe plastic deformation: steady-state and equifinality. Int. J. Mater. Res. 106:657–64
    [Google Scholar]
  15. 15.
    Andrievski RA, Glezer AM 2009. Strength of nanostructures. Phys.-Uspekhi 52:4315–34
    [Google Scholar]
  16. 16.
    Valiev RZ, Zhilyaev AP, Langdon TG. 2014. Bulk Nanostructured Materials: Fundamentals and Applications Hoboken, NJ: Wiley
    [Google Scholar]
  17. 17.
    Sabirov I, Enikeev NA, Murashkin MYu, Valiev RZ. 2015. Bulk Nanostructured Materials with Multifunctional Properties Cham, Switz: Springer
    [Google Scholar]
  18. 18.
    Sauvage X, Wilde G, Divinski SV, Horita Z, Valiev RZ. 2012. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng. A 540:1–12
    [Google Scholar]
  19. 19.
    Straumal BB, Kilmametov AR, López GA, López-Ferreño I, ML et al. 2017. High-pressure torsion driven phase transformations in Cu-Al-Ni shape memory alloys. Acta Mater. 125:274–85
    [Google Scholar]
  20. 20.
    Kilmametov AR, Ivanisenko Yu, Mazilkin AA, Straumal BB, Gornakova AS et al. 2018. The α→ω and β→ω phase transformations in Ti–Fe alloys under high-pressure torsion. Acta Mater. 144:337–51
    [Google Scholar]
  21. 21.
    Edalati K, Horita Z. 2010. Continuous high-pressure torsion. J. Mater. Sci. 45:4578–82
    [Google Scholar]
  22. 22.
    Xu C, Schroeder S, Berbon PB, Langdon TG. 2010. Principles of ECAP–Conform as a continuous process for achieving grain refinement: application to an aluminium alloy. Acta Mater. 58:1379–86
    [Google Scholar]
  23. 23.
    Mishnaevsky L Jr., Levashov E, Valiev RZ, Segurado J, Sabirov I et al. 2014. Nanostructured titanium-based materials for medical implants: modeling and development. Mater. Sci. Eng. R. 81:1–19
    [Google Scholar]
  24. 24.
    Faraji G, Torabzadeh H. 2019. An overview on the continuous severe plastic deformation methods. Mater. Trans. 60:71316–30
    [Google Scholar]
  25. 25.
    Edalati K, Horita Z. 2016. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A 652:325–52
    [Google Scholar]
  26. 26.
    Bridgman PW. 1935. Effects of high shearing stress combined with high hydrostatic pressure. Phys. Rev. 48:825–47
    [Google Scholar]
  27. 27.
    Valiev RZ, Kaibyshev OA, Kuznetsov RI, Musalimov RSh, Tsenev NK. 1988. Low-temperature superplasticity of metallic materials. Dokl. Akad. Nauk. SSSR [Rep. USSR Acad. Sci.] 301:4864–66
    [Google Scholar]
  28. 28.
    Lowe TC, Valiev RZ, eds. 2000. Investigations and Applications of Severe Plastic Deformation Dordrecht, Neth: Kluwer Acad.
    [Google Scholar]
  29. 29.
    Valiev RZ, Tsenev NK 1991. Simulation of the spectrum of grain-boundary orientation in polycrystals with a crystallographic texture. Hot Deformation of Aluminium Alloys TG Langdon, HD Merchant, JG Morris, MA Zaidi 319–23 Warrendale, PA: Miner. Met. Mater. Soc.
    [Google Scholar]
  30. 30.
    Zhu YT, Valiev RZ, Langdon TG, Tsuji N, Lu K 2010. Processing of nanostructured metals and alloys via plastic deformation. MRS Bull 35:977–81
    [Google Scholar]
  31. 31.
    Whang SH 2011. Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications Cambridge, UK: Woodhead
    [Google Scholar]
  32. 32.
    Rosochowski A, Olejnik L. 2011. Incremental equal channel angular pressing for grain refinement. Mater. Sci. Forum. 674:19–28
    [Google Scholar]
  33. 33.
    Gzyl M, Rosochowski A, Boczkal S, Olejnik L. 2015. The role of microstructure and texture in controlling mechanical properties of AZ31B magnesium alloy processed by I-ECAP. Mater. Sci. Eng. A 638:20–29
    [Google Scholar]
  34. 34.
    Segal VM, Reznikov VI, Kopylov VI, Pavlik DA, Malyshev VF. 1994. Processes of Structure Evolution by Plastic Deformation in Metals Minsk, Belarus: Nauk. Tekhnika
    [Google Scholar]
  35. 35.
    Raab GI, Valiev RZ, Lowe TC, Zhu YT. 2004. Continuous processing of ultrafine grained Al by ECAP–Conform. Mater. Sci. Eng. A 382:30–34
    [Google Scholar]
  36. 36.
    Ayati V, Parsa MH, Mirzadeh H. 2015. Deformation of pure aluminum along the groove path of ECAP-Conform process. Adv. Eng. Mater. 18:319–23
    [Google Scholar]
  37. 37.
    Duchek M, Kubina T, Hodek J, Dlouhy J. 2013. Development of the production of ultra-fine grained titanium with the conform equipment. Mater. Technol. 47:515–18
    [Google Scholar]
  38. 38.
    Lowe TC, Valiev RZ, Li X, Ewing B. 2021. Commercialization of bulk nanostructured metals and alloys. MRS Bull. 46:265–72
    [Google Scholar]
  39. 39.
    Murashkin MYu, Medvedev A, Kazykhanov V, Krokhin A, Raab GI et al. 2015. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al 6101 alloy processed via ECAP-Conform. Metals 5:2148–64
    [Google Scholar]
  40. 40.
    Harai Y, Edalati K, Horita Z, Langdon TG. 2009. Using ring samples to evaluate the processing characteristics in high-pressure torsion. Acta Mater. 57:1147–53
    [Google Scholar]
  41. 41.
    Edalati K, Horita Z. 2009. Scaling-up of high pressure torsion using ring shape. Mater. Trans. 50:92–95
    [Google Scholar]
  42. 42.
    Fujioka T, Horita Z. 2009. Development of high-pressure sliding process for microstructural refinement of rectangular metallic sheets. Mater. Trans. 50:930–33
    [Google Scholar]
  43. 43.
    Edalati K, Lee S, Horita Z. 2012. Continuous high-pressure torsion using wires. J. Mater. Sci. 47:473–78
    [Google Scholar]
  44. 44.
    Hohenwarter A. 2015. Incremental high pressure torsion as a novel severe plastic deformation process: processing features and application to copper. Mater. Sci. Eng. A 626:80–85
    [Google Scholar]
  45. 45.
    Stolyarov VV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ. 1999. A two step SPD processing of ultrafine-grained titanium. Nanostr. Mater. 11:947–54
    [Google Scholar]
  46. 46.
    Zhilyaev AP, Langdon TG. 2012. Microstructure and microtexture evolution in pure metals after ultra-high straining. J. Mater. Sci. 47:7888–93
    [Google Scholar]
  47. 47.
    Zhang P, An XH, Zhang ZJ, Wu SD, Li SX et al. 2012. Optimizing strength and ductility of Cu-Zn alloys through severe plastic deformation. Scr. Mater. 67:871–74
    [Google Scholar]
  48. 48.
    Lugo N, Llorca N, Cabrera JM, Horita Z. 2008. Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Mater. Sci. Eng. A 477:366–71
    [Google Scholar]
  49. 49.
    Skiba J, Dominiak A, Wiśniewski TS, Pachla W, Kulczyk M, Przybysz S. 2015. Influence of severe plastic deformation induced by HE and ECAP on the thermo-physical properties of metals. Key Eng. Mater. 641:278–85
    [Google Scholar]
  50. 50.
    Asselli AAC, Leiva DR, Huot J, Kawasaki M, Langdon TG, Botta WJ. 2015. Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy. Int. J. Hydrog. Energy 40:16971–76
    [Google Scholar]
  51. 51.
    Murashkin MYu, Enikeev NA, Kazykhanov VU, Sabirov I, Valiev RZ. 2013. Physical simulation of cold rolling of ultra-fine grained Al5083 alloy to study microstructure evolution. Rev. Adv. Mater. Sci. 35:75–85
    [Google Scholar]
  52. 52.
    Lima GF, Triques MRM, Kiminami CS, Botta WJ, Jorge AM Jr 2014. Hydrogen storage properties of pure Mg after the combined processes of ECAP and cold-rolling. J. Alloy. Compd. 586:S405–8
    [Google Scholar]
  53. 53.
    Polyakov AV, Semenova IP, Huang Y, Valiev RZ, Langdon TG. 2014. Fatigue life and failure characteristics of an ultrafine-grained Ti-6Al-4V alloy processed by ECAP and extrusion. Adv. Eng. Mater. 16:1038–43
    [Google Scholar]
  54. 54.
    Sabirov I, Perez-Prado MT, Molina-Aldareguia JM, Semenova IP, Salimgareeva GKh, Valiev RZ. 2011. Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route. Scr. Mater. 64:69–72
    [Google Scholar]
  55. 55.
    Gubicza J, Fogarassy Zs, Krállics Gy, Lábár J, Törköly T. 2008. Microstructure and mechanical behavior of ultrafine-grained titanium. Mater. Sci. Forum. 589:99–104
    [Google Scholar]
  56. 56.
    Stepanov ND, Kuznetsov AV, Salishchev GA, Raab GI, Valiev RZ. 2012. Effect of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes. Mater. Sci. Eng. A 554:105–15
    [Google Scholar]
  57. 57.
    Fan Z, Jiang H, Sun X, Song J, Zhang X, Xie C. 2009. Microstructures and mechanical deformation behaviors of ultrafine-grained commercial pure (grade 3) Ti processed by two-step severe plastic deformation. Mater. Sci. Eng. A 527:45–51
    [Google Scholar]
  58. 58.
    Sordi VL, Ferrante M, Kawasaki M, Langdon TG. 2012. Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling. J. Mater. Sci. 47:7870–76
    [Google Scholar]
  59. 59.
    Latysh VV, Semenova IP, Salimgareeva GH, Kandarov IV, Zhu YT et al. 2006. Microstructure and properties of Ti rods produced by multi-step SPD. Mater. Sci. Forum. 503–504:763–68
    [Google Scholar]
  60. 60.
    Ferguson D, Chen W, Bonesteel T, Vosburgh J. 2009. A look at physical simulation of metallurgical processes, past, present and future. Mater. Sci. Eng. A 499:329–32
    [Google Scholar]
  61. 61.
    Ivanisenko Yu, Kulagin R, Fedorov V, Mazilkin A, Scherer T et al. 2016. High pressure torsion extrusion as a new severe plastic deformation process. Mater. Sci. Eng. A 664:247–56
    [Google Scholar]
  62. 62.
    Kilmametov A, Ivanisenko Yu, Straumal BB, Mazilkin AA, Gornakova AS et al. 2017. Transformations of α′ martensite in Ti–Fe alloys under high pressure torsion. Scr. Mater. 136:46–49
    [Google Scholar]
  63. 63.
    Gleiter H. 1989. Nanocrystalline materials. Prog. Mater. Sci. 33:223–315
    [Google Scholar]
  64. 64.
    Gleiter H. 2000. Nanostructured materials: basic concepts and microstructure. Acta Mater. 48:1–29
    [Google Scholar]
  65. 65.
    Mckenzie PWJ, Lapovok R. 2010. ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: microstructure. Acta Mater. 58:93198–211
    [Google Scholar]
  66. 66.
    Renk O, Pippan R. 2019. Saturation of grain refinement during severe plastic deformation of single phase materials: reconsiderations, current status and open questions. Mater. Trans. 60:71270–82
    [Google Scholar]
  67. 67.
    Kolobov YR, Grabovetskaya GP, Ivanov KV, Ivanov MB. 2002. Grain boundary diffusion and mechanisms of creep of nanostructured metals. Interface Sci. 10:131–36
    [Google Scholar]
  68. 68.
    Divinski SV, Reglitz G, Rösner H, Wilde G, Estrin Y. 2011. Self-diffusion in Ni prepared by severe plastic deformation: effect of non-equilibrium grain boundary state. Acta Mater. 59:1974–85
    [Google Scholar]
  69. 69.
    Wilde G, Divinski S. 2019. Grain boundaries and diffusion phenomena in severely deformed materials. Mater. Trans. 60:71302–15
    [Google Scholar]
  70. 70.
    Raabe D, Herbig M, Sandlöbes S, Li Y, Tytko D et al. 2014. Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 18:253–61
    [Google Scholar]
  71. 71.
    Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG. 1996. An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J. Mater. Res. 11:1880–90
    [Google Scholar]
  72. 72.
    Wang J, Horita Z, Furukawa M, Nemoto M, Tsenev NK et al. 1993. An investigation of ductility and microstructural evolution in an Al–3% Mg alloy with submicron grain size. J. Mater. Res. 8:2810–18
    [Google Scholar]
  73. 73.
    Schuh A, Lu K. 2021. Stability of nanocrystalline metals: the role of grain-boundary chemistry and structure. MRS Bull. 46:225–35
    [Google Scholar]
  74. 74.
    Zhu YT, Liao XZ, Wu XL. 2012. Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57:1–62
    [Google Scholar]
  75. 75.
    Zhao Y, Bingert JF, Liao X, Cui B, Han K et al. 2006. Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv. Mater. 18:2949–53
    [Google Scholar]
  76. 76.
    Lu K, Lu L, Suresh S. 2009. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324:349–52
    [Google Scholar]
  77. 77.
    Straumal BB, Kogtenkova OA, Gornakova AS, Sursaeva VG, Baretzky B. 2016. Review: grain boundary faceting-roughening phenomena. J. Mater. Sci. 51:382–404
    [Google Scholar]
  78. 78.
    Nurislamova GV, Sauvage X, Murashkin MYu, Islamgaliev RK, Valiev RZ. 2008. Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation. Phil. Mag. Lett. 88:459–66
    [Google Scholar]
  79. 79.
    Liddicoat PV, Liao X-Z, Zhao Y, Zhu YT, Murashkin MYu et al. 2010. Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Comm. 1:63
    [Google Scholar]
  80. 80.
    Valiev RZ, Enikeev NA, Murashkin MYu, Kazykhanov VU, Sauvage X. 2010. On the origin of extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr. Mater. 63:949–52
    [Google Scholar]
  81. 81.
    Sha G, Yao L, Liao X, Ringer SP, Duan ZC, Langdon TG 2011. Segregation of solute elements at grain boundaries in an ultrafine grained Al-An-Mg-Cu alloy. Ultramicroscopy 111:500–5
    [Google Scholar]
  82. 82.
    Sha G, Ringer SP, Duan ZC, Langdon TG. 2013. An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing. Int. J. Mater. Res. 100:1674–78
    [Google Scholar]
  83. 83.
    Valiev RZ, Murashkin MYu, Bobruk EV, Raab GI. 2009. Grain refinement and mechanical behavior of the Al alloy, subjected to the new SPD technique. Mater. Trans. 50:87–91
    [Google Scholar]
  84. 84.
    Cheng S, Zhao YH, Zhu YT, Ma E 2007. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 55:5822–32
    [Google Scholar]
  85. 85.
    Valiev RZ, Murashkin MYu, Sabirov I. 2014. A nanostructural design to produce high strength Al alloys with enhanced electrical conductivity. Scr. Mater. 76:13–16
    [Google Scholar]
  86. 86.
    Ma K, Zheng Y, Dasari S, Zhang D, Fraser HL, Banerjee R. 2021. Precipitation in nanostructured alloys: a brief review. MRS Bull. 46:250–57
    [Google Scholar]
  87. 87.
    Straumal BB, Kilmametov AR, Korneva A, Mazilkin AA, Straumal PB et al. 2017. Phase transitions in Cu-based alloys under high pressure torsion. J. Alloy. Compd. 707:20–26
    [Google Scholar]
  88. 88.
    Straumal BB, Pontikis V, Kilmametov AR, Mazilkin AA, Dobatkin SV, Baretzky B. 2017. Competition between precipitation and dissolution in Cu–Ag alloys under high pressure torsion. Acta Mater. 122:60–71
    [Google Scholar]
  89. 89.
    Petrik MV, Kuznetsov AR, Enikeev NA, Gornostyrev YuN, Valiev RZ. 2018. Peculiarities of interactions of alloying elements with grain boundaries and the formation of segregations in Al-Mg and Al-Zn alloys. Phys. Metal. Metallogr. 119:10607–12
    [Google Scholar]
  90. 90.
    Edalati K, Horita Z, Valiev RZ. 2018. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy. Sci. Rep. 8:6740
    [Google Scholar]
  91. 91.
    Chinh NQ, Murashkin MYu, Bobruk EV, Labar J, Gubicza J et al. 2021. Ultralow-temperature superplasticity and its novel mechanism in ultrafine-grained Al alloys. Mater. Res. Lett. 9:475–82
    [Google Scholar]
  92. 92.
    Valiev RZ, Zhu YT. 2015. Recent findings in superior strength and ductility of ultrafine-grained materials. Trans. Mater. Res. Soc. Jpn. 40:309–18
    [Google Scholar]
  93. 93.
    Balasubramanian N, Langdon TG. 2016. The strength–grain size relationship in ultrafine-grained metals. Metall. Mater. Trans. A 47:5827–38
    [Google Scholar]
  94. 94.
    Valiev RZ, Enikeev NA, Langdon TG. 2011. Towards superstrength of nanostructured metals and alloys produced by SPD. Kovov. Mater. 49:1–9
    [Google Scholar]
  95. 95.
    Abramova MM, Enikeev NA, Valiev RZ, Etienne A, Radiguet B et al. 2014. Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Mater. Lett. 136:349–52
    [Google Scholar]
  96. 96.
    Scheriau S, Zhang Z, Kleber S, Pippan R. 2011. Deformation mechanisms of a modified 316L austenitic steel subjected to high pressure torsion. Mater. Sci. Eng. A 528:2776–86
    [Google Scholar]
  97. 97.
    Bobylev SV, Enikeev NA, Sheinerman AG, Valiev RZ. 2019. Strength enhancement induced by grain boundary solute segregations in ultrafine-grained alloys. Int. J. Plast. 123:133–44
    [Google Scholar]
  98. 98.
    Zhu YT, Han BQ, Lavernia EJ 2009. Deformation mechanisms of nanostructured materials. Bulk Nanostructured Materials MJ Zehetbauer, YT Zhu 89–108 Weinheim, Ger: Wiley
    [Google Scholar]
  99. 99.
    Koch CC 2009. Nanostructured materials: an overview. Bulk Nanostructured Materials MJ Zehetbauer, YT Zhu 3–20 Weinheim, Ger: Wiley
    [Google Scholar]
  100. 100.
    Valiev RZ. 2004. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3:511–16
    [Google Scholar]
  101. 101.
    Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC. 2002. Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17:5–8
    [Google Scholar]
  102. 102.
    Kumar P, Kawasaki M, Langdon TG. 2016. Review: overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures. J. Mater. Sci. 51:7–18
    [Google Scholar]
  103. 103.
    Alawadhi MY, Sabbaghianrad S, Huang Y, Langdon TG. 2021. Evaluating the paradox of strength and ductility in ultrafine-grained oxygen-free copper processed by ECAP at room temperature. Mater. Sci. Eng. A 802:140546
    [Google Scholar]
  104. 104.
    Islamgaliev RK, Nesterov KM, Bourgon J, Champion Y, Valiev RZ. 2014. Nanostructured Cu-Cr alloy with high strength and electrical conductivity. J. Appl. Phys. 115:194301
    [Google Scholar]
  105. 105.
    Murashkin MYu, Sabirov I, Sauvage X, Valiev RZ. 2016. Nanostructured Al and Cu alloys with superior strength and electrical conductivity. J. Mater. Sci. 51:33–49
    [Google Scholar]
  106. 106.
    Lowe TC, Valiev RZ 2014. Frontiers of bulk nanostructured metals in biomedical applications. Advanced Biomaterials and Biodevices A Tiwari, AN Nordin 3–52 Hoboken, NJ: Wiley-Scrivener
    [Google Scholar]
  107. 107.
    Brunette DM, Tengvall P, Textor M, Thomsen P. 2001. Titanium in Medicine Berlin: Springer-Verlag
    [Google Scholar]
  108. 108.
    Froes FH, Qian M, eds. 2018. Titanium in Medical and Dental Applications Duxford, UK: Woodhead. , 1st ed..
    [Google Scholar]
  109. 109.
    Geetha M, Singh AK, Asokamani R, Gogia AK. 2009. Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog. Mater. Sci. 54:397–425
    [Google Scholar]
  110. 110.
    Valiev RZ, Sabirov I, Zemtsova EG, Parfenov EV, Dluhoŝ L, Lowe TC. 2018. Nanostructured commercially pure Ti for development of miniaturized biomedical implants. Titanium in Medical and Dental Applications FH Froes, M Qian 393–417 Duxford, UK: Woodhead. , 1st ed..
    [Google Scholar]
  111. 111.
    Valiev RZ, Semenova IP, Latysh VV, Rack H, Lowe TC et al. 2008. Nanostructured titanium for biomedical applications. Adv. Eng. Mater. 10:8B15–17
    [Google Scholar]
  112. 112.
    Polyakov AV, Dyakonov GS, Semenova IP, Raab GI, Dluhos L, Valiev RZ. 2015. Development and study of medical implants made from nanostructured titanium. Adv. Biomat. Dev. Med. 2:63–69
    [Google Scholar]
  113. 113.
    Semenova IP, Klevtsov GV, Klevtsova NA, Dyakonov GS, Matchin AA, Valiev RZ. 2016. Nanostructured titanium for maxillofacial mini-implants. Adv. Eng. Mater. 18:71216–24
    [Google Scholar]
  114. 114.
    Estrin Y, Ivanova EP, Michalska A, Truong VK, Lapovok R, Boyd R. 2011. Accelerated stem cell attachment to ultrafine grained titanium. Acta Biomater. 7:900–6
    [Google Scholar]
  115. 115.
    Polyakov AV, Dluhoš L, Dyakonov GS, Raab GI, Valiev RZ. 2015. Recent advances in processing and application of nanostructured titanium for dental implants. Adv. Eng. Mater. 17:1869–75
    [Google Scholar]
  116. 116.
    Valiev RZ, Parfenov EV, Parfenova LV. 2019. Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality. Mater. Trans. 60:1356–66
    [Google Scholar]
  117. 117.
    An B, Li Z, Diao X, Xin H, Zhang Q et al. 2016. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP. Mater. Sci. Eng. C 67:34–41
    [Google Scholar]
  118. 118.
    Bagherifard S, Ghelichi R, Khademhosseini A, Guagliano M. 2014. Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation. ACS Appl. Mater. Interfaces 6:7963–85
    [Google Scholar]
  119. 119.
    Park JW, Kim YJ, Park CH, Lee DH, Ko YG et al. 2009. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomater. 5:3272–80
    [Google Scholar]
  120. 120.
    Lai M, Cai K, Hu Y, Yang X, Liu Q 2012. Regulation of the behaviors of mesenchymal stem cells by surface nanostructured titanium. Colloids Surf. B Biointerfaces 97:211–20
    [Google Scholar]
  121. 121.
    Nie FL, Zheng YF, Wei SC, Wang DS, Yu ZT et al. 2013. In vitro and in vivo studies on nanocrystalline Ti fabricated by equal channel angular pressing with microcrystalline CP Ti as control. J. Biomed. Mater. Res. Part A 101A:1694–707
    [Google Scholar]
  122. 122.
    Elias CN. 2010. Titanium dental implant surfaces. Rev. Mater. 15:138–42
    [Google Scholar]
  123. 123.
    Liu X, Chu PK, Ding C. 2004. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R. 47:49–121
    [Google Scholar]
  124. 124.
    Yao ZQ, Ivanisenko Yu, Diemant T, Caron A, Chuvilin A et al. 2010. Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation. Acta Biomater. 6:2816–25
    [Google Scholar]
  125. 125.
    Zemtsova EG, Arbenin AY, Valiev RZ, Orekhov EV, Semenov VG, Smirnov VM. 2016. Two-level micro-to-nanoscale hierarchical TiO2 nanolayers on titanium surface. Materials 9:121010
    [Google Scholar]
  126. 126.
    Nazarov DV, Zemtsova EG, Valiev RZ, Smirnov VM. 2015. Formation of micro-and nanostructures on the nanotitanium surface by chemical etching and deposition of titania films by atomic layer deposition (ALD). Materials 8:128366–77
    [Google Scholar]
  127. 127.
    Estrin Y, Kasper C, Diederichs S, Lapovok R. 2009. Accelerated growth of preosteoblastic cells on ultrafine grained titanium. J. Biomed. Mater. Res. A 90:1239–42
    [Google Scholar]
  128. 128.
    Faghihi S, Zhilyaev AP, Szpunar JA, Azari F, Vali H, Tabrizian M. 2007. Nanostructuring of a titanium material by high-pressure torsion improves pre-osteoblast attachment. Adv. Mater. 19:1069–73
    [Google Scholar]
  129. 129.
    Kim TN, Balakrishnan A, Lee BC, Kim WS, Dvorankova B et al. 2008. In vitro fibroblast response to ultra fine grained titanium produced by a severe plastic deformation process. J. Mater. Sci. Mater. Med. 19:553–57
    [Google Scholar]
  130. 130.
    Zhang BGX, Myers DE, Wallace GW, Brandt M, Choong PFM. 2014. Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. Int. J. Mol. Sci. 15:11878–921
    [Google Scholar]
  131. 131.
    Dorozhkin SV. 2015. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater. Sci. Eng. C 55:272–326
    [Google Scholar]
  132. 132.
    Lugovskoy A, Lugovskoy S. 2014. Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys. Mater. Sci. Eng. C 43:527–32
    [Google Scholar]
  133. 133.
    Parfenov E, Parfenova L, Mukaeva V, Farrakhov R, Stotskiy A et al. 2020. Biofunctionalization of PEO coatings on titanium implants with inorganic and organic substances. Surf. Coat. Technol. 404:126486
    [Google Scholar]
  134. 134.
    Valiev RZ, Parfenov EV, Parfenova LV. 2019. Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality. Mater. Trans. 60:71356–66
    [Google Scholar]
  135. 135.
    Balasubramanian R, Nagumothu R, Parfenov E, Valiev R. 2021. Development of nanostructured titanium implants for biomedical implants – a short review. Mater. Today: Proc. 46:1195–200
    [Google Scholar]
  136. 136.
    Li H, Zheng Y, Qin L. 2014. Progress of biodegradable metals. Prog. Nat. Sci.: Mater. Int. 24:414–22
    [Google Scholar]
  137. 137.
    Zheng YF, Gu XN, Witte F. 2014. Biodegradable metals. Mater. Sci. Eng. R. 77:1–34
    [Google Scholar]
  138. 138.
    Waizy H, Seitz JM, Reifenrath J, Weizbauer A, Bach FW et al. 2013. Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci. 48:39–50
    [Google Scholar]
  139. 139.
    Mostaed E, Hashempour M, Fabrizi A, Dellasega D, Bestetti M et al. 2014. Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications. J. Mech. Behav. Biomed. Mater. 37:307–22
    [Google Scholar]
  140. 140.
    Dobatkin S, Galkin S, Estrin Y, Serebryany V, Diez M et al. 2019. Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling. J. Alloy. Compd. 774:969–79
    [Google Scholar]
  141. 141.
    Merson E, Poluyanov V, Myagkikh P, Merson D, Vinogradov A. 2021. Inhibiting stress corrosion cracking by removing corrosion products from the Mg-Zn-Zr alloy pre-exposed to corrosion solutions. Acta Mater. 205:116570
    [Google Scholar]
  142. 142.
    Parfenov EV, Kulyasova OB, Mukaeva VR, Mingo B, Farrakhov RG et al. 2020. Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg-1Ca alloy. Corros. Sci. 163:108303
    [Google Scholar]
  143. 143.
    Wang J, Tang J, Zhang P, Li Y, Wang J et al. 2012. Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review. J. Biomed. Mater. Res. B 100:1691–701
    [Google Scholar]
  144. 144.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT. 2016. Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM 68:1216–26
    [Google Scholar]
  145. 145.
    Edalati K, Bachmaier A, Beloshenko VA, Beygelzimer Y, Blank VD et al. 2022. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Mater. Res. Lett. 10:4163–256
    [Google Scholar]
  146. 146.
    Eagar T. 1995. Bringing new materials to market. Tech. Rev. 98:42–49
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081720-123248
Loading
/content/journals/10.1146/annurev-matsci-081720-123248
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error