1932

Abstract

Integrating silicon and III-nitride technologies for high-speed and large bandwidth communication demands optically interconnected active components that detect, process, and emit photons and electrons. It is imperative that multifunctional materials can enhance the performance and simplify fabrication of such devices. Spontaneously grown GaN in the nanowall network (NwN) architecture simultaneously displays unprecedented optical and electrical properties. A two-order increase in band-edge emission makes it suitable for high-brightness light-emitting diodes and laser applications. Decorating this NwN with silver nanoparticles further enhances emission through plasmonic interactions and renders it an excellent surface-enhanced Raman spectroscopy substrate for biomolecular detection. The observation of very high electron mobility (approximately 104 cm2/Vs) and large phase-coherence length (60 μm) is a consequence of two-dimensional (2D) electron gas formation applicable for high electron mobility transistors. Detecting ballistic transport in the nanowalls confirms proximity-induced superconductivity (<5 K and 8 T). Charge separation properties render it a device material for UV photodetectors, photoanodes for water splitting, and thermionic field emitters.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081919-014810
2020-07-01
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-081919-014810.html?itemId=/content/journals/10.1146/annurev-matsci-081919-014810&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Yonezu H. 2007. Dislocation-free III–V-N alloy layers on Si substrates and their device applications. Dilute Nitride Semiconductors M Henini 451–69 Amsterdam: Elsevier
    [Google Scholar]
  2. 2. 
    El-Batawy Y, Mohammedy FM, Deen MJ 2015. Resonant cavity enhanced photodetectors: theory, design and modeling. Photodetectors: Materials, Devices and Applications B Nabet 415–70 Cambridge, UK: Woodhead
    [Google Scholar]
  3. 3. 
    Shieh W, Djordjevic I. 2010. Optical communication fundamentals. OFDM for Optical Communications W Shieh, I Djordjevic 53–118 Oxford, UK: Elsevier
    [Google Scholar]
  4. 4. 
    Morkoç H. 1999. Nitride Semiconductors and Devices 32: Berlin/Heidelberg, Ger: Springer Berl. Heidelb.
    [Google Scholar]
  5. 5. 
    Phillips JC. 1973. Covalent and ionic bonds. Bonds and Bands in Semiconductors26–56 New York: Academic
    [Google Scholar]
  6. 6. 
    Verma J, Islam SMM, Verma A, Protasenko V, Jena D 2018. Nitride LEDs based on quantum wells and quantum dots. Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications J Huang, H-C Kuo, S-C Shen 377–413 Cambridge, UK: Woodhead, 2nd ed..
    [Google Scholar]
  7. 7. 
    Kente T, Coville N, Mhlanga S 2011. Synthesis and characterization of gallium nitride nanorods (GaN-NRs) for sensor and catalysis applications. International Conference on Nanoscience, Engineering and Technology319–22 Chennai, India: IEEE
    [Google Scholar]
  8. 8. 
    Zhao C, Ng TK, Jahangir S, Frost T, Bhattacharya P, Ooi BS 2016. InGaN/GaN nanowire LEDs and lasers. 2016 International Conference on Numerical Simulation of Optoelectronic Devices103–4 Sydney: IEEE
    [Google Scholar]
  9. 9. 
    Kesaria M, Shetty S, Shivaprasad SM 2011. Evidence for dislocation induced spontaneous formation of GaN nanowalls and nanocolumns on bare C-plane sapphire. Cryst. Growth Des. 11:114900–3
    [Google Scholar]
  10. 10. 
    Kesaria M, Shetty S, Shivaprasad SM 2011. Spontaneous formation of GaN nanostructures by molecular beam epitaxy. J. Cryst. Growth. 326:1191–94
    [Google Scholar]
  11. 11. 
    Kesaria M, Shetty S, Cohen PI, Shivaprasad SM 2011. Transformation of c-oriented nanowall network to a flat morphology in GaN films on c-plane sapphire. Mater. Res. Bull. 46:111811–13
    [Google Scholar]
  12. 12. 
    Zhong A, Hane K. 2012. Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy. Nanoscale Res. Lett. 7:1686
    [Google Scholar]
  13. 13. 
    Poppitz D, Lotnyk A, Gerlach JW, Rauschenbach B 2014. Microstructure of porous gallium nitride nanowall networks. Acta Mater 65:98–105
    [Google Scholar]
  14. 14. 
    Nguyen P, Ng HT, Meyyappan M 2005. Catalyst metal selection for synthesis of inorganic nanowires. Adv. Mater. 17:141773–77
    [Google Scholar]
  15. 15. 
    Dick KA, Caroff P. 2014. Metal-seeded growth of III-V semiconductor nanowires: towards gold-free synthesis. Nanoscale 6:63006–21
    [Google Scholar]
  16. 16. 
    Hong YJ, Jung HS, Yoo J, Kim YJ, Lee CH et al. 2009. Shape-controlled nanoarchitectures using nanowalls. Adv. Mater. 21:2222–26
    [Google Scholar]
  17. 17. 
    Morales AM, Lieber CM. 1998. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:5348208–11
    [Google Scholar]
  18. 18. 
    Yagi H, Muranushi K, Nunoya N, Sano T, Tamura S, Arai S 2002. Low-damage etched/regrown interface of strain-compensated GaInAsP/InP quantum-wire laser fabricated by CH4/H2 dry etching and regrowth. Appl. Phys. Lett. 81:6966–68
    [Google Scholar]
  19. 19. 
    Kesaria M, Shivaprasad SM. 2011. Nitrogen flux induced GaN nanostructure nucleation at misfit dislocations on Al2O3(0001). Appl. Phys. Lett. 99:14143105
    [Google Scholar]
  20. 20. 
    Zhong A, Fan P, Zhong Y, Zhang D, Li F et al. 2018. Structure shift of GaN among nanowall network, nanocolumn, and compact film grown on Si (111) by MBE. Nanoscale Res. Lett. 13:151
    [Google Scholar]
  21. 21. 
    Ramesh C, Tyagi P, Yadav BS, Ojha S, Maurya KK et al. 2018. Effect of nitridation temperature on formation and properties of GaN nanowall networks on sapphire (0 0 0 1) grown by laser MBE. Mater. Sci. Eng. B 231:105–14
    [Google Scholar]
  22. 22. 
    Kumar MS, Singh DK, Kushvaha SS, Kumar MS, Shukla AK et al. 2015. Structural, optical and electronic properties of homoepitaxial GaN nanowalls grown on GaN template by laser molecular beam epitaxy. RSC Adv 5:10787818–30
    [Google Scholar]
  23. 23. 
    Frank FC. 1951. Capillary equilibria of dislocated crystals. Acta Crystallogr 4:6497–501
    [Google Scholar]
  24. 24. 
    Woodruff DP. 2015. How does your crystal grow? A commentary on Burton, Cabrera and Frank 1951 ‘The growth of crystals and the equilibrium structure of their surfaces. .’ Philos. Trans. R. Soc. A 373:203920140230
    [Google Scholar]
  25. 25. 
    Zywietz T, Neugebauer J, Scheffler M 1998. Adatom diffusion at GaN (0001) and (0001) surfaces. Appl. Phys. Lett 73:4487–89
    [Google Scholar]
  26. 26. 
    Nayak S, Kumar R, Shivaprasad SM 2018. Edge enhanced growth induced shape transition in the formation of GaN nanowall network. J. Appl. Phys. 123:114302
    [Google Scholar]
  27. 27. 
    Consonni V. 2013. Self-induced growth of GaN nanowires by molecular beam epitaxy: a critical review of the formation mechanisms. Phys. Status Solidi Rapid Res. Lett. 7:10699–712
    [Google Scholar]
  28. 28. 
    Lee WJ, Kim YS. 2011. Dimer-vacancy reconstructions of the GaN and ZnO(101) surfaces: density functional theory calculations. Phys. Rev. B Condens. Matter Mater. Phys. 84:11115318
    [Google Scholar]
  29. 29. 
    Libbrecht KG. 2012. An edge-enhancing crystal growth instability caused by structure-dependent attachment kinetics. arXiv:1209.4932 [cond-mat]
    [Google Scholar]
  30. 30. 
    Harutyunyan VS, Aivazyan AP, Weber ER, Kim Y, Park Y, Subramanya SG 2001. High-resolution X-ray diffraction strain-stress analysis of GaN/sapphire heterostructures. J. Phys. D. Appl. Phys. 34:10AA35–39
    [Google Scholar]
  31. 31. 
    Moram MA, Vickers ME. 2009. X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72:3036502
    [Google Scholar]
  32. 32. 
    Thakur V, Nayak SK, Nagaraja KK, Shivaprasad SM 2015. Surface modification induced photoluminescence enhancement of GaN nanowall network grown on c-sapphire. Electron. Mater. Lett. 11:3398–403
    [Google Scholar]
  33. 33. 
    Widmann F, Feuillet G, Daudin B, Rouvière JL 2002. Low temperature sapphire nitridation: a clue to optimize GaN layers grown by molecular beam epitaxy. J. Appl. Phys. 85:31550–55
    [Google Scholar]
  34. 34. 
    Nayak SK, Shamoon D, Ghatak J, Shivaprasad SM 2017. Nanostructuring GaN thin film for enhanced light emission and extraction. Phys. Status Solidi Appl. Mater. Sci. 214:11600300
    [Google Scholar]
  35. 35. 
    Harima H. 2002. Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter 14:38R967–93
    [Google Scholar]
  36. 36. 
    Kucheyev SO, Toth M, Phillips MR, Williams JS, Jagadish C 2001. Effects of excitation density on cathodoluminescence from GaN. Appl. Phys. Lett. 79:142154–56
    [Google Scholar]
  37. 37. 
    Yacobi BG, Holt DB. 2013. Cathodoluminescence Microscopy of Inorganic Solids Boston: Springer US
    [Google Scholar]
  38. 38. 
    Thakur V, Kesaria M, Shivaprasad SMM 2013. Enhanced band edge luminescence from stress and defect free GaN nanowall network morphology. Solid State Commun 171:8–13
    [Google Scholar]
  39. 39. 
    Kisielowski C, Krüger J, Ruvimov S, Suski T, Ager J et al. 1996. Strain-related phenomena in GaN thin films. Phys. Rev. B Condens. Matter Mater. Phys. 54:2417745–53
    [Google Scholar]
  40. 40. 
    Rieger W, Metzger T, Angerer H, Dimitrov R, Ambacher O, Stutzmann M 1995. Influence of substrate-induced biaxial compressive stress on the optical properties of thin GaN films. Appl. Phys. Lett. 68:7970
    [Google Scholar]
  41. 41. 
    Bhasker HP, Dhar S, Sain A, Kesaria M, Shivaprasad SM 2012. High electron mobility through the edge states in random networks of c-axis oriented wedge-shaped GaN nanowalls grown by molecular beam epitaxy. Appl. Phys. Lett. 101:13132109
    [Google Scholar]
  42. 42. 
    Zhang XB, Taliercio T, Kolliakos S, Lefebvre P 2001. Influence of electron-phonon interaction on the optical properties of III nitride semiconductors. J. Phys. Condens. Matter 13:327053–74
    [Google Scholar]
  43. 43. 
    Goldys EM, Paskova T, Ivanov IG, Arnaudov B, Monemar B 1998. Direct observation of large-scale nonuniformities in hydride vapor-phase epitaxy-grown gallium nitride by cathodoluminescence. Appl. Phys. Lett. 73:243583–85
    [Google Scholar]
  44. 44. 
    Arnaudov B, Paskova T, Goldys EM, Yakimova R, Evtimova S et al. 1999. Contribution of free-electron recombination to the luminescence spectra of thick GaN films grown by hydride vapor phase epitaxy. J. Appl. Phys. 85:117888–92
    [Google Scholar]
  45. 45. 
    Schubert EF, Goepfert ID, Grieshaber W, Redwing JM 1997. Optical properties of Si-doped GaN. Appl. Phys. Lett. 71:7921–23
    [Google Scholar]
  46. 46. 
    Iliopoulos E, Doppalapudi D, Ng HM, Moustakas TD 1998. Broadening of near-band-gap photoluminescence in n-GaN films. Appl. Phys. Lett. 73:3375–77
    [Google Scholar]
  47. 47. 
    De-Sheng J, Makita Y, Ploog K, Queisser HJ 1982. Electrical properties and photoluminescence of Te-doped GaAs grown by molecular beam epitaxy. J. Appl. Phys. 53:2999–1006
    [Google Scholar]
  48. 48. 
    Vilkotskii VA, Domanevskii DS, Kakanakov RD, Krasovskii VV, Tkachev VD 1979. Burstein‐Moss effect and near‐band‐edge luminescence spectrum of highly doped indium arsenide. Phys. Status Solidi 91:171–81
    [Google Scholar]
  49. 49. 
    Nayak SK, Gupta M, Shivaprasad SM 2017. Structural, optical and electronic properties of a Mg incorporated GaN nanowall network. RSC Adv 7:4225998–6005
    [Google Scholar]
  50. 50. 
    Zhang N, Liu Z, Si Z, Ren P, Wang XD et al. 2013. Reduction of efficiency droop and modification of polarization fields of InGaN-based green light-emitting diodes via Mg-doping in the barriers. Chin. Phys. Lett. 30:82011–13
    [Google Scholar]
  51. 51. 
    Kaufmann U, Kunzer M, Maier M, Obloh H, Ramakrishnan A et al. 1998. Nature of the 2.8 eV photoluminescence band in Mg doped GaN. Appl. Phys. Lett. 72:111326–28
    [Google Scholar]
  52. 52. 
    Gelhausen O, Phillips MR, Goldys EM, Paskova T, Monemar B et al. 2004. Dissociation of H-related defect complexes in Mg-doped GaN. Phys. Rev. B Condens. Matter Mater. Phys. 69:12125210
    [Google Scholar]
  53. 53. 
    Koide Y, Walker DE, White BD, Brillson LJ, Murakami M et al. 2002. Simultaneous observation of luminescence and dissociation processes of Mg-H complex for Mg-doped GaN. J. Appl. Phys. 92:73657–61
    [Google Scholar]
  54. 54. 
    Nayak S, Gupta M, Waghmare UV, Shivaprasad SM 2019. Origin of blue luminescence in Mg-doped GaN. Phys. Rev. Appl. 11:014027
    [Google Scholar]
  55. 55. 
    Thakur V, Siddhanta S, Narayana C, Shivaprasad SM 2015. Size and distribution control of surface plasmon enhanced photoluminescence and SERS signal in Ag-GaN hybrid systems. RSC Adv 5:129106832–37
    [Google Scholar]
  56. 56. 
    Armakavicius N, Chen JT, Hofmann T, Knight S, Kühne P et al. 2016. Properties of two-dimensional electron gas in AlGaN/GaN HEMT structures determined by cavity-enhanced THz optical Hall effect. Phys. Status Solidi Curr. Top. Solid State Phys. 13:5–6369–73
    [Google Scholar]
  57. 57. 
    Roccaforte F, Greco G, Fiorenza P, Iucolano F 2019. An overview of normally-off GaN-based high electron mobility transistors. Materials 12:101599
    [Google Scholar]
  58. 58. 
    Datta S. 1995. Electronic Transport in Mesoscopic Systems Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  59. 59. 
    Ning W, Du H, Kong F, Yang J, Han Y et al. 2013. One-dimensional weak antilocalization in single-crystal Bi2Te3 nanowires. Sci. Rep. 3:1564
    [Google Scholar]
  60. 60. 
    Bergmann G. 1983. Physical interpretation of weak localization: a time-of-flight experiment with conduction electrons. Phys. Rev. B 28:62914–20
    [Google Scholar]
  61. 61. 
    Lee PA, Ramakrishnan TV 1985. Disordered electronic systems. Rev. Mod. Phys. 57:2287–337
    [Google Scholar]
  62. 62. 
    Datta S, Melloch MR, Bandyopadhyay S, Lundstrom MS 1986. Proposed structure for large quantum interference effects. Appl. Phys. Lett. 48:7487–89
    [Google Scholar]
  63. 63. 
    Bhasker HP, Thakur V, Shivaprasad SM, Dhar S 2015. Quantum coherence of electrons in random networks of c-axis oriented wedge-shaped GaN nanowalls grown by molecular beam epitaxy. J. Phys. D. Appl. Phys. 48:25255302
    [Google Scholar]
  64. 64. 
    Beenakker CWJ, van Houten H 1988. Boundary scattering and weak localization of electrons in a magnetic field. Phys. Rev. B 38:53232–40
    [Google Scholar]
  65. 65. 
    Lehnen P, Schäpers T, Kaluza N, Thillosen N, Hardtdegen H 2007. Enhanced spin-orbit scattering length in narrow AlxGa1−xN/GaN wires. Phys. Rev. B Condens. Matter Mater. Phys. 76:20205307
    [Google Scholar]
  66. 66. 
    Amaladass EP, Chatterjee A, Sharma S, Mani A, Shivaprasad SM 2017. Weak localization and electron-electron interaction in GaN nanowalls. Mater. Res. Express 4:995014
    [Google Scholar]
  67. 67. 
    Spirito D, Di Gaspare L, Evangelisti F, Di Gaspare A, Giovine E, Notargiacomo A 2012. Weak antilocalization and spin-orbit interaction in a two-dimensional electron gas. Phys. Rev. B Condens. Matter Mater. Phys. 85:23235314
    [Google Scholar]
  68. 68. 
    Bhasker HP, Thakur V, Shivaprasad SM, Dhar S 2015. Role of quantum confinement in giving rise to high electron mobility in GaN nanowall networks. Solid State Commun 220:72–76
    [Google Scholar]
  69. 69. 
    Bhasker HP, Thakur V, Shivaprasad SM, Dhar S 2014. Two dimensional confinement of electrons in nanowall network of GaN leading to high mobility and phase coherence. arXiv:1410.1295 [cond-mat.mes-hall]
    [Google Scholar]
  70. 70. 
    Deb S, Bhasker HP, Thakur V, Shivaprasad SM, Dhar S 2016. Polarization induced two dimensional confinement of carriers in wedge shaped polar semiconductors. Sci. Rep. 6:26429
    [Google Scholar]
  71. 71. 
    Yu ET, Dang XZ, Asbeck PM, Lau SS, Sullivan GJ 2002. Spontaneous and piezoelectric polarization effects in III-V nitride heterostructures. J. Vac. Sci. Technol. B 17:41742
    [Google Scholar]
  72. 72. 
    Deb S, Dhar S. 2018. Wedge-shaped GaN nanowalls: a potential candidate for two-dimensional electronics and spintronics. Spin 08:011840003
    [Google Scholar]
  73. 73. 
    Chakraborti H, Deb S, Schott R, Thakur V, Chatterjee A et al. 2018. Coherent transmission of superconducting carriers through a ∼2 μm polar semiconductor. Supercond. Sci. Technol. 31:885007
    [Google Scholar]
  74. 74. 
    Sun Y, Wang J, Zhao W, Tian M, Singh M, Chan MHW 2013. Voltage-current properties of superconducting amorphous tungsten nanostrips. Sci. Rep. 3:2307
    [Google Scholar]
  75. 75. 
    Lee GH, Kim S, Jhi SH, Lee HJ 2015. Ultimately short ballistic vertical graphene Josephson junctions. Nat. Commun. 6:16181
    [Google Scholar]
  76. 76. 
    Wiesmann C, Bergenek K, Linder N, Schwarz UT 2009. Photonic crystal LEDs – designing light extraction. Laser Photonics Rev 3:3262–86
    [Google Scholar]
  77. 77. 
    Ishida F, Yoshimura K, Hoshino K, Tadatomo K 2008. Improved light extraction efficiency of GaN-based light emitting diodes by using needle-shape indium tin oxide p-contact. Phys. Status Solidi Curr. Top. Solid State Phys. 5:62083–85
    [Google Scholar]
  78. 78. 
    Wierer JJ, David A, Megens MM 2009. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photonics 3:3163–69
    [Google Scholar]
  79. 79. 
    Bilousov OV, Carvajal JJ, Geaney H, Zubialevich VZ, Parbrook PJ et al. 2014. Fully porous GaN p–n junction diodes fabricated by chemical vapor deposition. ACS Appl. Mater. Interfaces 6:2017954–64
    [Google Scholar]
  80. 80. 
    Chhajed S, Lee W, Cho J, Schubert EF, Kim JK 2011. Strong light extraction enhancement in GaInN light-emitting diodes by using self-organized nanoscale patterning of p-type GaN. Appl. Phys. Lett. 98:771102
    [Google Scholar]
  81. 81. 
    Lee JH, Lee B, Kang JH, Lee JK, Ryu SW 2012. Optical characterization of nanoporous GaN by spectroscopic ellipsometry. Thin Solid Films 525:84–87
    [Google Scholar]
  82. 82. 
    Gómez Rivas J, Dau DH, Imhof A, Sprik R, Bret BPJ et al. 2003. Experimental determination of the effective refractive index in strongly scattering media. Opt. Commun. 220:1–317–21
    [Google Scholar]
  83. 83. 
    Wang YD, Chua SJ, Sander MS, Chen P, Tripathy S, Fonstad CG 2004. Fabrication and properties of nanoporous GaN films. Appl. Phys. Lett. 85:5816–18
    [Google Scholar]
  84. 84. 
    Lian J, Zhou W, Wei QM, Wang LM, Boatner LA, Ewing RC 2006. Simultaneous formation of surface ripples and metallic nanodots induced by phase decomposition and focused ion beam patterning. Appl. Phys. Lett. 88:993112
    [Google Scholar]
  85. 85. 
    Kubakaddi SB, Chirakkara S, Hosamani G, Shivaprasad SM 2018. Nanostructured p-TiO2/n-GaN heterostructure as a potential photoelectrode for efficient charge separation. Nanotechnology 29:5050LT02
    [Google Scholar]
  86. 86. 
    Aroca R, Martin F. 1985. Tuning metal island films for maximum surface-enhanced Raman scattering. J. Raman Spectrosc. 16:3156–62
    [Google Scholar]
  87. 87. 
    Yuan W, Ho HP, Lee RKY, Kong SK 2009. Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates. Appl. Opt. 48:224329–37
    [Google Scholar]
  88. 88. 
    David C, Guillot N, Shen H, Toury T, De La Chapelle ML 2010. SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. Nanotechnology 21:47475501
    [Google Scholar]
  89. 89. 
    Ko H, Tsukruk VV. 2008. Nanoparticle-decorated nanocanals for surface-enhanced Raman scattering. Small 4:111980–84
    [Google Scholar]
  90. 90. 
    Linn NC, Sun C-H, Arya A, Jiang P, Jiang B 2009. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness. Nanotechnology 20:22225303
    [Google Scholar]
  91. 91. 
    Lu L, Eychmüller A, Kobayashi A, Hirano Y, Yoshida K et al. 2006. Designed fabrication of ordered porous Au/Ag Nanostructured films for surface-enhanced Raman scattering substrates. Langmuir 22:62605–9
    [Google Scholar]
  92. 92. 
    Siddhanta S, Thakur V, Narayana C, Shivaprasad SM 2012. Universal metal-semiconductor hybrid nanostructured SERS substrate for biosensing. ACS Appl. Mater. Interfaces 4:5807–12
    [Google Scholar]
  93. 93. 
    Shen X, Ho C-M, Wong T-S 2010. Minimal size of coffee ring structure. J. Phys. Chem. B 114:165269–74
    [Google Scholar]
  94. 94. 
    Sharvani S, Upadhayaya K, Kumari G, Narayana C, Shivaprasad SM 2015. Nano-morphology induced additional surface plasmon resonance enhancement of sensitivity in Ag/GaN nanowall network. Nanotechnology 26:46465701
    [Google Scholar]
  95. 95. 
    Tyagi P, Ramesh C, Sharma A, Husale S, Kushvaha SS, Kumar MS 2019. Field-emission and photo-detection characteristics of laser molecular beam epitaxy grown homoepitaxial GaN nanowall networks. Mater. Sci. Semicond. Process. 97:80–84
    [Google Scholar]
  96. 96. 
    Gan H, Peng L, Yang X, Tian Y, Xu N et al. 2017. A moderate synthesis route of 5.6 mA-current LaB6 nanowire film with recoverable emission performance towards cold cathode electron source applications. RSC Adv 7:4024848–55
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081919-014810
Loading
/content/journals/10.1146/annurev-matsci-081919-014810
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error