1932

Abstract

Semiconducting polymers have the potential to be used in thermoelectric devices that are lightweight, flexible, and fabricated using solution processing. Because of the structural and energetic disorder of these polymers, the relationship between their structure and thermoelectric properties is complex. We review how interrelated processing routes and doping methods affect the thermoelectric properties of polymers. The studies highlighted here have led to correlations between thermopower and electrical conductivity that can be described by theories under investigation. With greater understanding of the materials properties behind their performance, semiconducting polymers can be used in future power generation or cooling devices.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-082219-024716
2020-07-01
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-082219-024716.html?itemId=/content/journals/10.1146/annurev-matsci-082219-024716&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Zevalkink A, Smiadak DM, Blackburn JL, Ferguson AJ, Chabinyc ML et al. 2018. A practical field guide to thermoelectrics: fundamentals, synthesis, and characterization. Appl. Phys. Rev. 5:2021303
    [Google Scholar]
  2. 2. 
    Bahk J-H, Fang H, Yazawa K, Shakouri A 2015. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 3:4010362–74
    [Google Scholar]
  3. 3. 
    Magliulo M, Mulla MY, Singh M, Macchia E, Tiwari A et al. 2015. Printable and flexible electronics: from TFTs to bioelectronic devices. J. Mater. Chem. C 3:4812347–63
    [Google Scholar]
  4. 4. 
    Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA 2016. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1:1016050
    [Google Scholar]
  5. 5. 
    Snyder GJ, Toberer ES. 2008. Complex thermoelectric materials. Nat. Mater. 7:2105–14
    [Google Scholar]
  6. 6. 
    Shakouri A. 2011. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41:399–431
    [Google Scholar]
  7. 7. 
    Sales BC, Mandrus D, Williams RK 1996. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272:52661325–28
    [Google Scholar]
  8. 8. 
    Wright DA. 1958. Thermoelectric properties of bismuth telluride and its alloys. Nature 181:4612834
    [Google Scholar]
  9. 9. 
    Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG 2010. Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22:363970–80
    [Google Scholar]
  10. 10. 
    Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H et al. 1977. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39:171098–101
    [Google Scholar]
  11. 11. 
    McNeill R, Siudak R, Wardlaw JH, Weiss DE 1963. Electronic conduction in polymers. I. The chemical structure of polypyrrole. Aust. J. Chem. 16:61056–75
    [Google Scholar]
  12. 12. 
    Bolto BA, Weiss DE. 1963. Electronic conduction in polymers. II. The electrochemical reduction of polypyrrole at controlled potential. Aust. J. Chem. 16:61076–89
    [Google Scholar]
  13. 13. 
    Bolto BA, McNeill R, Weiss DE 1963. Electronic conduction in polymers. III. Electronic properties of polypyrrole. Aust. J. Chem. 16:61090–103
    [Google Scholar]
  14. 14. 
    Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M et al. 2011. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10:6429–33
    [Google Scholar]
  15. 15. 
    Lu Y, Wang J-Y, Pei J 2019. Strategies to enhance the conductivity of n-type polymer thermoelectric materials. Chem. Mater. 31:176412–23
    [Google Scholar]
  16. 16. 
    Tu G, Bilge A, Adamczyk S, Forster M, Heiderhoff R et al. 2007. The influence of interchain branches on solid state packing, hole mobility and photovoltaic properties of poly(3-hexylthiophene) (P3HT). Macromol. Rapid Commun. 28:171781–85
    [Google Scholar]
  17. 17. 
    Zhang Z, Wang J. 2012. Structures and properties of conjugated Donor–Acceptor copolymers for solar cell applications. J. Mater. Chem. 22:104178–87
    [Google Scholar]
  18. 18. 
    Ko S, Hoke ET, Pandey L, Hong S, Mondal R et al. 2012. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives. J. Am. Chem. Soc. 134:115222–32
    [Google Scholar]
  19. 19. 
    DeLongchamp DM, Kline RJ, Fischer DA, Richter LJ, Toney MF 2011. Molecular characterization of organic electronic films. Adv. Mater. 23:3319–37
    [Google Scholar]
  20. 20. 
    Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N et al. 2013. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12:1038–44
    [Google Scholar]
  21. 21. 
    Gu K, Snyder CR, Onorato J, Luscombe CK, Bosse AW, Loo Y-L 2018. Assessing the Huang–Brown description of tie chains for charge transport in conjugated polymers. ACS Macro Lett 7:111333–38
    [Google Scholar]
  22. 22. 
    Hamidi-Sakr A, Biniek L, Bantignies J-L, Maurin D, Herrmann L et al. 2017. A versatile method to fabricate highly in-plane aligned conducting polymer films with anisotropic charge transport and thermoelectric properties: the key role of alkyl side chain layers on the doping mechanism. Adv. Funct. Mater. 27:251700173
    [Google Scholar]
  23. 23. 
    Collins BA, Cochran JE, Yan H, Gann E, Hub C et al. 2012. Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11:6536–43
    [Google Scholar]
  24. 24. 
    Wei P, Oh JH, Dong G, Bao Z 2010. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. J. Am. Chem. Soc. 132:268852–53
    [Google Scholar]
  25. 25. 
    Naab BD, Guo S, Olthof S, Evans EGB, Wei P et al. 2013. Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole derivatives. J. Am. Chem. Soc. 135:4015018–25
    [Google Scholar]
  26. 26. 
    Guo S, Kim SB, Mohapatra SK, Qi Y, Sajoto T et al. 2012. n-Doping of organic electronic materials using air-stable organometallics. Adv. Mater. 24:5699–703
    [Google Scholar]
  27. 27. 
    Petsagkourakis I, Kim N, Tybrandt K, Zozoulenko I, Crispin X 2019. Poly(3,4‐ethylenedioxythiophene): chemical synthesis, transport properties, and thermoelectric devices. Adv. Electron. Mater. 5:111800918
    [Google Scholar]
  28. 28. 
    Heeger AJ. 2001. Semiconducting and metallic polymers: the fourth generation of polymeric materials. J. Phys. Chem. B 105:368475–91
    [Google Scholar]
  29. 29. 
    Ghosh R, Pochas CM, Spano FC 2016. Polaron delocalization in conjugated polymer films. J. Phys. Chem. C 120:2111394–406
    [Google Scholar]
  30. 30. 
    Scholes DT, Yee PY, Lindemuth JR, Kang H, Onorato J et al. 2017. The effects of crystallinity on charge transport and the structure of sequentially processed F4TCNQ-doped conjugated polymer films. Adv. Funct. Mater. 27:441702654
    [Google Scholar]
  31. 31. 
    Ghosh R, Chew AR, Onorato J, Pakhnyuk V, Luscombe CK et al. 2018. Spectral signatures and spatial coherence of bound and unbound polarons in P3HT films: theory versus experiment. J. Phys. Chem. C 122:3118048–60
    [Google Scholar]
  32. 32. 
    Nowak MJ, Spiegel D, Hotta S, Heeger AJ, Pincus PA 1989. Charge storage on a conducting polymer in solution. Macromolecules 22:72917–26
    [Google Scholar]
  33. 33. 
    Bubnova O, Khan ZU, Wang H, Braun S, Evans DR et al. 2013. Semi-metallic polymers. Nat. Mater. 13:2190–94
    [Google Scholar]
  34. 34. 
    Heimel G. 2016. The optical signature of charges in conjugated polymers. ACS Cent. Sci. 2:5309–15
    [Google Scholar]
  35. 35. 
    Schott S, Chopra U, Lemaur V, Melnyk A, Olivier Y et al. 2019. Polaron spin dynamics in high-mobility polymeric semiconductors. Nat. Phys. 15:8814–22
    [Google Scholar]
  36. 36. 
    Wang S, Ha M, Manno M, Frisbie CD, Leighton C 2012. Hopping transport and the Hall effect near the insulator-metal transition in electrochemically gated poly(3-hexylthiophene) transistors. Nat. Commun. 3:1210
    [Google Scholar]
  37. 37. 
    Jacobs IE, Moulé AJ. 2017. Controlling molecular doping in organic semiconductors. Adv. Mater. 29:421703063
    [Google Scholar]
  38. 38. 
    Harrelson TF, Cheng YQ, Li J, Jacobs IE, Ramirez-Cuesta AJ et al. 2017. Identifying atomic scale structure in undoped/doped semicrystalline P3HT using inelastic neutron scattering. Macromolecules 50:62424–35
    [Google Scholar]
  39. 39. 
    Jacobs IE, Aasen EW, Oliveira JL, Fonseca TN, Roehling JD et al. 2016. Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology. J. Mater. Chem. C 4:163454–66
    [Google Scholar]
  40. 40. 
    Kang K, Watanabe S, Broch K, Sepe A, Brown A et al. 2016. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15:8896–902
    [Google Scholar]
  41. 41. 
    Lim E, Peterson KA, Su GM, Chabinyc ML 2018. Thermoelectric properties of poly(3-hexylthiophene) (P3HT) doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by vapor-phase infiltration. Chem. Mater. 30:3998–1010
    [Google Scholar]
  42. 42. 
    Yee PY, Scholes DT, Schwartz BJ, Tolbert SH 2019. Dopant-induced ordering of amorphous regions in regiorandom P3HT. J. Phys. Chem. Lett. 10:174929–34
    [Google Scholar]
  43. 43. 
    Neelamraju B, Watts KE, Pemberton JE, Ratcliff EL 2018. Correlation of coexistent charge transfer states in F4TCNQ-doped P3HT with microstructure. J. Phys. Chem. Lett. 9:236871–77
    [Google Scholar]
  44. 44. 
    Liang Z, Zhang Y, Souri M, Luo X, Boehm AM et al. 2018. Influence of dopant size and electron affinity on the electrical conductivity and thermoelectric properties of a series of conjugated polymers. J. Mater. Chem. A 6:3416495–505
    [Google Scholar]
  45. 45. 
    Aubry TJ, Axtell JC, Basile VM, Winchell KJ, Lindemuth JR et al. 2019. Dodecaborane-based dopants designed to shield anion electrostatics lead to increased carrier mobility in a doped conjugated polymer. Adv. Mater. 31:111805647
    [Google Scholar]
  46. 46. 
    Gao J, Roehling JD, Li Y, Guo H, Moulé AJ, Grey JK 2013. The effect of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane charge transfer dopants on the conformation and aggregation of poly(3-hexylthiophene). J. Mater. Chem. C 1:365638–46
    [Google Scholar]
  47. 47. 
    Lim E, Glaudell AM, Miller R, Chabinyc ML 2019. The role of ordering on the thermoelectric properties of blends of regioregular and regiorandom poly(3-hexylthiophene). Adv. Electron. Mater. 5:111800915
    [Google Scholar]
  48. 48. 
    Yim K-H, Whiting GL, Murphy CE, Halls JJM, Burroughes JH et al. 2008. Controlling electrical properties of conjugated polymers via a solution-based p-type doping. Adv. Mater. 20:173319–24
    [Google Scholar]
  49. 49. 
    Thomas EM, Davidson EC, Katsumata R, Segalman RA, Chabinyc ML 2018. Branched side chains govern counterion position and doping mechanism in conjugated polythiophenes. ACS Macro Lett 7:121492–97
    [Google Scholar]
  50. 50. 
    Jacobs IE, Cendra C, Harrelson TF, Bedolla Valdez ZI, Faller R et al. 2018. Polymorphism controls the degree of charge transfer in a molecularly doped semiconducting polymer. Mater. Horiz. 5:4655–60
    [Google Scholar]
  51. 51. 
    Aziz EF, Vollmer A, Eisebitt S, Eberhardt W, Pingel P et al. 2007. Localized charge transfer in a molecularly doped conducting polymer. Adv. Mater. 19:203257–60
    [Google Scholar]
  52. 52. 
    Patel SN, Glaudell AM, Peterson KA, Thomas EM, O'Hara KA et al. 2017. Morphology controls the thermoelectric power factor of a doped semiconducting polymer. Sci. Adv. 3:6e1700434
    [Google Scholar]
  53. 53. 
    Di Nuzzo D, Fontanesi C, Jones R, Allard S, Dumsch I et al. 2015. How intermolecular geometrical disorder affects the molecular doping of donor-acceptor copolymers. Nat. Commun. 6:6460
    [Google Scholar]
  54. 54. 
    Guardado JO, Salleo A. 2017. Structural effects of gating poly(3-hexylthiophene) through an ionic liquid. Adv. Funct. Mater. 27:321701791
    [Google Scholar]
  55. 55. 
    Thomas EM, Brady MA, Nakayama H, Popere BC, Segalman RA, Chabinyc ML 2018. X-ray scattering reveals ion-induced microstructural changes during electrochemical gating of poly(3-hexylthiophene). Adv. Funct. Mater. 28:441803687
    [Google Scholar]
  56. 56. 
    Schlitz RA, Brunetti FG, Glaudell AM, Miller PL, Brady MA et al. 2014. Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications. Adv. Mater. 26:182825–30
    [Google Scholar]
  57. 57. 
    Liu J, Qiu L, Alessandri R, Qiu X, Portale G et al. 2018. Enhancing molecular n-type doping of donor-acceptor copolymers by tailoring side chains. Adv. Mater. 30:71704630
    [Google Scholar]
  58. 58. 
    Kiefer D, Giovannitti A, Sun H, Biskup T, Hofmann A et al. 2018. Enhanced n-doping efficiency of a naphthalenediimide-based copolymer through polar side chains for organic thermoelectrics. ACS Energy Lett 3:2278–85
    [Google Scholar]
  59. 59. 
    Mazaheripour A, Thomas EM, Segalman RA, Chabinyc ML 2019. Nonaggregating doped polymers based on poly(3,4-propylenedioxythiophene). Macromolecules 52:52203–13
    [Google Scholar]
  60. 60. 
    Kiefer D, Kroon R, Hofmann AI, Sun H, Liu X et al. 2019. Double doping of conjugated polymers with monomer molecular dopants. Nat. Mater. 18:2149–55
    [Google Scholar]
  61. 61. 
    Clark J, Chang J-F, Spano FC, Friend RH, Silva C 2009. Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 94:16163306
    [Google Scholar]
  62. 62. 
    Duong DT, Toney MF, Salleo A 2012. Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. Phys. Rev. B 86:20205205
    [Google Scholar]
  63. 63. 
    Scholes DT, Hawks SA, Yee PY, Wu H, Lindemuth JR et al. 2015. Overcoming film quality issues for conjugated polymers doped with F4TCNQ by solution sequential processing: Hall effect, structural, and optical measurements. J. Phys. Chem. Lett. 6:234786–93
    [Google Scholar]
  64. 64. 
    Hynynen J, Kiefer D, Müller C 2018. Influence of crystallinity on the thermoelectric power factor of P3HT vapour-doped with F4TCNQ. RSC Adv 8:31593–99
    [Google Scholar]
  65. 65. 
    Patel SN, Glaudell AM, Kiefer D, Chabinyc ML 2016. Increasing the thermoelectric power factor of a semiconducting polymer by doping from the vapor phase. ACS Macro Lett 5:3268–72
    [Google Scholar]
  66. 66. 
    Vijayakumar V, Zhong Y, Untilova V, Bahri M, Herrmann L et al. 2019. Bringing conducting polymers to high order: toward conductivities beyond 105 S cm−1 and thermoelectric power factors of 2 mW m−1 K−2. Adv. Energy Mater. 9:241900266
    [Google Scholar]
  67. 67. 
    Venkateshvaran D, Nikolka M, Sadhanala A, Lemaur V, Zelazny M et al. 2014. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515:7527384–88
    [Google Scholar]
  68. 68. 
    Glaudell AM, Cochran JE, Patel SN, Chabinyc ML 2015. Impact of the doping method on conductivity and thermopower in semiconducting polythiophenes. Adv. Energy Mater. 5:41401072
    [Google Scholar]
  69. 69. 
    Kaiser AB. 1989. Thermoelectric power and conductivity of heterogeneous conducting polymers. Phys. Rev. B 40:52806–13
    [Google Scholar]
  70. 70. 
    Zuo GZ, Abdalla H, Kemerink M 2016. Impact of doping on the density of states and the mobility in organic semiconductors. Phys. Rev. B 93:23235203
    [Google Scholar]
  71. 71. 
    Cohen MH, Economou EN, Soukoulis CM 1984. Microscopic mobility. Phys. Rev. B 30:84493–500
    [Google Scholar]
  72. 72. 
    Kang SD, Snyder GJ. 2016. Charge-transport model for conducting polymers. Nat. Mater. 16:2252–57
    [Google Scholar]
  73. 73. 
    Arkhipov VI, Heremans P, Emelianova EV, Bassler H 2005. Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors. Phys. Rev. B 71:4045214
    [Google Scholar]
  74. 74. 
    Venkateshvaran D, Kronemeijer AJ, Moriarty J, Emin D, Sirringhaus H 2014. Field-effect modulated Seebeck coefficient measurements in an organic polymer using a microfabricated on-chip architecture. APL Mater 2:3032102
    [Google Scholar]
  75. 75. 
    Thomas EM, Popere BC, Fang H, Chabinyc ML, Segalman RA 2018. Role of disorder induced by doping on the thermoelectric properties of semiconducting polymers. Chem. Mater. 30:92965–72
    [Google Scholar]
  76. 76. 
    Xie X, Yang K, Li D, Tsai T-H, Shin J et al. 2017. High and low thermal conductivity of amorphous macromolecules. Phys. Rev. B 95:3035406
    [Google Scholar]
  77. 77. 
    Lu Y, Liu J, Xie X, Cahill DG 2016. Thermal conductivity in the radial direction of deformed polymer fibers. ACS Macro Lett 5:6646–50
    [Google Scholar]
  78. 78. 
    Wang X, Ho V, Segalman RA, Cahill DG 2013. Thermal conductivity of high-modulus polymer fibers. Macromolecules 46:124937–43
    [Google Scholar]
  79. 79. 
    Singh V, Bougher TL, Weathers A, Cai Y, Bi K et al. 2014. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9:5384–90
    [Google Scholar]
  80. 80. 
    Ushirokita H, Tada H. 2016. In-plane thermal conductivity measurement of conjugated polymer films by membrane-based AC calorimetry. Chem. Lett. 45:7735–37
    [Google Scholar]
  81. 81. 
    Weathers A, Khan ZU, Brooke R, Evans D, Pettes MT et al. 2015. Significant electronic thermal transport in the conducting polymer poly(3,4-ethylenedioxythiophene). Adv. Mater. 27:122101–6
    [Google Scholar]
  82. 82. 
    Liu J, Wang X, Li D, Coates NE, Segalman RA, Cahill DG 2015. Thermal conductivity and elastic constants of PEDOT:PSS with high electrical conductivity. Macromolecules 48:3585–91
    [Google Scholar]
  83. 83. 
    Shi W, Zhao T, Xi J, Wang D, Shuai Z 2015. Unravelling doping effects on PEDOT at the molecular level: from geometry to thermoelectric transport properties. J. Am. Chem. Soc. 137:4012929–38
    [Google Scholar]
  84. 84. 
    Kim G-H, Shao L, Zhang K, Pipe KP 2013. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12:8719–23
    [Google Scholar]
  85. 85. 
    Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T 2014. Thermoelectric power enhancement of PEDOT:PSS in high-humidity conditions. Appl. Phys. Express 7:3031601
    [Google Scholar]
  86. 86. 
    Ail U, Jafari MJ, Wang H, Ederth T, Berggren M, Crispin X 2016. Thermoelectric properties of polymeric mixed conductors. Adv. Funct. Mater. 26:346288–96
    [Google Scholar]
  87. 87. 
    Zhang Q, Sun Y, Xu W, Zhu D 2012. Thermoelectric energy from flexible P3HT films doped with a ferric salt of triflimide anions. Energy Environ. Sci. 5:119639–44
    [Google Scholar]
  88. 88. 
    Zuo G, Abdalla H, Kemerink M 2019. Conjugated polymer blends for organic thermoelectrics. Adv. Electron. Mater. 5:111800821
    [Google Scholar]
  89. 89. 
    Shi K, Zhang F, Di C-A, Yan T-W, Zou Y et al. 2015. Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones. J. Am. Chem. Soc. 137:226979–82
    [Google Scholar]
  90. 90. 
    Yee SK, LeBlanc S, Goodson KE, Dames C 2013. $ per W metrics for thermoelectric power generation: beyond ZT. Energy Environ. Sci. 6:92561–71
    [Google Scholar]
  91. 91. 
    Park T, Park C, Kim B, Shin H, Kim E 2013. Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ. Sci. 6:3788–92
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-082219-024716
Loading
/content/journals/10.1146/annurev-matsci-082219-024716
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error