1932

Abstract

Constructing hybrid composites with organic and inorganic materials at different length scales provides unconventional opportunities in the field of thermoelectric materials, which are classified as hybrid crystal, superlattice, and nanocomposite. A variety of new techniques have been proposed to fabricate hybrid thermoelectric materials with homogeneous microstructures and intimate interfaces, which are critical for good thermoelectric performance. The combination of organic and inorganic materials at the nano or atomic scale can cause strong perturbation in the structural, electron, and phonon characteristics, providing new mechanisms to decouple electrical and thermal transport properties that are not attainable in the pure organic or inorganic counterparts. Because of their increasing thermoelectric performance, compositional diversity, mechanical flexibility, and ease of fabrication, hybrid materials have become the most promising candidates for flexible energy harvesting and solid-state cooling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-082319-111001
2020-07-01
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-082319-111001.html?itemId=/content/journals/10.1146/annurev-matsci-082319-111001&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bahk JH, Fang HY, Yazawa K, Shakouri A 2015. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 3:10362–74
    [Google Scholar]
  2. 2. 
    Francioso L, De Pascali C, Farella I, Martucci C, Creti P et al. 2011. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. J. Power Sources 196:3239–43
    [Google Scholar]
  3. 3. 
    Zhang J, Zhang F, Yang X, Wang P, Yang Z, Zhang J 2019. Preparation and thermoelectric properties of (Ca0.96D0.04)MnO3(D=Ca, Sr, Rb, Sm). Rare Metal Mater. Eng. 48:644–49
    [Google Scholar]
  4. 4. 
    Mei J, Yao Z, Zhu SY, Hu DL, Jiang Y et al. 2019. Step distribution of Yb filling fraction during microstructural evolution in skutterudites. J. Adv. Ceram. 8:62–71
    [Google Scholar]
  5. 5. 
    Bousnina M, Dujardin R, Perriere L, Giovannelli F, Guegan G, Delorme F 2018. Synthesis, sintering, and thermoelectric properties of the solid solution La1–xSrx CoOδ (0 ≤ x ≤ 1). J. Adv. Ceram. 7:160–68
    [Google Scholar]
  6. 6. 
    LeBlanc S. 2014. Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain. Mater. 1:26–35
    [Google Scholar]
  7. 7. 
    Kim CS, Lee GS, Choi H, Kim YJ, Yang HM et al. 2018. Structural design of a flexible thermoelectric power generator for wearable applications. Appl. Energy 214:131–38
    [Google Scholar]
  8. 8. 
    Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA 2016. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1:16050
    [Google Scholar]
  9. 9. 
    Kim GH, Shao L, Zhang K, Pipe KP 2013. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12:719–23
    [Google Scholar]
  10. 10. 
    de Gans BJ, Duineveld PC, Schubert US 2004. Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16:203–13
    [Google Scholar]
  11. 11. 
    Wan C, Tian R, Kondou M, Yang R, Zong P, Koumoto K 2017. Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice. Nat. Commun. 8:1024
    [Google Scholar]
  12. 12. 
    Wang L, Zhang Z, Liu Y, Wang B, Fang L et al. 2018. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase. Nat. Commun. 9:3817
    [Google Scholar]
  13. 13. 
    Liu B, Dong L, Xi Q, Xu XF, Zhou J, Li BW 2018. Thermal transport in organic/inorganic composites. Front. Energy 12:72–86
    [Google Scholar]
  14. 14. 
    Qian X, Gu XK, Yang RG 2017. Thermal conductivity modeling of hybrid organic-inorganic crystals and superlattices. Nano Energy 41:394–407
    [Google Scholar]
  15. 15. 
    Zheng Y, Zeng HN, Zhu Q, Xu JW 2018. Recent advances in conducting poly(3,4-ethylenedioxythiophene):polystyrene sulfonate hybrids for thermoelectric applications. J. Mater. Chem. C 6:8858–73
    [Google Scholar]
  16. 16. 
    Kickelbick G. 2007. Hybrid Materials: Synthesis, Characterization, and Applications Weinheim, Ger.: Wiley-VCH
    [Google Scholar]
  17. 17. 
    Yu C, Ryu Y, Yin L, Yang H 2011. Modulating electronic transport properties of carbon nanotubes to improve the thermoelectric power factor via nanoparticle decoration. ACS Nano 5:1297–303
    [Google Scholar]
  18. 18. 
    Song SH, Park KH, Kim BH, Choi YW, Jun GH et al. 2013. Enhanced thermal conductivity of epoxy–graphene composites by using non‐oxidized graphene flakes with non‐covalent functionalization. Adv. Mater. 25:732–37
    [Google Scholar]
  19. 19. 
    Prasher RS, Chang J-Y, Sauciuc I, Narasimhan S, Chau D et al. 2005. Nano and micro technology-based next-generation package-level cooling solutions. Intel. Technol. J. 9:285–96
    [Google Scholar]
  20. 20. 
    Liu J, Yoon B, Kuhlmann E, Tian M, Zhu J et al. 2013. Ultralow thermal conductivity of atomic/molecular layer-deposited hybrid organic-inorganic zincone thin films. Nano Lett 13:5594–99
    [Google Scholar]
  21. 21. 
    Cho C, Wallace KL, Tzeng P, Hsu JH, Yu C, Grunlan JC 2016. Outstanding low temperature thermoelectric power factor from completely organic thin films enabled by multidimensional conjugated nanomaterials. Adv. Energy Mater. 6:201502168
    [Google Scholar]
  22. 22. 
    More PV, Hiragond C, Dey A, Khanna PK 2017. Band engineered p-type RGO–CdS–PANI ternary nanocomposites for thermoelectric applications. Sustain. Energy Fuels 1:1766–73
    [Google Scholar]
  23. 23. 
    Du FP, Li QQ, Fu P, Zhang YF, Wu YG 2018. The effect of polystyrene sulfonate on the thermoelectric properties of polyaniline/silver nanowires nanocomposites. J. Mater. Sci. Mater. Electron. 29:8666–72
    [Google Scholar]
  24. 24. 
    Zhang K, Zhang Y, Wang SR 2013. Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci. Rep. 3:3448
    [Google Scholar]
  25. 25. 
    Aghelinejad M, Leung SN. 2018. Thermoelectric nanocomposite foams using non-conducting polymers with hybrid 1D and 2D nanofillers. Materials 11:1757
    [Google Scholar]
  26. 26. 
    Jin Q, Jiang S, Zhao Y, Wang D, Qiu J et al. 2019. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18:62–68
    [Google Scholar]
  27. 27. 
    Wan C, Gu X, Dang F, Itoh T, Wang Y et al. 2015. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14:622–27
    [Google Scholar]
  28. 28. 
    Lee C, Hong J, Stroppa A, Whangbo M-H, Shim JH 2015. Organic–inorganic hybrid perovskites ABI3 (A = CH3NH3, NH2CHNH2; B = Sn, Pb) as potential thermoelectric materials: a density functional evaluation. RSC Adv 5:78701–7
    [Google Scholar]
  29. 29. 
    Talin AA, Centrone A, Ford AC, Foster ME, Stavila V et al. 2014. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343:66–69
    [Google Scholar]
  30. 30. 
    Karttunen AJ, Tynell T, Karppinen M 2015. Atomic-level structural and electronic properties of hybrid inorganic–organic ZnO: hydroquinone superlattices fabricated by ALD/MLD. J. Phys. Chem. C 119:13105–14
    [Google Scholar]
  31. 31. 
    Hao F, Stoumpos CC, Cao DH, Chang RP, Kanatzidis MG 2014. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photon. 8:489–94
    [Google Scholar]
  32. 32. 
    Liu YC, Li XL, Wang JB, Xu L, Hu B 2017. An extremely high power factor in Seebeck effects based on a new n-type copper-based organic/inorganic hybrid C6H4NH2CuBr2I film with metal-like conductivity. J. Mater. Chem. A 5:13834–41
    [Google Scholar]
  33. 33. 
    He Y, Galli G. 2014. Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3(A = Pb and Sn). Chem. Mater. 26:5394–400
    [Google Scholar]
  34. 34. 
    Talin AA, Jones RE, Hopkins PE 2016. Metal–organic frameworks for thermoelectric energy-conversion applications. MRS Bull 41:877–82
    [Google Scholar]
  35. 35. 
    Erickson KJ, Leonard F, Stavila V, Foster ME, Spataru CD et al. 2015. Thin film thermoelectric metal-organic framework with high Seebeck coefficient and low thermal conductivity. Adv. Mater. 27:3453–59
    [Google Scholar]
  36. 36. 
    He Y, Spataru CD, Leonard F, Jones RE, Foster ME et al. 2017. Two-dimensional metal-organic frameworks with high thermoelectric efficiency through metal ion selection. Phys. Chem. Chem. Phys. 19:19461–67
    [Google Scholar]
  37. 37. 
    Wang LM, Zhang ZM, Geng LX, Yuan TY, Liu YC et al. 2018. Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energy Environ. Sci. 11:1307–17
    [Google Scholar]
  38. 38. 
    Karttunen AJ, Tynell T, Karppinen M 2016. Layer-by-layer design of nanostructured thermoelectrics: first-principles study of ZnO:organic superlattices fabricated by ALD/MLD. Nano Energy 22:338–48
    [Google Scholar]
  39. 39. 
    Giedraityte Z, Sundberg P, Karppinen M 2015. Flexible inorganic–organic thin film phosphors by ALD/MLD. J. Mater. Chem. C 3:12316–21
    [Google Scholar]
  40. 40. 
    Parsons GN, George SM, Knez M 2011. Progress and future directions for atomic layer deposition and ALD-based chemistry. MRS Bull 36:865–71
    [Google Scholar]
  41. 41. 
    Krahl F, Giri A, Tomko JA, Tynell T, Hopkins PE, Karppinen M 2018. Thermal conductivity reduction at inorganic-organic interfaces: from regular superlattices to irregular gradient layer sequences. Adv. Mater. Interfaces 5:1701692
    [Google Scholar]
  42. 42. 
    Tynell T, Terasaki I, Yamauchi H, Karppinen M 2013. Thermoelectric characteristics of (Zn,Al)O/hydroquinone superlattices. J. Mater. Chem. A 1:13619–24
    [Google Scholar]
  43. 43. 
    Tynell T, Yamauchi H, Karppinen M 2014. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition. J. Vac. Sci. Technol. A 32:01A105
    [Google Scholar]
  44. 44. 
    Salleo A, Kline RJ, DeLongchamp DM, Chabinyc ML 2010. Microstructural characterization and charge transport in thin films of conjugated polymers. Adv. Mater. 22:3812–38
    [Google Scholar]
  45. 45. 
    Devaki SJ, Sadanandhan NK, Sasi R, Adler HJP, Pich A 2014. Water dispersible electrically conductive poly(3,4-ethylenedioxythiophene) nanospindles by liquid crystalline template assisted polymerization. J. Mater. Chem. C 2:6991–7000
    [Google Scholar]
  46. 46. 
    Shi H, Liu CC, Jiang QL, Xu JK 2015. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv. Electron. Mater. 1:201500017
    [Google Scholar]
  47. 47. 
    Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M et al. 2011. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10:429–33
    [Google Scholar]
  48. 48. 
    Hnida KE, Pilarczyk K, Knutelski M, Marzec M, Gajewska M et al. 2018. Tuning of the Seebeck coefficient and the electrical and thermal conductivity of hybrid materials based on polypyrrole and bismuth nanowires. ChemPhysChem 19:1617–26
    [Google Scholar]
  49. 49. 
    Wang Y, Zhang SM, Deng Y 2016. Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films. J. Mater. Chem. A 4:3554–59
    [Google Scholar]
  50. 50. 
    Wang Y, Yu C, Liu GF, Sheng M, Deng Y 2018. An effective thermal treatment strategy for thermoelectric performance enhancement in PANI/Te nanorod hybrid film. Mater. Lett. 229:293–96
    [Google Scholar]
  51. 51. 
    Bae EJ, Kang YH, Jang KS, Cho SY 2016. Enhancement of thermoelectric properties of PEDOT:PSS and tellurium-PEDOT:PSS hybrid composites by simple chemical treatment. Sci. Rep. 6:18805
    [Google Scholar]
  52. 52. 
    An CJ, Kang YH, Lee AY, Jang KS, Jeong Y, Cho SY 2016. Foldable thermoelectric materials: improvement of the thermoelectric performance of directly spun CNT webs by individual control of electrical and thermal conductivity. ACS Appl. Mater. Interfaces 8:22142–50
    [Google Scholar]
  53. 53. 
    Roussel F, King RCY, Kuriakose M, Depriester M, Hadj-Sahraoui A et al. 2015. Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials. Synth. Metals 199:196–204
    [Google Scholar]
  54. 54. 
    Yoshida A, Toshima N. 2016. Thermoelectric properties of hybrid thin films of PEDOT-PSS and silver nanowires. J. Electron. Mater. 45:2914–19
    [Google Scholar]
  55. 55. 
    Zaia EW, Sahu A, Zhou P, Gordon MP, Forster JD et al. 2016. Carrier scattering at alloy nanointerfaces enhances power factor in PEDOT:PSS hybrid thermoelectrics. Nano Lett 16:3352–59
    [Google Scholar]
  56. 56. 
    Wang XD, Meng FL, Wang TZ, Li CC, Tang HT et al. 2018. High performance of PEDOT:PSS/SiC-NWs hybrid thermoelectric thin film for energy harvesting. J. Alloys Compd. 734:121–29
    [Google Scholar]
  57. 57. 
    Thongkham W, Lertsatitthanakorn C, Jiramitmongkon K, Tantisantisom K, Boonkoom T et al. 2019. Self-assembled three-dimensional Bi2Te3 nanowire-PEDOT:PSS hybrid nanofilm network for ubiquitous thermoelectrics. ACS Appl. Mater. Interfaces 11:6624–33
    [Google Scholar]
  58. 58. 
    Yao Q, Chen L, Zhang W, Liufu S, Chen X 2010. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4:2445–51
    [Google Scholar]
  59. 59. 
    Moriarty GP, De S, King PJ, Khan U, Via M et al. 2013. Thermoelectric behavior of organic thin film nanocomposites. J. Polym. Sci. Part B Polym. Phys. 51:119–23
    [Google Scholar]
  60. 60. 
    Lee W, Kang YH, Lee JY, Jang KS, Cho SY 2016. Improving the thermoelectric power factor of CNT/PEDOT:PSS nanocomposite films by ethylene glycol treatment. RSC Adv 6:53339–44
    [Google Scholar]
  61. 61. 
    Zhang L, Harima Y, Imae I 2017. Highly improved thermoelectric performances of PEDOT:PSS/SWCNT composites by solvent treatment. Org. Electron. 51:304–7
    [Google Scholar]
  62. 62. 
    Jiang QL, Lan XQ, Liu CC, Shi H, Zhu ZY et al. 2018. High-performance hybrid organic thermoelectric SWNTs/PEDOT:PSS thin-films for energy harvesting. Mater. Chem. Front. 2:679–85
    [Google Scholar]
  63. 63. 
    Yao Q, Wang Q, Wang LM, Chen LD 2014. Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering. Energy Environ. Sci. 7:3801–7
    [Google Scholar]
  64. 64. 
    Li H, Liu SQ, Li PC, Yuan D, Zhou X et al. 2018. Interfacial control and carrier tuning of carbon nanotube/polyaniline composites for high thermoelectric performance. Carbon 136:292–98
    [Google Scholar]
  65. 65. 
    Wang L, Yao Q, Xiao J, Zeng K, Qu S et al. 2016. Engineered molecular chain ordering in single‐walled carbon nanotubes/polyaniline composite films for high‐performance organic thermoelectric materials. Chem. Asian J. 11:1804–10
    [Google Scholar]
  66. 66. 
    Li P, Guo Y, Mu JK, Wang HZ, Zhang QH, Li YG 2016. Single-walled carbon nanotubes/polyaniline-coated polyester thermoelectric textile with good interface stability prepared by ultrasonic induction. RSC Adv 6:90347–53
    [Google Scholar]
  67. 67. 
    Wu RL, Yuan HC, Liu C, Lan JL, Yang XP, Lin YH 2018. Flexible PANI/SWCNT thermoelectric films with ultrahigh electrical conductivity. RSC Adv 8:26011–19
    [Google Scholar]
  68. 68. 
    Du Y, Shen SZ, Yang WD, Chen S, Qin Z et al. 2012. Facile preparation and characterization of poly (3-hexylthiophene)/multiwalled carbon nanotube thermoelectric composite films. J. Electron. Mater. 41:1436–41
    [Google Scholar]
  69. 69. 
    Hong CT, Kang YH, Ryu J, Cho SY, Jang KS 2015. Spray-printed CNT/P3HT organic thermoelectric films and power generators. J. Mater. Chem. A 3:21428–33
    [Google Scholar]
  70. 70. 
    Lee W, Kang YH, Lee JY, Jang KS, Cho SY 2017. Hot-pressing for improving performance of CNT/conjugated polymer thermoelectric films and power generators. Mater. Today Commun. 10:41–45
    [Google Scholar]
  71. 71. 
    Qu SY, Wang MD, Chen YL, Yao Q, Chen LD 2018. Enhanced thermoelectric performance of CNT/P3HT composites with low CNT content. RSC Adv 8:33855–63
    [Google Scholar]
  72. 72. 
    Oshima K, Sadakata S, Asano H, Shiraishi Y, Toshima N 2017. Thermostability of hybrid thermoelectric materials consisting of poly(Ni-ethenetetrathiolate), polyimide and carbon nanotubes. Materials 10:824
    [Google Scholar]
  73. 73. 
    Xiong J, Wang L, Xu J, Liu C, Zhou W et al. 2015. Thermoelectric performance of PEDOT:PSS/Bi2Te3-nanowires: a comparison of hybrid types. J. Mater. Sci. Mater. Electron. 27:1769–76
    [Google Scholar]
  74. 74. 
    Zhang K, Qiu J, Wang S 2016. Thermoelectric properties of PEDOT nanowire/PEDOT hybrids. Nanoscale 8:8033–41
    [Google Scholar]
  75. 75. 
    Choi K, Kim SL, Yi SI, Hsu JH, Yu C 2018. Promoting dual electronic and ionic transport in PEDOT by embedding carbon nanotubes for large thermoelectric responses. ACS Appl. Mater. Interfaces 10:23891–99
    [Google Scholar]
  76. 76. 
    Wang Y, Yang J, Wang L, Du K, Yin Q, Yin Q 2017. Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl. Mater. Interfaces 9:20124–31
    [Google Scholar]
  77. 77. 
    Wang LM, Bi H, Yao Q, Ren DD, Qu SY et al. 2017. Three-dimensional tubular graphene/polyaniline composites as high-performance elastic thermoelectrics. Compos. Sci. Technol. 150:135–40
    [Google Scholar]
  78. 78. 
    Park C, Yoo D, Lee JJ, Choi HH, Kim JH 2016. Enhanced power factor of poly (3,4-ethyldioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/RTCVD graphene hybrid films. Org. Electron. 36:166–70
    [Google Scholar]
  79. 79. 
    Park C, Yoo D, Im S, Kim S, Cho W et al. 2017. Large-scalable RTCVD graphene/PEDOT:PSS hybrid conductive film for application in transparent and flexible thermoelectric nanogenerators. RSC Adv 7:25237–43
    [Google Scholar]
  80. 80. 
    Xin SC, Yang N, Gao F, Zhao J, Li L, Teng C 2018. Free-standing and flexible polypyrrole nanotube/reduced graphene oxide hybrid film with promising thermoelectric performance. Mater. Chem. Phys. 212:440–45
    [Google Scholar]
  81. 81. 
    Toshima N, Ichikawa S. 2015. Conducting polymers and their hybrids as organic thermoelectric materials. J. Electron. Mater. 44:384–90
    [Google Scholar]
  82. 82. 
    Wang W, Sun S, Gu S, Shen H, Zhang Q et al. 2014. One-pot fabrication and thermoelectric properties of Ag nanoparticles–polyaniline hybrid nanocomposites. RSC Adv 4:26810–16
    [Google Scholar]
  83. 83. 
    Yoshida A, Toshima N. 2014. Gold nanoparticle and gold nanorod embedded PEDOT:PSS thin films as organic thermoelectric materials. J. Electron. Mater. 43:1492–97
    [Google Scholar]
  84. 84. 
    Ramakrishnan R, Devaki SJ, Aashish A, Thomas S, Varma MR, KPP N 2016. Nanostructured semiconducting PEDOT–TiO2/ZnO hybrid composites for nanodevice applications. J. Phys. Chem. C 120:4199–210
    [Google Scholar]
  85. 85. 
    Wang C-H, Lo S-S, Jan D-J 2016. Thermoelectric properties of inorganic/organic hybrid thin-film with various ZnO nanostructures embedded in PMMA. 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)819–22 New York: IEEE
    [Google Scholar]
  86. 86. 
    Ohnuma A. 2018. Fabrication of n-type flexible films with a double-layer structure by hybridizing Bi2Se3 and poly(vinyl alcohol). MRS Commun 8:1261–66
    [Google Scholar]
  87. 87. 
    Ding Y, Qiu Y, Cai K, Yao Q, Chen S et al. 2019. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat. Commun. 10:841
    [Google Scholar]
  88. 88. 
    Kato K, Kuriyama K, Yabuki T, Miyazaki K 2018. Organic-inorganic thermoelectric material for a printed generator. J. Phys. Conf. Ser. 1052:012008
    [Google Scholar]
  89. 89. 
    Kavinkumar T, Manivannan S. 2017. Thermal and dielectric properties of multi-walled carbon nanotube–graphene oxide composite. J. Mater. Sci. Mater. Electron. 28:344–53
    [Google Scholar]
  90. 90. 
    Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K 2012. A roadmap for graphene. Nature 490:192–200
    [Google Scholar]
  91. 91. 
    Zhao W, Tan HT, Tan LP, Fan S, Hng HH et al. 2014. n-Type carbon nanotubes/silver telluride nanohybrid buckypaper with a high-thermoelectric figure of merit. ACS Appl. Mater. Interfaces 6:4940–46
    [Google Scholar]
  92. 92. 
    Nunna R, Qiu PF, Yin MJ, Chen HY, Hanus R et al. 2017. Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs. Energy Environ. Sci. 10:1928–35
    [Google Scholar]
  93. 93. 
    Zong PA, Hanus R, Dylla M, Tang YS, Liao JC et al. 2017. Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci. 10:183–91
    [Google Scholar]
  94. 94. 
    He M, Ge J, Lin Z, Feng X, Wang X et al. 2012. Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy Environ. Sci. 5:8351–58
    [Google Scholar]
  95. 95. 
    Kim D, Kim Y, Choi K, Grunlan JC, Yu C 2009. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 4:513–23
    [Google Scholar]
  96. 96. 
    An H, Karas D, Kim BW, Trabia S, Moon J 2018. Flexible n-type thermoelectric composite films with enhanced performance through interface engineering and post-treatment. Nanotechnology 29:275403
    [Google Scholar]
  97. 97. 
    Kim JY, Mo JH, Kang YH, Cho SY, Jang KS 2018. Thermoelectric fibers from well-dispersed carbon nanotube/poly(vinyliedene fluoride) pastes for fiber-based thermoelectric generators. Nanoscale 10:19766–73
    [Google Scholar]
  98. 98. 
    An H, Pusko M, Chun D, Park S, Moon J 2019. In-situ synthesis of flexible hybrid composite films for improved thermoelectric performance. Chem. Eng. J. 357:547–58
    [Google Scholar]
  99. 99. 
    Ferhat S, Domain C, Vidal J, Noel D, Ratier B, Lucas B 2018. Organic thermoelectric devices based on a stable n-type nanocomposite printed on paper. Sustain. Energy Fuels 2:199–208
    [Google Scholar]
  100. 100. 
    Kim C, Baek JY, Lopez DH, Kim DH, Kim H 2018. Interfacial energy band and phonon scattering effect in Bi2Te3-polypyrrole hybrid thermoelectric material. Appl. Phys. Lett. 113:153901
    [Google Scholar]
  101. 101. 
    Cho C, Stevens B, Hsu JH, Bureau R, Hagen DA et al. 2015. Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides. Adv. Mater. 27:2996–3001
    [Google Scholar]
  102. 102. 
    Krahl F, Giri A, Tomko JA, Tynell T, Hopkins PE, Karppinen M 2018. Thermal conductivity reduction at inorganic–organic interfaces: from regular superlattices to irregular gradient layer sequences. Adv. Mater. Interfaces 5:1701692
    [Google Scholar]
  103. 103. 
    George SM, Yoon B, Dameron AA 2009. Surface chemistry for molecular layer deposition of organic and hybrid organic-inorganic polymers. Acc. Chem. Res. 42:498–508
    [Google Scholar]
  104. 104. 
    Wan CL, Tian RM, Azizi AB, Huang YJ, Wei QS et al. 2016. Flexible thermoelectric foil for wearable energy harvesting. Nano Energy 30:840–45
    [Google Scholar]
  105. 105. 
    Meng CZ, Liu CH, Fan SS 2010. A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv. Mater. 22:535–39
    [Google Scholar]
  106. 106. 
    Zhang QL, Wang WJ, Li JL, Zhu JJ, Wang LJ et al. 2013. Preparation and thermoelectric properties of multi-walled carbon nanotube/polyaniline hybrid nanocomposites. J. Mater. Chem. A 1:12109–14
    [Google Scholar]
  107. 107. 
    Kurabayashi K. 2001. Anisotropic thermal properties of solid polymers. Int. J. Thermophys. 22:277–88
    [Google Scholar]
  108. 108. 
    Wang Q, Yao Q, Chang J, Chen LD 2012. Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J. Mater. Chem. 22:17612–18
    [Google Scholar]
  109. 109. 
    Yu C, Kim YS, Kim D, Grunlan JC 2008. Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8:4428–32
    [Google Scholar]
  110. 110. 
    He M, Qiu F, Lin ZQ 2013. Towards high-performance polymer-based thermoelectric materials. Energy Environ. Sci. 6:1352–61
    [Google Scholar]
  111. 111. 
    Hsu JH, Choi W, Yang G, Yu C 2017. Origin of unusual thermoelectric transport behaviors in carbon nanotube filled polymer composites after solvent/acid treatments. Org. Electron. 45:182–89
    [Google Scholar]
  112. 112. 
    Zhang T, Li KW, Li CC, Ma SY, Hng HH, Wei L 2017. Mechanically durable and flexible thermoelectric films from PEDOT:PSS/PVA/Bi0.5Sb1.5Te3 nanocomposites. Adv. Electron. Mater. 3:1600554
    [Google Scholar]
  113. 113. 
    Rietwyk KJ, Smets Y, Bashouti M, Christiansen SH, Schenk A et al. 2014. Charge transfer doping of silicon. Phys. Rev. Lett. 112:155502
    [Google Scholar]
  114. 114. 
    Choudhary N, Islam MA, Kim JH, Ko TJ, Schropp A et al. 2018. Two-dimensional transition metal dichalcogenide hybrid materials for energy applications. Nano Today 19:16–40
    [Google Scholar]
  115. 115. 
    Lan Y, Wang X, Wang C, Zebarjadi M 2018. Organic/inorganic hybrid nanostructured materials for thermoelectric energy conversion. Functional Organic and Hybrid Nanostructured Materials: Fabrication, Properties, and Applications Q Li 445–84 Weinheim, Ger.: Wiley-VCH
    [Google Scholar]
  116. 116. 
    Ong WL, Rupich SM, Talapin DV, McGaughey AJ, Malen JA 2013. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12:410–15
    [Google Scholar]
  117. 117. 
    Shi W, Shuai Z, Wang D 2017. Tuning thermal transport in chain‐oriented conducting polymers for enhanced thermoelectric efficiency: a computational study. Adv. Funct. Mater. 27:1702847
    [Google Scholar]
  118. 118. 
    Kwok HL. 2015. Effect of non-uniform energy transfer on the phonon relaxation time in conducting organics and (organic/inorganic) hybrids. J. Mater. Sci. Mater. Electron. 26:9185–87
    [Google Scholar]
  119. 119. 
    Balandin A, Wang KL. 1998. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84:6149–53
    [Google Scholar]
  120. 120. 
    Singh MP. 2018. Thermo-electric figure of merit of quasi-two-dimensional Bi2Te3 nano-structures. J. Phys. Commun. 2:045021
    [Google Scholar]
  121. 121. 
    Tian RM, Wan CL, Wang YF, Wei QS, Ishida T et al. 2017. A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices. J. Mater. Chem. A 5:564–70
    [Google Scholar]
  122. 122. 
    Toshima N, Oshima K, Anno H, Nishinaka T, Ichikawa S et al. 2015. Novel hybrid organic thermoelectric materials: three‐component hybrid films consisting of a nanoparticle polymer complex, carbon nanotubes, and vinyl polymer. Adv. Mater. 27:2246–51
    [Google Scholar]
  123. 123. 
    Bae EJ, Kang YH, Jang KS, Lee C, Cho SY 2016. Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators. Nanoscale 8:10885–90
    [Google Scholar]
  124. 124. 
    Madan D, Wang ZQ, Chen A, Winslow R, Wright PK, Evans JW 2014. Dispenser printed circular thermoelectric devices using Bi and Bi0.5Sb1.5Te3. Appl. Phys. Lett. 104:013902
    [Google Scholar]
  125. 125. 
    Chen A, Madan D, Wright PK, Evans JW 2011. Dispenser-printed planar thick-film thermoelectric energy generators. J. Micromech. Microeng. 21:104006
    [Google Scholar]
  126. 126. 
    Bae EJ, Kang YH, Lee C, Cho SY 2017. Engineered nanocarbon mixing for enhancing the thermoelectric properties of a telluride-PEDOT:PSS nanocomposite. J. Mater. Chem. A 5:17867–73
    [Google Scholar]
  127. 127. 
    Song HJ, Qiu Y, Wang Y, Cai KF, Li DL et al. 2017. Polymer/carbon nanotube composite materials for flexible thermoelectric power generator. Compos. Sci. Technol. 153:71–83
    [Google Scholar]
  128. 128. 
    Wu B, Guo Y, Hou C, Zhang Q, Li Y, Wang H 2019. High‐performance flexible thermoelectric devices based on all‐inorganic hybrid films for harvesting low‐grade heat. Adv. Funct. Mater. 29:201900304
    [Google Scholar]
  129. 129. 
    Wang XD, Meng FL, Tang HT, Gao ZM, Li S et al. 2018. Design and fabrication of low resistance palm-power generator based on flexible thermoelectric composite film. Synth. Metals 235:42–48
    [Google Scholar]
  130. 130. 
    Pires AL, Cruz IF, Silva J, Oliveira GNP, Ferreira-Teixeira S et al. 2019. Printed flexible μ-thermoelectric device based on hybrid Bi2Te3/PVA composites. ACS Appl. Mater. Interfaces 11:8969–81
    [Google Scholar]
  131. 131. 
    Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K et al. 2007. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6:129
    [Google Scholar]
  132. 132. 
    Xu N, Xu Y, Zhu J 2017. Topological insulators for thermoelectrics. NPJ Quantum Mater 2:51
    [Google Scholar]
  133. 133. 
    Wan C, Kodama Y, Kondo M, Sasai R, Qian X et al. 2015. Dielectric mismatch mediates carrier mobility in organic-intercalated layered TiS2. Nano Lett 15:6302–8
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-082319-111001
Loading
/content/journals/10.1146/annurev-matsci-082319-111001
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error