1932

Abstract

Establishing structure–property correlations is of paramount importance to materials research. The ability to selectively detect observable magnetization from transitions between quantized spin states of nuclei makes nuclear magnetic resonance (NMR) spectroscopy a powerful probe to characterize solids at the atomic level. In this article, we review recent advances in NMR techniques in six areas: spectral resolution, sensitivity, atomic correlations, ion dynamics, materials imaging, and hardware innovation. In particular, we focus on the applications of these techniques to materials research. Specific examples are given following the general introduction of each topic and technique to illustrate how they are applied. In conclusion, we suggest future directions for advanced solid-state NMR spectroscopy and imaging in interdisciplinary research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-091019-011049
2020-07-01
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-091019-011049.html?itemId=/content/journals/10.1146/annurev-matsci-091019-011049&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hung I, Gan Z. 2018. Isotropic versus anisotropic chemical shift separation. Modern Methods in Solid-State NMR: A Practitioner's Guide P Hodgkinson 75–96 Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  2. 2. 
    Liao W-C, Ghaffari B, Gordon CP, Xu J, Copéret C 2018. Dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS): principles, protocols, and practice. Curr. Opin. Colloid Interface Sci. 33:63–71
    [Google Scholar]
  3. 3. 
    Yi X, Liu K, Chen W, Li J, Xu S et al. 2018. Origin and structural characteristics of tri-coordinated extra-framework aluminum species in dealuminated zeolites. J. Am. Chem. Soc. 140:3410764–74
    [Google Scholar]
  4. 4. 
    Kärger J, Freude D, Haase J 2018. Diffusion in nanoporous materials: novel insights by combining MAS and PFG NMR. Processes 6:9147
    [Google Scholar]
  5. 5. 
    Bottke P, Rettenwander D, Schmidt W, Amthauer G, Wilkening M 2015. Ion dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hopping in the garnet Li6.5La3Zr1.75Mo0.25O12. Chem. Mater. 27:196571–82
    [Google Scholar]
  6. 6. 
    Romanenko K, Jin L, Howlett P, Forsyth M 2016. In situ MRI of operating solid-state lithium metal cells based on ionic plastic crystal electrolytes. Chem. Mater. 28:82844–51
    [Google Scholar]
  7. 7. 
    Chien P-H, Feng X, Tang M, Rosenberg JT, O'Neill S et al. 2018. Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI. J. Phys. Chem. Lett. 9:81990–98
    [Google Scholar]
  8. 8. 
    Paruzzo FM, Hofstetter A, Musil F, De S, Ceriotti M, Emsley L 2018. Chemical shifts in molecular solids by machine learning. Nat. Commun. 9:14501
    [Google Scholar]
  9. 9. 
    Keeler J. 2010. Understanding NMR Spectroscopy West Sussex, UK: John Wiley & Sons, 2nd ed..
  10. 10. 
    Slichter CP. 2010. Principles of Magnetic Resonance Berlin/Heidelberg, Ger: Springer
  11. 11. 
    Schmidt-Rohr K, Spiess HW 1994. Multidimensional Solid-State NMR and Polymers San Diego: Academic
  12. 12. 
    Apperley DC, Harris RK, Hodgkinson P 2012. Solid-State NMR: Basic Principles and Practice New York: Monumentum
  13. 13. 
    Callaghan PT. 1994. Principles of Nuclear Magnetic Resonance Microscopy Oxford, UK: Clarendon
  14. 14. 
    Melinda J. Duer 2005. Introduction to Solid-State NMR Spectroscopy Oxford, UK: Blackwell
  15. 15. 
    Levitt MH. 2008. Spin Dynamics: Basics of Nuclear Magnetic Resonance Chichester, UK: John Wiley & Sons
  16. 16. 
    Ernst RR, Bodenhausen G, Wokaun A 1987. Principles of Nuclear Magnetic Resonance in One and Two Dimensions Oxford, UK: Clarendon
  17. 17. 
    Andrew ER, Bradbury A, Eades RG 1959. Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature 183:46781802–3
    [Google Scholar]
  18. 18. 
    Lowe IJ. 1959. Free induction decays of rotating solids. Phys. Rev. Lett. 2:7285–87
    [Google Scholar]
  19. 19. 
    Polenova T, Gupta R, Goldbourt A 2015. Magic angle spinning NMR spectroscopy: a versatile technique for structural and dynamic analysis of solid-phase systems. Anal. Chem. 87:115458–69
    [Google Scholar]
  20. 20. 
    Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E et al. 2014. De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew. Chem. Int. Ed. 53:4512253–56
    [Google Scholar]
  21. 21. 
    Mroue KH, Nishiyama Y, Kumar Pandey M, Gong B, McNerny E et al. 2015. Proton-detected solid-state NMR spectroscopy of bone with ultrafast magic angle spinning. Sci. Rep. 5:111991
    [Google Scholar]
  22. 22. 
    Xue K, Sarkar R, Motz C, Asami S, Camargo DCR et al. 2017. Limits of resolution and sensitivity of proton detected MAS solid-state NMR experiments at 111 kHz in deuterated and protonated proteins. Sci. Rep. 7:17444
    [Google Scholar]
  23. 23. 
    David G, Fogeron M-L, Schledorn M, Montserret R, Haselmann U et al. 2018. Structural studies of self-assembled subviral particles: combining cell-free expression with 110 kHz MAS NMR spectroscopy. Angew. Chem. Int. Ed. 57:174787–91
    [Google Scholar]
  24. 24. 
    Zhang R, Mroue KH, Ramamoorthy A 2017. Proton-based ultrafast magic angle spinning solid-state NMR spectroscopy. Acc. Chem. Res. 50:41105–13
    [Google Scholar]
  25. 25. 
    Penzel S, Oss A, Org M-L, Samoson A, Böckmann A et al. 2019. Spinning faster: protein NMR at MAS frequencies up to 126 kHz. J. Biomol. NMR 73:1–219–29
    [Google Scholar]
  26. 26. 
    Chen P, Albert BJ, Gao C, Alaniva N, Price LE et al. 2018. Magic angle spinning spheres. Sci. Adv. 4:9eaau1540
    [Google Scholar]
  27. 27. 
    Kentgens APM. 1997. A practical guide to solid-state NMR of half-integer quadrupolar nuclei with some applications to disordered systems. Geoderma 80:3–4271–306
    [Google Scholar]
  28. 28. 
    Frydman L. 2002. Fundamentals of multiple-quantum magic-angle spinning NMR on half-integer quadrupolar nuclei. Encyclopedia of Nuclear Magnetic Resonance, Vol. 9: Advances in NMR DM Grant, RK Harris26274 Chichester, UK: John Wiley & Sons
    [Google Scholar]
  29. 29. 
    Ashbrook SE, Sneddon S. 2014. New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei. J. Am. Chem. Soc. 136:4415440–56
    [Google Scholar]
  30. 30. 
    Wasylishen RE, Ashbrook SE, Wimperis S 2012. NMR of Quadrupolar Nuclei in Solid Materials Chichester, UK: Wiley
  31. 31. 
    Cozzan C, Griffith KJ, Laurita G, Hu JG, Grey CP, Seshadri R 2017. Structural evolution and atom clustering in β-SiAlON: β-Si6-zAlzOzN8-z. Inorg. Chem. 56:42153–58
    [Google Scholar]
  32. 32. 
    Frydman L, Harwood JS. 1995. Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR. J. Am. Chem. Soc. 117:195367–68
    [Google Scholar]
  33. 33. 
    Medek A, Harwood JS, Frydman L 1995. Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids. J. Am. Chem. Soc. 117:5112779–87
    [Google Scholar]
  34. 34. 
    Massiot D, Fayon F, Capron M, King I, Le Calvé S et al. 2002. Modelling one- and two-dimensional solid-state NMR spectra: modelling 1D and 2D solid-state NMR spectra. Magn. Reson. Chem. 40:170–76
    [Google Scholar]
  35. 35. 
    Gan Z. 2001. Satellite transition magic-angle spinning nuclear magnetic resonance spectroscopy of half-integer quadrupolar nuclei. J. Chem. Phys. 114:2410845–53
    [Google Scholar]
  36. 36. 
    Gan Z. 2000. Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning. J. Am. Chem. Soc. 122:133242–43
    [Google Scholar]
  37. 37. 
    Samoson A, Lippmaa E, Pines A 1988. High resolution solid-state N.M.R. Mol. Phys. 65:41013–18
    [Google Scholar]
  38. 38. 
    Llor A, Virlet J. 1988. Towards high-resolution NMR of more nuclei in solids: sample spinning with time-dependent spinner axis angle. Chem. Phys. Lett. 152:2–3248–53
    [Google Scholar]
  39. 39. 
    Pell AJ, Pintacuda G, Grey CP 2019. Paramagnetic NMR in solution and the solid state. Prog. Nucl. Magn. Reson. Spectrosc. 111:1–271
    [Google Scholar]
  40. 40. 
    Hung I, Zhou L, Pourpoint F, Grey CP, Gan Z 2012. Isotropic high field NMR spectra of Li-ion battery materials with anisotropy >1 MHz. J. Am. Chem. Soc. 134:41898–901
    [Google Scholar]
  41. 41. 
    Hu JZ, Alderman DW, Ye C, Pugmire RJ, Grant DM 1993. An isotropic chemical shift-chemical shift anisotropy magic-angle slow-spinning 2D NMR experiment. J. Magn. Reson. Ser. A 105:182–87
    [Google Scholar]
  42. 42. 
    Dixon WT. 1982. Spinning‐sideband‐free and spinning‐sideband‐only NMR spectra in spinning samples. J. Chem. Phys. 77:41800–9
    [Google Scholar]
  43. 43. 
    Gan Z. 1992. High-resolution chemical shift and chemical shift anisotropy correlation in solids using slow magic angle spinning. J. Am. Chem. Soc. 114:218307–9
    [Google Scholar]
  44. 44. 
    Whittles Z, Marple M, Hung I, Gan Z, Sen S 2018. Structure of BaO-TeO2 glasses: a two-dimensional 125Te NMR spectroscopic study. J. Non-Crystalline Solids 481:282–88
    [Google Scholar]
  45. 45. 
    Strobridge FC, Middlemiss DS, Pell AJ, Leskes M, Clément RJ et al. 2014. Characterising local environments in high energy density Li-ion battery cathodes: a combined NMR and first principles study of LiFexCo1−xPO4. J. Mater. Chem. A. 2:3011948–57
    [Google Scholar]
  46. 46. 
    Li X, Tang M, Feng X, Hung I, Rose A et al. 2017. Lithiation and delithiation dynamics of different Li sites in Li-rich battery cathodes studied by operando nuclear magnetic resonance. Chem. Mater. 29:198282–91
    [Google Scholar]
  47. 47. 
    Feng X-Y, Chien P-H, Rose AM, Zheng J, Hung I et al. 2016. Cr2O5 as new cathode for rechargeable sodium ion batteries. J. Solid State Chem. 242:96–101
    [Google Scholar]
  48. 48. 
    Schurko RW. 2013. Ultra-wideline solid-state NMR spectroscopy. Acc. Chem. Res. 46:91985–95
    [Google Scholar]
  49. 49. 
    Smith PES, Donovan KJ, Szekely O, Baias M, Frydman L 2013. Ultrafast NMR T1 relaxation measurements: probing molecular properties in real time. Chem. Phys. Chem. 14:133138–45
    [Google Scholar]
  50. 50. 
    Clément RJ, Pell AJ, Middlemiss DS, Strobridge FC, Miller JK et al. 2012. Spin-transfer pathways in paramagnetic lithium transition-metal phosphates from combined broadband isotropic solid-state MAS NMR spectroscopy and DFT calculations. J. Am. Chem. Soc. 134:4117178–85
    [Google Scholar]
  51. 51. 
    Sesti EL, Alaniva N, Rand PW, Choi EJ, Albert BJ et al. 2018. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients. J. Magn. Reson. 286:1–9
    [Google Scholar]
  52. 52. 
    Frydman L. 2014. High magnetic field science and its application in the United States: a magnetic resonance perspective. J. Magn. Reson. 242:256–64
    [Google Scholar]
  53. 53. 
    Hartmann SR, Hahn EL. 1962. Nuclear double resonance in the rotating frame. Phys. Rev. 128:52042–53
    [Google Scholar]
  54. 54. 
    Pines A, Gibby MG, Waugh JS 1972. Proton‐enhanced nuclear induction spectroscopy. A method for high resolution NMR of dilute spins in solids. J. Chem. Phys. 56:41776–77
    [Google Scholar]
  55. 55. 
    Paluch P, Potrzebowska N, Ruppert AM, Potrzebowski MJ 2017. Application of 1H and 27Al magic angle spinning solid state NMR at 60 kHz for studies of Au and Au-Ni catalysts supported on boehmite/alumina. Solid State Nucl. Magn. Reson. 84:111–17
    [Google Scholar]
  56. 56. 
    Xue X, Kanzaki M, Turner D, Loroch D 2017. Hydrogen incorporation mechanisms in forsterite: new insights from 1H and 29Si NMR spectroscopy and first-principles calculation. Am. Mineral. 102:3519–36
    [Google Scholar]
  57. 57. 
    Kolodziejski W, Klinowski J. 2002. Kinetics of cross-polarization in solid-state NMR: a guide for chemists. Chem. Rev. 102:3613–28
    [Google Scholar]
  58. 58. 
    Johnson RL, Schmidt-Rohr K. 2014. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. J. Magn. Reson. 239:44–49
    [Google Scholar]
  59. 59. 
    Vega AJ. 1992. CP/MAS of quadrupolar S = 3/2 nuclei. Solid State Nucl. Magn. Reson. 1:17–32
    [Google Scholar]
  60. 60. 
    Perras FA, Kobayashi T, Pruski M 2015. PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization. Phys. Chem. Chem. Phys. 17:3522616–22
    [Google Scholar]
  61. 61. 
    Althaus SM, Mao K, Stringer JA, Kobayashi T, Pruski M 2014. Indirectly detected heteronuclear correlation solid-state NMR spectroscopy of naturally abundant 15N nuclei. Solid State Nucl. Magn. Reson. 57–58:17–21
    [Google Scholar]
  62. 62. 
    Wiench JW, Bronnimann CE, Lin VS-Y, Pruski M 2007. Chemical shift correlation NMR spectroscopy with indirect detection in fast rotating solids: studies of organically functionalized mesoporous silicas. J. Am. Chem. Soc. 129:12076–77
    [Google Scholar]
  63. 63. 
    Hu B, Trébosc J, Amoureux JP 2008. Comparison of several hetero-nuclear dipolar recoupling NMR methods to be used in MAS HMQC/HSQC. J. Magn. Reson. 192:1112–22
    [Google Scholar]
  64. 64. 
    Gan Z. 2006. Measuring amide nitrogen quadrupolar coupling by high-resolution 14N/13C NMR correlation under magic-angle spinning. J. Am. Chem. Soc. 128:186040–41
    [Google Scholar]
  65. 65. 
    Venkatesh A, Hanrahan MP, Rossini AJ 2017. Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei. Solid State Nucl. Magn. Reson. 84:171–81
    [Google Scholar]
  66. 66. 
    Schanda P, Kupče Ē, Brutscher B 2005. SOFAST-HMQC experiments for recording two-dimensional deteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR 33:4199–211
    [Google Scholar]
  67. 67. 
    Hung I, Gan Z. 2010. On the practical aspects of recording wideline QCPMG NMR spectra. J. Magn. Reson. 204:2256–65
    [Google Scholar]
  68. 68. 
    Jardón-Álvarez D, Bovee MO, Baltisberger JH, Grandinetti PJ 2019. Natural abundance 17O and 33S nuclear magnetic resonance spectroscopy in solids achieved through extended coherence lifetimes. Phys. Rev. B 100:14140103
    [Google Scholar]
  69. 69. 
    Vosegaard T, Larsen FH, Jakobsen HJ, Ellis PD, Nielsen NC 1997. Sensitivity-enhanced multiple-quantum MAS NMR of half-integer quadrupolar nuclei. J. Am. Chem. Soc. 119:389055–56
    [Google Scholar]
  70. 70. 
    Hung I, Gan Z. 2014. Fast REDOR with CPMG multiple-echo acquisition. J. Magn. Reson. 238:82–86
    [Google Scholar]
  71. 71. 
    Hung I, Edwards T, Sen S, Gan Z 2012. MATPASS/CPMG: a sensitivity enhanced magic-angle spinning sideband separation experiment for disordered solids. J. Magn. Reson. 221:103–9
    [Google Scholar]
  72. 72. 
    Harris KJ, Lupulescu A, Lucier BEG, Frydman L, Schurko RW 2012. Broadband adiabatic inversion pulses for cross polarization in wideline solid-state NMR spectroscopy. J. Magn. Reson. 224:38–47
    [Google Scholar]
  73. 73. 
    O'Dell LA. 2013. The WURST kind of pulses in solid-state NMR. Solid State Nucl. Magn. Reson. 55–56:28–41
    [Google Scholar]
  74. 74. 
    Green RA, Adams RW, Duckett SB, Mewis RE, Williamson DC, Green GGR 2012. The theory and practice of hyperpolarization in magnetic resonance using parahydrogen. Prog. Nucl. Magn. Reson. Spectrosc. 67:1–48
    [Google Scholar]
  75. 75. 
    Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B 2017. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 102–103:120–95
    [Google Scholar]
  76. 76. 
    Willmering MM, Ma ZL, Jenkins MA, Conley JF, Hayes SE 2017. Enhanced NMR with optical pumping yields 75As signals selectively from a buried GaAs interface. J. Am. Chem. Soc. 139:113930–33
    [Google Scholar]
  77. 77. 
    Zhao EW, Maligal-Ganesh R, Du Y, Zhao TY, Collins J et al. 2018. Surface-mediated hyperpolarization of liquid water from parahydrogen. Chemistry 4:61387–403
    [Google Scholar]
  78. 78. 
    Overhauser AW. 1953. Polarization of nuclei in metals. Phys. Rev. 92:2411–15
    [Google Scholar]
  79. 79. 
    Carver TR, Slichter CP. 1953. Polarization of nuclear spins in metals. Phys. Rev. 92:1212–13
    [Google Scholar]
  80. 80. 
    Rossini AJ, Zagdoun A, Lelli M, Lesage A, Copéret C, Emsley L 2013. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc. Chem. Res. 46:91942–51
    [Google Scholar]
  81. 81. 
    Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK et al. 2013. High frequency dynamic nuclear polarization. Acc. Chem. Res. 46:91933–41
    [Google Scholar]
  82. 82. 
    Sauvée C, Rosay M, Casano G, Aussenac F, Weber RT et al. 2013. Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew. Chem. Int. Ed. 52:4110858–61
    [Google Scholar]
  83. 83. 
    Zagdoun A, Casano G, Ouari O, Schwarzwälder M, Rossini AJ et al. 2013. Large molecular weight nitroxide biradicals providing efficient dynamic nuclear polarization at temperatures up to 200 K. J. Am. Chem. Soc. 135:3412790–97
    [Google Scholar]
  84. 84. 
    Piveteau L, Ong T-C, Walder BJ, Dirin DN, Moscheni D et al. 2018. Resolving the core and the surface of CdSe quantum dots and nanoplatelets using dynamic nuclear polarization enhanced PASS-PIETA NMR spectroscopy. ACS Cent. Sci. 4:91113–25
    [Google Scholar]
  85. 85. 
    Lelli M, Gajan D, Lesage A, Caporini MA, Vitzthum V et al. 2011. Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. J. Am. Chem. Soc. 133:72104–7
    [Google Scholar]
  86. 86. 
    Chakrabarty T, Goldin N, Feintuch A, Houben L, Leskes M 2018. Paramagnetic metal-ion dopants as polarization agents for dynamic nuclear polarization NMR spectroscopy in inorganic solids. Chem. Phys. Chem. 19:172139–42
    [Google Scholar]
  87. 87. 
    Hope MA, Rinkel BL, Gunnarsdóttir AB, Märker K, Menkin S et al. 2020. Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal. Nature Comm. 11:12224
    [Google Scholar]
  88. 88. 
    Eckert H. 2018. Spying with spins on messy materials: 60 years of glass structure elucidation by NMR spectroscopy. Int. J. Appl. Glass Sci. 9:2167–87
    [Google Scholar]
  89. 89. 
    Eckert H. 1992. Structural characterization of noncrystalline solids and glasses using solid state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 24:3159–293
    [Google Scholar]
  90. 90. 
    Bertmer M, Eckert H. 1999. Dephasing of spin echoes by multiple heteronuclear dipolar interactions in rotational echo double resonance NMR experiments. Solid State Nucl. Magn. Reson. 15:3139–52
    [Google Scholar]
  91. 91. 
    Ren J, Eckert H. 2018. Superstructural units involving six-coordinated silicon in sodium phosphosilicate glasses detected by solid-state NMR spectroscopy. J. Phys. Chem. C 122:4827620–30
    [Google Scholar]
  92. 92. 
    Santagneli SH, Baldacim HVA, Ribeiro SJL, Kundu S, Rodrigues ACM et al. 2016. Preparation, structural characterization, and electrical conductivity of highly ion-conducting glasses and glass ceramics in the system Li1+xAlxSnyGe2-(x+y)(PO4)3. J. Phys. Chem. C 120:2714556–67
    [Google Scholar]
  93. 93. 
    Hu Y-Y, Rawal A, Schmidt-Rohr K 2010. Strongly bound citrate stabilizes the apatite nanocrystals in bone. PNAS 107:5222425–29
    [Google Scholar]
  94. 94. 
    Kong X, Deng H, Yan F, Kim J, Swisher JA et al. 2013. Mapping of functional groups in metal-organic frameworks. Science 341:6148882–85
    [Google Scholar]
  95. 95. 
    Hing AW, Vega S, Schaefer J 1992. Transferred-echo double-resonance NMR. J. Magn. Reson. 1969 96:1205–9
    [Google Scholar]
  96. 96. 
    Bodart PR, Delmotte L, Rigolet S, Brendlé J, Gougeon RD 2018. 7Li{19F} TEDOR NMR to observe the lithium migration in heated montmorillonite. Appl. Clay Sci. 157:204–11
    [Google Scholar]
  97. 97. 
    Grey CP, Vega AJ. 1995. Determination of the quadrupole coupling constant of the invisible aluminum spins in zeolite HY with 1H/27Al TRAPDOR NMR. J. Am. Chem. Soc. 117:318232–42
    [Google Scholar]
  98. 98. 
    Gullion T. 1995. Measurement of dipolar interactions between spin-1/2 and quadrupolar nuclei by rotational-echo, adiabatic-passage, double-resonance NMR. Chem. Phys. Lett. 246:3325–30
    [Google Scholar]
  99. 99. 
    Gan Z. 2006. Measuring multiple carbon–nitrogen distances in natural abundant solids using R-RESPDOR NMR. Chem. Commun. 45:4712–14
    [Google Scholar]
  100. 100. 
    Chen L, Wang Q, Hu B, Lafon O, Trébosc J et al. 2010. Measurement of hetero-nuclear distances using a symmetry-based pulse sequence in solid-state NMR. Phys. Chem. Chem. Phys. 12:9395–405
    [Google Scholar]
  101. 101. 
    Rankin AGM, Webb PB, Dawson DM, Viger-Gravel J, Walder BJ et al. 2017. Determining the surface structure of silicated alumina catalysts via isotopic enrichment and dynamic nuclear polarization surface-enhanced NMR spectroscopy. J. Phys. Chem. C 121:4122977–84
    [Google Scholar]
  102. 102. 
    Fitzgerald JJ, DePaul SM. 1999. Solid-state NMR spectroscopy of inorganic materials: an overview. Solid-State NMR Spectroscopy of Inorganic Materials JJ Fitzgerald 2–133 Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  103. 103. 
    Zheng A, Liu S-B, Deng F 2017. 31P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts. Chem. Rev. 117:1912475–531
    [Google Scholar]
  104. 104. 
    Zoubida L, Hichem B. 2018. The nanostructure zeolites MFI-type ZSM5. Nanocrystals and Nanostructures CM Simonescu 43–62 London: InTechOpen
    [Google Scholar]
  105. 105. 
    Valla M, Rossini AJ, Caillot M, Chizallet C, Raybaud P et al. 2015. Atomic description of the interface between silica and alumina in aluminosilicates through dynamic nuclear polarization surface-enhanced NMR spectroscopy and first-principles calculations. J. Am. Chem. Soc. 137:3310710–19
    [Google Scholar]
  106. 106. 
    Bennett AE, Griffin RG, Ok JH, Vega S 1992. Chemical shift correlation spectroscopy in rotating solids: radio frequency‐driven dipolar recoupling and longitudinal exchange. J. Chem. Phys. 96:118624–27
    [Google Scholar]
  107. 107. 
    Mao J, Cao X, Olk DC, Chu W, Schmidt-Rohr K 2017. Advanced solid-state NMR spectroscopy of natural organic matter. Prog. Nucl. Magn. Reson. Spectrosc. 100:17–51
    [Google Scholar]
  108. 108. 
    deAzevedo ER, Bonagamba TJ, Schmidt-Rohr K 2000. Pure-exchange solid-state NMR. J. Magn. Reson. 142:186–96
    [Google Scholar]
  109. 109. 
    Krajnc A, Kos T, ZabukovecLogar N, Mali G 2015. A simple NMR-based method for studying the spatial distribution of linkers within mixed-linker metal-organic frameworks. Angew. Chem. Int. Ed. 54:3610535–38
    [Google Scholar]
  110. 110. 
    Krajnc A, Bueken B, De Vos D, Mali G 2017. Improved resolution and simplification of the spin-diffusion-based NMR method for the structural analysis of mixed-linker MOFs. J. Magn. Reson. 279:22–28
    [Google Scholar]
  111. 111. 
    Ba Y, Veeman WS. 1993. Experimental detection of multiple-quantum coherence transfer in coupled spin solids by multi-dimensional NMR experiments. Solid State Nucl. Magn. Reson. 2:3131–41
    [Google Scholar]
  112. 112. 
    Brouwer DH, Kristiansen PE, Fyfe CA, Levitt MH 2005. Symmetry-based 29Si dipolar recoupling magic angle spinning NMR spectroscopy: a new method for investigating three-dimensional structures of zeolite frameworks. J. Am. Chem. Soc. 127:2542–43
    [Google Scholar]
  113. 113. 
    Kobayashi T, Singappuli-Arachchige D, Wang Z, Slowing II, Pruski M 2017. Spatial distribution of organic functional groups supported on mesoporous silica nanoparticles: a study by conventional and DNP-enhanced 29Si solid-state NMR. Phys. Chem. Chem. Phys. 19:31781–89
    [Google Scholar]
  114. 114. 
    Hohwy M, Rienstra CM, Jaroniec CP, Griffin RG 1999. Fivefold symmetric homonuclear dipolar recoupling in rotating solids: application to double quantum spectroscopy. J. Chem. Phys. 110:167983–92
    [Google Scholar]
  115. 115. 
    Smeets S, Berkson ZJ, Xie D, Zones SI, Wan W et al. 2017. Well-defined silanols in the structure of the calcined high-silica zeolite SSZ-70: new understanding of a successful catalytic material. J. Am. Chem. Soc. 139:4616803–12
    [Google Scholar]
  116. 116. 
    Teymoori G, Pahari B, Viswanathan E, Edén M 2013. Multiple-quantum spin counting in magic-angle-spinning NMR via low-power symmetry-based dipolar recoupling. J. Magn. Reson. 236:31–40
    [Google Scholar]
  117. 117. 
    Hong M, DeGrado WF. 2012. Structural basis for proton conduction and inhibition by the influenza M2 protein. Protein Sci 21:111620–33
    [Google Scholar]
  118. 118. 
    Haile SM, Boysen DA, Chisholm CRI, Merle RB 2001. Solid acids as fuel cell electrolytes. Nature 410:6831910–13
    [Google Scholar]
  119. 119. 
    Chien P-H, Jee Y, Huang C, Dervişoğlu R, Hung I et al. 2016. On the origin of high ionic conductivity in Na-doped SrSiO3. Chem. Sci. 7:63667–75
    [Google Scholar]
  120. 120. 
    Liang X, Wang L, Jiang Y, Wang J, Luo H et al. 2015. In-channel and in-plane Li ion diffusions in the superionic conductor Li10GeP2S12 probed by solid-state NMR. Chem. Mater. 27:165503–10
    [Google Scholar]
  121. 121. 
    Vyalikh A, Schikora M, Seipel KP, Weigler M, Zschornak M et al. 2019. NMR studies of Li mobility in NASICON-type glass-ceramic ionic conductors with optimized microstructure. J. Mater. Chem. A 7:2313968–77
    [Google Scholar]
  122. 122. 
    Forse AC, Griffin JM, Merlet C, Bayley PM, Wang H et al. 2015. NMR study of ion dynamics and charge storage in ionic liquid supercapacitors. J. Am. Chem. Soc. 137:227231–42
    [Google Scholar]
  123. 123. 
    Pampel A, Zick K, Glauner H, Engelke F 2004. Studying lateral diffusion in lipid bilayers by combining a magic angle spinning NMR probe with a microimaging gradient system. J. Am. Chem. Soc. 126:319534–35
    [Google Scholar]
  124. 124. 
    Callaghan PT, Coy A, MacGowan D, Packer KJ, Zelaya FO 1991. Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature 351:6326467–69
    [Google Scholar]
  125. 125. 
    Hayamizu K, Terada Y, Kataoka K, Akimoto J 2019. Toward understanding the anomalous Li diffusion in inorganic solid electrolytes by studying a single-crystal garnet of LLZO-Ta by pulsed-gradient spin-echo nuclear magnetic resonance spectroscopy. J. Chem. Phys. 150:19194502
    [Google Scholar]
  126. 126. 
    Wilkening M, Heitjans P. 2012. From micro to macro: access to long-range Li+ diffusion parameters in solids via microscopic 6, 7Li spin-alignment echo NMR spectroscopy. Chem. Phys. Chem. 13:153–65
    [Google Scholar]
  127. 127. 
    Heitjans P, Schirmer A, Indris S 2005. NMR and β-NMR studies of diffusion in interface-dominated and disordered solids. Diffusion in Condensed Matter: Methods, Materials, Models P Heitjans, J Kärger 367–416 Berlin/Heidelberg, Ger: Springer-Verlag, 2nd ed..
    [Google Scholar]
  128. 128. 
    Epp V, Gün Ö, Deiseroth H-J, Wilkening M 2013. Highly mobile ions: low-temperature NMR directly probes extremely fast Li+ hopping in argyrodite-type Li6PS5Br. J. Phys. Chem. Lett. 4:132118–23
    [Google Scholar]
  129. 129. 
    Breuer S, Gombotz M, Pregartner V, Hanzu I, Wilkening M 2019. Heterogeneous F anion transport, local dynamics and electrochemical stability of nanocrystalline La1−xBaxF3−x. Energy Storage Mater 16:481–90
    [Google Scholar]
  130. 130. 
    Hanghofer I, Redhammer GJ, Rohde S, Hanzu I, Senyshyn A et al. 2018. Untangling the structure and dynamics of lithium-rich anti-perovskites envisaged as solid electrolytes for batteries. Chem. Mater. 30:228134–44
    [Google Scholar]
  131. 131. 
    Storek M, Böhmer R. 2016. Interchannel hopping in single crystalline lithium triborate probed by 7Li NMR: spin relaxation, line shape analysis, selective-inversion spin alignment, and two-dimensional exchange spectra. J. Phys. Chem. C 120:147767–77
    [Google Scholar]
  132. 132. 
    Bottke P, Freude D, Wilkening M 2013. Ultraslow Li exchange processes in diamagnetic Li2ZrO3 As monitored by EXSY NMR. J. Phys. Chem. C 117:168114–19
    [Google Scholar]
  133. 133. 
    Wang D, Zhong G, Pang WK, Guo Z, Li Y et al. 2015. Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ion exchanges and their mobility at octahedral/tetrahedral sites. Chem. Mater. 27:196650–59
    [Google Scholar]
  134. 134. 
    Yu C, Ganapathy S, van Eck ERH, Wang H, Basak S et al. 2017. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. Nat. Commun. 8:11086
    [Google Scholar]
  135. 135. 
    Westbrook C, Talbot J. 2019. MRI in Practice Hoboken, NJ: John Wiley & Sons, 5th ed..
  136. 136. 
    Romanenko K, Forsyth M, O'Dell LA 2014. New opportunities for quantitative and time efficient 3D MRI of liquid and solid electrochemical cell components: sectoral fast spin echo and SPRITE. J. Magn. Reson. 248:96–104
    [Google Scholar]
  137. 137. 
    Bray JM, Davenport AJ, Ryder KS, Britton MM 2016. Quantitative, in situ visualization of metal-ion dissolution and transport using 1H magnetic resonance imaging. Angew. Chem. Int. Ed. 55:329394–97
    [Google Scholar]
  138. 138. 
    Ilott AJ, Mohammadi M, Schauerman CM, Ganter MJ, Jerschow A 2018. Rechargeable lithium-ion cell state of charge and defect detection by in-situ inside-out magnetic resonance imaging. Nat. Commun. 9:11776
    [Google Scholar]
  139. 139. 
    Krachkovskiy SA, Bazak JD, Werhun P, Balcom BJ, Halalay IC, Goward GR 2016. Visualization of steady-state ionic concentration profiles formed in electrolytes during Li-ion battery operation and determination of mass-transport properties by in situ magnetic resonance imaging. J. Am. Chem. Soc. 138:257992–99
    [Google Scholar]
  140. 140. 
    Chang HJ, Ilott AJ, Trease NM, Mohammadi M, Jerschow A, Grey CP 2015. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI. J. Am. Chem. Soc. 137:4815209–16
    [Google Scholar]
  141. 141. 
    Chandrashekar S, Trease NM, Chang HJ, Du L-S, Grey CP, Jerschow A 2012. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11:4311–15
    [Google Scholar]
  142. 142. 
    Marbella LE, Zekoll S, Kasemchainan J, Emge SP, Bruce PG, Grey CP 2019. 7Li NMR chemical shift imaging to detect microstructural growth of lithium in all-solid-state batteries. Chem. Mater. 31:82762–69
    [Google Scholar]
  143. 143. 
    Poggio M, Herzog BE. 2018. Force-detected nuclear magnetic resonance. Micro and Nano Scale NMR: Technologies and Systems J Anders, JG Korvink 381–420 Weinheim, Ger: Wiley-VCH Verlag
    [Google Scholar]
  144. 144. 
    Nichol JM, Naibert TR, Hemesath ER, Lauhon LJ, Budakian R 2013. Nanoscale Fourier-transform magnetic resonance imaging. Phys. Rev. X 3:3 031016. Erratum. 2013 Phys. Rev. X 3:4049901
    [Google Scholar]
  145. 145. 
    Dalladay-Simpson P, Howie RT, Gregoryanz E 2016. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 529:758463–67
    [Google Scholar]
  146. 146. 
    Harris KDM. 2016. New in situ solid-state NMR strategies for exploring materials formation and adsorption processes: prospects in heterogenous catalysis. Appl. Petrochem. Res. 6:3295–306
    [Google Scholar]
  147. 147. 
    Hughes CE, Williams PA, Harris KDM 2014. “CLASSIC NMR”: an in-situ NMR strategy for mapping the time-evolution of crystallization processes by combined liquid-state and solid-state measurements. Angew. Chem. Int. Ed. 126:349085–89
    [Google Scholar]
  148. 148. 
    Hughes CE, Walkley B, Gardner LJ, Walling SA, Bernal SA et al. 2019. Exploiting in-situ solid-state NMR spectroscopy to probe the early stages of hydration of calcium aluminate cement. Solid State Nucl. Magn. Reson. 99:1–6
    [Google Scholar]
  149. 149. 
    Walter ED, Qi L, Chamas A, Mehta HS, Sears JA et al. 2018. Operando MAS NMR reaction studies at high temperatures and pressures. J. Phys. Chem. C 122:158209–15
    [Google Scholar]
  150. 150. 
    Chamas A, Qi L, Mehta HS, Sears JA, Scott SL et al. 2019. High temperature/pressure MAS-NMR for the study of dynamic processes in mixed phase systems. Magn. Reson. Imaging 56:37–44
    [Google Scholar]
  151. 151. 
    Meier T. 2018. At its extremes: NMR at giga-Pascal pressures. Annu. Rep. NMR Spectrosc. 93:1–74
    [Google Scholar]
  152. 152. 
    Huang Q, Tran KN, Rodgers JM, Bartlett DH, Hemley RJ, Ichiye T 2016. A molecular perspective on the limits of life: enzymes under pressure. Condens. Matter Phys. 19:222801
    [Google Scholar]
  153. 153. 
    Meier T, Wang N, Mager D, Korvink JG, Petitgirard S, Dubrovinsky L 2017. Magnetic flux tailoring through Lenz lenses for ultrasmall samples: a new pathway to high-pressure nuclear magnetic resonance. Sci. Adv. 3:12eaao5242
    [Google Scholar]
  154. 154. 
    Meier T, Khandarkhaeva S, Petitgirard S, Körber T, Lauerer A et al. 2018. NMR at pressures up to 90 GPa. J. Magn. Reson. 292:44–47
    [Google Scholar]
  155. 155. 
    Edwards T, Endo T, Walton JH, Sen S 2014. Observation of the transition state for pressure-induced BO3→ BO4 conversion in glass. Science 345:62001027–29
    [Google Scholar]
  156. 156. 
    Gaudio SJ, Edwards TG, Sen S 2015. An in situ high-pressure NMR study of sodium coordination environment compressibility in albite glass. Am. Mineral. 100:1326–29
    [Google Scholar]
  157. 157. 
    Sorte EG, Banek NA, Wagner MJ, Alam TM, Tong YJ 2018. In situ stripline electrochemical NMR for batteries. ChemElectroChem 5:172336–40
    [Google Scholar]
  158. 158. 
    Pecher O, Bayley PM, Liu H, Liu Z, Trease NM, Grey CP 2016. Automatic tuning matching cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries. J. Magn. Reson. 265:200–9
    [Google Scholar]
  159. 159. 
    Pecher O, Halat DM, Lee J, Liu Z, Griffith KJ et al. 2017. Enhanced efficiency of solid-state NMR investigations of energy materials using an external automatic tuning/matching (eATM) robot. J. Magn. Reson. 275:127–36
    [Google Scholar]
  160. 160. 
    Koczor B, Sedyó I, Rohonczy J 2015. An alternative solution for computer controlled tuning and matching of existing NMR probes. J. Magn. Reson. 259:179–85
    [Google Scholar]
  161. 161. 
    Deleted in proof
  162. 162. 
    Kobayashi T, Pruski M. 2019. Spatial distribution of silica-bound catalytic organic functional groups can now be revealed by conventional and DNP-enhanced solid-state NMR methods. ACS Catal 9:7238–49
    [Google Scholar]
  163. 163. 
    Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP 2018. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559:7715556–63
    [Google Scholar]
  164. 164. 
    Deleted in proof
  165. 165. 
    Ilott AJ, Mohammadi M, Schauerman CM, Ganter MJ, Jerschow A 2018. Rechargeable lithium-ion cell state of charge and defect detection by in-situ inside-out magnetic resonance imaging. Nat. Commun. 9:11776
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-091019-011049
Loading
/content/journals/10.1146/annurev-matsci-091019-011049
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error