1932

Abstract

Oxides with mixed protonic and p-type electronic conductivity (and typically containing also mobile oxygen vacancies) are important functional materials, e.g., for oxygen electrodes in protonic ceramic electrochemical cells or for permeation membranes. Owing to the presence of three carriers, their defect chemical behavior is complex. Deviations from ideal behavior (defect interactions) have to be taken into account, which are related to the partially covalent character of the transition metal–oxygen bonds. Compared to acceptor-doped Ba(Zr,Ce)O electrolytes, perovskites with redox-active transition-metal cations typically show smaller degrees of hydration. Trends in the proton uptake of (Ba,Sr,La)(Fe,Co,Y,Zn)O perovskites are analyzed and correlated to structural features (local lattice distortions) and electronic properties (the position of oxygen states on an absolute energy scale). The proton mobility in such mixed-conducting perovskites is estimated. Specific aspects of the application of protonic and electronic mixed-conducting oxides in protonic ceramic electrochemical cells are discussed, and an overview of recent materials and device developments is given.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-091819-010219
2021-07-26
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-091819-010219.html?itemId=/content/journals/10.1146/annurev-matsci-091819-010219&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Nernst W. 1899. Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen. Z. Elektrochem. 6:41–43
    [Google Scholar]
  2. 2. 
    Wagner C. 1943. Über den Mechanismus der elektrischen Stromleitung im Nernststift. Naturwissenschaften 31:265–68
    [Google Scholar]
  3. 3. 
    Badwal SPS. 1992. Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics 52:23–32
    [Google Scholar]
  4. 4. 
    Wang DY, Park DS, Griffith J, Nowick AS 1981. Oxygen-ion conductivity and defect interactions in yttria-doped ceria. Solid State Ionics 2:95–105
    [Google Scholar]
  5. 5. 
    Feng M, Goodenough JB. 1994. A superior oxide-ion electrolyte. Eur. J. Solid State Inorg. Chem. 31:663–72
    [Google Scholar]
  6. 6. 
    Ishihara T, Matsuda H, Takita Y. 1994. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116:3801–3
    [Google Scholar]
  7. 7. 
    Kilner JA. 2000. Fast oxygen transport in acceptor doped oxides. Solid State Ionics 129:13–23
    [Google Scholar]
  8. 8. 
    Iwahara H, Esaka T, Uchida H, Maeda N. 1981. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3:359–63
    [Google Scholar]
  9. 9. 
    Nowick AS, Du Y. 1995. High-temperature protonic conductors with perovskite-related structures. Solid State Ionics 77:137–46
    [Google Scholar]
  10. 10. 
    Kreuer KD. 1997. On the development of proton conducting materials for technological applications. Solid State Ionics 97:1–15
    [Google Scholar]
  11. 11. 
    Ryu KH, Haile SM. 1999. Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions. Solid State Ionics 125:355–67
    [Google Scholar]
  12. 12. 
    Kreuer KD. 2003. Proton-conducting oxides. Annu. Rev. Mater. Res. 3:333–59
    [Google Scholar]
  13. 13. 
    Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu ML. 2009. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Science 326:126–29
    [Google Scholar]
  14. 14. 
    Fabbri E, Pergolesi D, Traversa E. 2010. Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem. Soc. Rev. 39:4355–69
    [Google Scholar]
  15. 15. 
    Medvedev D, Murashkina A, Pikalova E, Demin A, Podias A, Tsiakaras P. 2014. BaCeO3: materials development, properties and application. Prog. Mater. Sci. 60:72–129
    [Google Scholar]
  16. 16. 
    Murphy R, Zhou Y, Zhang L, Soule L, Zhang W et al. 2020. A new family of proton-conducting electrolytes for reversible solid oxide cells: BaHfxCe0.8−xY0.1Yb0.1O3−δ. Adv. Funct. Mater. 30:2002265
    [Google Scholar]
  17. 17. 
    Rajendran S, Kumar Thangavel N, Ding H, Ding Y, Ding D, Reddy Arava LM 2020. Tri-doped BaCeO3–BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs). ACS Appl. Mater. Interfaces 12:38275–84
    [Google Scholar]
  18. 18. 
    Norby T. 1990. Proton conduction in oxides. Solid State Ionics 40:857–62
    [Google Scholar]
  19. 19. 
    Eurenius KEJ, Ahlberg E, Knee CS 2010. Proton conductivity in Ln1.96Ca0.04Sn2O7−δ (Ln = La, Sm, Y) pyrochlores as a function of the lanthanide size. Solid State Ionics 181:1258–63
    [Google Scholar]
  20. 20. 
    Haugsrud R, Norby T. 2006. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat. Mater. 5:193–96
    [Google Scholar]
  21. 21. 
    Magrasó A, Polfus JM, Frontera C, Canales-Vázquez J, Kalland LE et al. 2012. Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects. J. Mater. Chem. 22:1762–64
    [Google Scholar]
  22. 22. 
    Münch W, Seifert G, Kreuer KD, Maier J. 1996. A quantum molecular dynamics study of proton conduction phenomena in BaCeO3. Solid State Ionics 86:647–52
    [Google Scholar]
  23. 23. 
    Ishigaki T, Yamauchi S, Kishio K, Mizusaki J, Fueki K. 1988. Diffusion of oxide ion vacancies in perovskite-type oxides. J. Solid State Chem. 73:179–87
    [Google Scholar]
  24. 24. 
    Mizusaki J. 1992. Nonstoichiometry, diffusion, and electrical properties of perovskite-type oxide electrode materials. Solid State Ionics 52:79–91
    [Google Scholar]
  25. 25. 
    Tarancon A, Burriel M, Santiso J, Skinner SJ, Kilner JA. 2010. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 20:3799–813
    [Google Scholar]
  26. 26. 
    Manthiram A, Kim JH, Kim YN, Lee KT. 2011. Crystal chemistry and properties of mixed ionic-electronic conductors. J. Electroceram. 27:93–107
    [Google Scholar]
  27. 27. 
    Kilner JA, Burriel M. 2014. Materials for intermediate-temperature solid-oxide fuel cells. Annu. Rev. Mater. Res 44:365–93
    [Google Scholar]
  28. 28. 
    Chen Y, Zhou W, Ding D, Liu ML, Ciucci F, Tade M, Shao ZP. 2015. Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Adv. Energy Mater. 5:1500537
    [Google Scholar]
  29. 29. 
    Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S et al. 2008. Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 320:13–41
    [Google Scholar]
  30. 30. 
    Mizusaki J, Yamauchi S, Fueki K, Ishikawa A. 1984. Nonstoichiometry of the perovskite-type oxide La1−xSrxCrO3−δ. Solid State Ionics 12:119–24
    [Google Scholar]
  31. 31. 
    Lankhorst MHR, Bouwmeester HJM, Verweij H. 1997. High-temperature coulometric titration of La1−xSrxCoO3−δ: evidence for the effect of electronic band structure on nonstoichiometry behavior. J. Solid State Chem. 133:555–67
    [Google Scholar]
  32. 32. 
    Kofstad P. 1962. Thermogravimetric studies of the defect structure of rutile (TiO2). J. Phys. Chem. Solids 23:1579–86
    [Google Scholar]
  33. 33. 
    Smyth DM. The role of impurities in insulating transition metal oxides; 1984. Prog. Solid State Chem. 15:145–71
    [Google Scholar]
  34. 34. 
    Panlener RJ, Blumenthal RN, Garner JE. 1975. A thermodynamic study of nonstoichiometric cerium dioxide. J. Phys. Chem. Solids 36:1213–22
    [Google Scholar]
  35. 35. 
    Tuller HL, Nowick AS. 1977. Small polaron electron transport in reduced CeO2 single crystals. J. Phys. Chem. Solids 38:859–67
    [Google Scholar]
  36. 36. 
    Deibert W, Ivanova ME, Baumann S, Guillon O, Meulenberg WA. 2017. Ion-conducting ceramic membrane reactors for high-temperature applications. J. Membr. Sci. 543:79–97
    [Google Scholar]
  37. 37. 
    Wang H, Wang X, Meng B, Tan X, Loh KS et al. 2018. Perovskite-based mixed protonic–electronic conducting membranes for hydrogen separation: recent status and advances. J. Ind. Eng. Chem. 60:297–306
    [Google Scholar]
  38. 38. 
    Papac M, Stevanović V, Zakutayev A, O'Hayre R. 2021. Triple ionic–electronic conducting oxides for next-generation electrochemical devices. Nat. Mater. 20:301–13
    [Google Scholar]
  39. 39. 
    Heisig T, Baeumer C, Gries UN, Mueller MP, La Torre C et al. 2018.. Oxygen exchange processes between oxide memristive devices and water molecules. Adv. Mater. 30:1800957
    [Google Scholar]
  40. 40. 
    Messerschmitt F, Jansen M, Rupp JLM. 2018. When memristance crosses the path with humidity sensing—about the importance of protons and its opportunities in valence change memristors. Adv. Electron. Mater. 4:1800282
    [Google Scholar]
  41. 41. 
    Gregori G, Merkle R, Maier J. 2017. Ion conduction and redistribution at grain boundaries in oxide systems. Prog. Mater. Sci. 87:252–305
    [Google Scholar]
  42. 42. 
    Jurado JR, Colomer MT, Frade JR. 2001. Impedance spectroscopy of Sr0.97Ti1−xFexO3−δ materials with moderate Fe-contents. Solid State Ionics 143:251–57
    [Google Scholar]
  43. 43. 
    Kröger FA, Vink HJ. 1956. Relations between the concentrations of imperfections in crystalline solids. Solid State Physics 3:307–435
    [Google Scholar]
  44. 44. 
    Poetzsch D, Merkle R, Maier J. 2015. Stoichiometry variation in materials with three mobile carriers—thermodynamics and transport kinetics exemplified for protons, oxygen vacancies, and holes. Adv. Funct. Mater. 25:1542–57
    [Google Scholar]
  45. 45. 
    Zohourian R. 2018. Mixed-conducting perovskites as cathodes in protonic ceramic fuel cells: defect chemistry and transport properties. PhD Thesis Univ. Stuttgart, Ger:.
    [Google Scholar]
  46. 46. 
    Poetzsch D, Merkle R, Maier J. 2014. Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation. Phys. Chem. Chem. Phys. 16:16446–53
    [Google Scholar]
  47. 47. 
    Zohourian R, Merkle R, Raimondi G, Maier J. 2018. Proton uptake of mixed-conducting perovskites as cathode materials in protonic ceramic fuel cells. Adv. Funct. Mater. 28:1801241
    [Google Scholar]
  48. 48. 
    Hancke R, Magraso A, Norby T, Haugsrud R. 2013. Hydration of lanthanum tungstate (La/W = 5.6 and 5.3) studied by TG and simultaneous TG-DSC. Solid State Ionics 231:25–29
    [Google Scholar]
  49. 49. 
    Yamazaki Y, Yang CK, Haile SM. 2011. Unraveling the defect chemistry and proton uptake of yttrium-doped barium zirconate. Scr. Mater. 65:102–7
    [Google Scholar]
  50. 50. 
    Bonanos N, Huijser A, Poulsen FW. 2015. H/D isotope effects in high temperature proton conductors. Solid State Ionics 275:9–13
    [Google Scholar]
  51. 51. 
    Han D, Okumura Y, Nose Y, Uda T. 2010. Synthesis of La1−xSrxSc1−yFeyO3−δ (LSSF) and measurement of water content in LSSF, LSCF and LSC hydrated in wet artificial air at 300°C. Solid State Ionics 181:1601–6
    [Google Scholar]
  52. 52. 
    Karlsson M. 2013. Perspectives of neutron scattering on proton conducting oxides. Dalton Trans. 42:317–29
    [Google Scholar]
  53. 53. 
    Jones CY, Wu J, Li LP, Haile SM. 2005. Hydrogen content in doped and undoped BaPrO3 and BaCeO3 by cold neutron prompt-gamma activation analysis. J. Appl. Phys. 97:114908
    [Google Scholar]
  54. 54. 
    Tsidilovski VI, Vykhodets VB, Kurennykh TE, Gorelov VP, Balakireva VB. 2010. H/D isotope effect for solubility of hydrogen in doped perovskites. JETP Lett. 92:774–78
    [Google Scholar]
  55. 55. 
    Nomura K, Kageyama H. 2007. Transport properties of Ba(Zr0.8Y0.2)O3−δ perovskite. Solid State Ionics 178:661–65
    [Google Scholar]
  56. 56. 
    Zhou C, Sunarso J, Dai J, Ran R, Song Y et al. 2020. Realizing stable high hydrogen permeation flux through BaCo0.4Fe0.4Zr0.1Y0.1O3−δ membrane using a thin Pd film protection strategy. J. Membr. Sci. 596:117709
    [Google Scholar]
  57. 57. 
    Maier J. 1993. Mass transport in the presence of internal defect reactions—concept of conservative ensembles: I, Chemical diffusion in pure compounds. J. Am. Ceram. Soc. 76:1212–17
    [Google Scholar]
  58. 58. 
    Hancke R, Li Z, Haugsrud R. 2013. The kinetics of hydration and H/D isotope exchange of Y-doped barium cerate and lanthanum tungstate studied by transient thermogravimetry. J. Electrochem. Soc. 160:F757–63
    [Google Scholar]
  59. 59. 
    Téllez Lozano H, Druce J, Cooper SJ, Kilner JA 2017. Double perovskite cathodes for proton-conducting ceramic fuel cells: Are they triple mixed ionic electronic conductors?. Sci. Technol. Adv. Mater. 18:977–86
    [Google Scholar]
  60. 60. 
    Hoedl MF, Gryaznov D, Merkle R, Kotomin EA, Maier J. 2020. Interdependence of oxygenation and hydration in mixed-conducting (Ba,Sr)FeO3−δ perovskites studied by density functional theory. J. Phys. Chem. C 124:11780–89
    [Google Scholar]
  61. 61. 
    Sundell P, Björketun ME, Wahnström G. 2007. Density-functional calculations of prefactors and activation energies for H diffusion in BaZrO3. Phys. Rev. B 76:094301
    [Google Scholar]
  62. 62. 
    Björheim TS, Kotomin EA, Maier J. 2015. Hydration entropy of BaZrO3 from first principles phonon calculations. J. Mater. Chem. A 3:7639–48
    [Google Scholar]
  63. 63. 
    Stoerzinger KA, Hong WT, Azimi G, Giordano L, Lee YL et al. 2015. Reactivity of perovskites with water: role of hydroxylation in wetting and implications for oxygen electrocatalysis. J. Phys. Chem. C 119:18504–12
    [Google Scholar]
  64. 64. 
    Stoerzinger KA, Comes R, Spurgeon SR, Thevuthasan S, Ihm K et al. 2017. Influence of LaFeO3 surface termination on water reactivity. J. Phys. Chem. Lett. 8:1038–43
    [Google Scholar]
  65. 65. 
    Zhang D, Machala ML, Chem D, Guan Z, Li H et al. 2020. Hydroxylation and cation segregation in (La0.5Sr0.5)FeO3−δ electrodes. Chem. Mater. 32:2926–34
    [Google Scholar]
  66. 66. 
    Norby T, Wideroe M, Glöckner R, Larring Y. 2004. Hydrogen in oxides. Dalton Trans. 19:3012–18
    [Google Scholar]
  67. 67. 
    Björheim TS, Besikiotis V, Haugsrud R. 2012. Hydration thermodynamics of pyrochlore structured oxides from TG and first principles calculations. Dalton Trans. 41:13343–51
    [Google Scholar]
  68. 68. 
    Bjørheim TS, Hoedl MF, Merkle R, Kotomin EA, Maier J 2020. Proton, hydroxide ion, and oxide ion affinities of closed-shell oxides: importance for the hydration reaction and correlation to electronic structure. J. Phys. Chem. C 124:1277–84In this article, individual defects were introduced into a supercell and charge-compensated by a background charge; thus, no dopants needed to be introduced.
    [Google Scholar]
  69. 69. 
    Hoedl M. 2021. Electronic structure and defect chemistry in iron perovskites. PhD Thesis. Univ Stuttgart, Ger:.
    [Google Scholar]
  70. 70. 
    Švarcová S, Wiik K, Tolchard J, Bouwmeester HJM, Grande T. 2008. Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ. Solid State Ionics 178:1787–91
    [Google Scholar]
  71. 71. 
    Gryaznov D, Merkle R, Kotomin EA, Maier J. 2016. Ab initio modelling of oxygen vacancies and protonic defects in La1−xSrxFeO3−δ perovskite solid solutions. J. Mater. Chem. A 4:13093–104
    [Google Scholar]
  72. 72. 
    Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tagawa H. 1989. Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ. J. Solid State Chem. 80:102–11
    [Google Scholar]
  73. 73. 
    Zohourian R, Merkle R, Maier J. 2017. Bulk defect chemistry of PCFC cathode materials: discussion of defect interactions. ECS Trans. 77:10133–38
    [Google Scholar]
  74. 74. 
    Mueller DN, Machala ML, Bluhm H, Chueh WC. 2015. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat. Commun. 6:6097
    [Google Scholar]
  75. 75. 
    Mueller DN, De Souza RA, Brendt J, Samuelis D, Martin M. 2009. Oxidation states of the transition metal cations in the highly nonstoichiometric perovskite-type oxide Ba0.1Sr0.9Co0.8Fe0.2O3−δ. J. Mater. Chem. 19:1960–63
    [Google Scholar]
  76. 76. 
    Yang C, Grimaud A. 2017. Factors controlling the redox activity of oxygen in perovskites: from theory to application for catalytic reactions. Catalysts 7:149
    [Google Scholar]
  77. 77. 
    Amezawa K. 2020. X-ray absorption spectroscopic studies on solid oxide fuel cells and proton-conducting ceramic fuel cells. Curr. Op. Electrochem. 21:250–56
    [Google Scholar]
  78. 78. 
    Raimondi G, Giannici F, Longo A, Merkle R, Chiara A et al. 2020. X-ray spectroscopy of (Ba,Sr,La)(Fe,Zn,Y)O3−δ identifies structural and electronic features favoring proton uptake. Chem. Mater. 32:8502–11
    [Google Scholar]
  79. 79. 
    Kim D, Miyoshi S, Tsuchiya T, Yamaguchi S. 2014. Percolation conductivity in BaZrO3–BaFeO3 solid solutions. Solid State Ionics 262:875–78
    [Google Scholar]
  80. 80. 
    Tarutina LR, Vdovin GK, Lyagaeva JG, Medvedev DA. 2020. BaCe0.7−xZr10.2Y0.1FexO3−δ derived from proton-conducting electrolytes: a way of designing chemically compatible cathodes for solid oxide fuel cells. J. Alloys Compd. 831:154895
    [Google Scholar]
  81. 81. 
    Marthinsen A, Wahnström G. 2020. Percolation transition in hole-conducting acceptor-doped barium zirconate. Chem. Mater. 32:5558–68
    [Google Scholar]
  82. 82. 
    Kreuer KD. 2000. On the complexity of proton conduction phenomena. Solid State Ionics 136:149–60
    [Google Scholar]
  83. 83. 
    Wang Z, Yang W, Zhu Z, Peng RR, Wu X et al. 2014. First-principles study of O2 reduction on BaZr1−xCoxO3 cathodes in protonic-solid oxide fuel cells. J. Mater. Chem. A 2:16707–14
    [Google Scholar]
  84. 84. 
    Muñoz-García AB, Pavone M. 2016. First-principles design of new electrodes for proton-conducting solid-oxide electrochemical cells: A-site doped Sr2Fe1.5Mo0.5O6−δ perovskite. Chem. Mater. 28:490–500
    [Google Scholar]
  85. 85. 
    Xu X, Wang H, Ma J, Liu W, Fronzi M, Bi L 2019. Impressive performance of proton-conducting solid oxide fuel cell using a first-generation cathode with tailored cations. J. Mater. Chem. A 7:18792–98
    [Google Scholar]
  86. 86. 
    Lan C, Li H, Zhao S. 2020. A first-principles study of the proton and oxygen migration behavior in the rare-earth perovskite SmNiO3. J. Comput. Electron. 19:905–9
    [Google Scholar]
  87. 87. 
    Ding H, Wu W, Jiang C, Ding Y, Bian W et al. 2020. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nat. Commun. 11:1907
    [Google Scholar]
  88. 88. 
    Tan W, Huan D, Yang W, Shi N, Wang W et al. 2018. A first-principles study on divergent reactions of using a Sr3Fe2O7 cathode in both oxygen ion conducting and proton conducting solid oxide fuel cells. RSC Adv. 8:26448–60
    [Google Scholar]
  89. 89. 
    Chen M, Xuan Y, Zhang F, He L, Wang X et al. 2020. Atomistic insight into the hydration and proton conducting mechanisms of the cobalt doped Ruddlesden-Popper structure Sr3Fe2O7−δ. Int. J. Hydrog. Energy 45:14964–71
    [Google Scholar]
  90. 90. 
    Poetzsch D, Merkle R, Maier J. 2015. Proton uptake in the H+-SOFC cathode material Ba0.5Sr0.5Fe0.8Zn0.2O3−δ: Transition from hydration to hydrogenation with increasing oxygen partial pressure. Faraday Discuss. 182:129–43
    [Google Scholar]
  91. 91. 
    Yu JH, Lee J-S, Maier J. 2007. Peculiar nonmonotonic water incorporation in oxides detected by local in situ optical spectroscopy. Angew. Chem. Int. Ed. 46:8992–94
    [Google Scholar]
  92. 92. 
    Yoo HI, Martin M 2020. On the path-dependence of the open-cell voltage of a galvanic cell involving a ternary or multinary compound with multiple mobile ionic species under multiple chemical potential gradients. Phys. Chem. Chem. Phys 12:14699705
    [Google Scholar]
  93. 93. 
    Merkle R, Sitte W, Maier J. 2020. Water incorporation into materials with three mobile carriers: two-fold relaxation of the electromotive force in Fe-doped SrTiO3 and importance of hole trapping. Solid State Ionics 347:115174
    [Google Scholar]
  94. 94. 
    Falkenstein A, De Souza RA, WA Meulenberg, Martin M. 2020. A quantitative analysis of two-fold electrical conductivity relaxation behavior in mixed proton–oxide-ion–electron conductors upon hydration. Phys. Chem. Chem. Phys. 22:25032–41
    [Google Scholar]
  95. 95. 
    Huang YL, Pellegrinelli C, Wachsman ED. 2016. Fundamental impact of humidity on SOFC cathode ORR. J. Electrochem. Soc. 163:F171–82
    [Google Scholar]
  96. 96. 
    Yang J, Polfus JM, Li Z, Tuller HL, Yildiz B. 2020. Role of adsorbate coverage on the oxygen dissociation rate on Sr-doped LaMnO3 surfaces in the presence of H2O and CO2. Chem. Mater. 32:5483–92
    [Google Scholar]
  97. 97. 
    Poetzsch D, Merkle R, Maier J. 2015. Oxygen reduction at dense thin-film microelectrodes on a proton-conducting electrolyte: I. Considerations on reaction mechanism and electronic leakage effects. J. Electrochem. Soc. 162:F939–50
    [Google Scholar]
  98. 98. 
    Kuklja MM, Kotomin EA, Merkle R, Mastrikov YA, Maier J. 2013. Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15:5443–71
    [Google Scholar]
  99. 99. 
    Grimaud A, Mauvy F, Bassat JM, Fourcade S, Rocheron L et al. 2012. Hydration properties and rate determining steps of the oxygen reduction reaction of perovskite-related oxides as H+-SOFC cathodes. J. Electrochem. Soc. 159:B683–94
    [Google Scholar]
  100. 100. 
    Peng RR, Wu T, Liu W, Liu X, Meng G. 2010. Cathode processes and materials for solid oxide fuel cells with protons conductors as electrolytes. J. Mater. Chem. 20:6218–25
    [Google Scholar]
  101. 101. 
    Strandbakke R, Cherepanov VA, Zuev AY, Tsvetkov DS, Argirusis C et al. 2015. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics 278:120–32
    [Google Scholar]
  102. 102. 
    Kim J, Sengodan S, Kwon G, Ding D, Shin J et al. 2014. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells. ChemSusChem 7:2811–15
    [Google Scholar]
  103. 103. 
    Shim JH. 2018. Ceramics breakthrough. Nat. Energy 3:168–69
    [Google Scholar]
  104. 104. 
    Zhang Y, Knibbe R, Sunarso J, Zhong Y, Zhou W et al. 2017. Recent progress on advanced materials for solid oxide fuel cells operating below 500°C. Adv. Mater. 29:1700132
    [Google Scholar]
  105. 105. 
    Wang W, Medvedev D, Shao ZP. 2018. Gas humidification impact on the properties and performance of perovskite-type functional materials in proton-conducting solid oxide cells. Adv. Funct. Mater. 28:1802592
    [Google Scholar]
  106. 106. 
    Lei L, Zhang J, Yuan Z, Liu J, Ni M, Chen F 2019. Progress report on proton conducting solid oxide electrolysis cells. Adv. Funct. Mater. 29:1903805
    [Google Scholar]
  107. 107. 
    Kasyanova AV, Tarutina LR, Rudenko AO, Lyagaeva JG, Medvedev DA. 2020. Ba(Ce,Zr)O3-based electrodes for protonic ceramic electrochemical cells: towards highly compatible functionality and triple-conducting behaviour. Russ. Chem. Rev. 89:667–92
    [Google Scholar]
  108. 108. 
    Duan C, Kee RJ, Zhu H, Karakaya C, Chen Y et al. 2019. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 557:217–22
    [Google Scholar]
  109. 109. 
    Bishop SR, Stefanik TS, Tuller HL. 2012. Defects and transport in PrxCe1−xO2−δ: composition trends. J. Mater. Res. 27:2009–16
    [Google Scholar]
  110. 110. 
    Koumoto K, Yanagida H. 1981. Electrical conduction in pure and Li-substituted Co3O4. J. Am. Ceram. Soc. 64:C156–57
    [Google Scholar]
  111. 111. 
    Gvishi M, Tannhauser DS. 1972. Hall mobility and defect structure in undoped and Cr- or Ti-doped CoO at high temperature. J. Phys. Chem. Solids 33:893–911
    [Google Scholar]
  112. 112. 
    De Souza RA, Kilner JA. 1998. Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part I. Oxygen tracer diffusion. Solid State Ionics 106:175–87
    [Google Scholar]
  113. 113. 
    Merkle R, Poetzsch D, Maier J. 2015. Oxygen reduction reaction at cathodes on proton conducting oxide electrolytes: contributions from three phase boundary compared to bulk path. ECS Trans. 66:295–102
    [Google Scholar]
  114. 114. 
    Poetzsch D. 2014. Mixed-conducting (Ba,Sr)(Co,Fe,Zn)O3−δ as cathode material for proton-conducting ceramic fuel cells: defect chemistry and oxygen reduction mechanism. PhD Thesis Univ Stuttgart, Ger:.
    [Google Scholar]
  115. 115. 
    Choi S, Kucharzcyk CJ, Liang XG, Zhang XH, Takeuchi I et al. 2018. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3:202–10
    [Google Scholar]
  116. 116. 
    Nishidate K, Shinomiya Y, Mizuno K, Kimura Y, Nakamura T et al. 2019. Evaluation of the electrode reaction mechanism in an La0.5Sr0.5CoO3−δ PCFC cathode. Poster presented at the 22nd International Conference on Solid State Ionics PyeongChang Korea:
    [Google Scholar]
  117. 117. 
    Knöchel P, Keenan PJ, Loho C, Reitz C, Witte R et al. 2016. Synthesis, structural characterisation and proton conduction of two new hydrated phases of barium ferrite BaFeO2.5−x(OH)2x. J. Mater. Chem. A 4:3415–30
    [Google Scholar]
  118. 118. 
    Waidha AI, Lepple M, Wissel K, Benes A, Wollstadt S et al. 2018. Synthesis, structure and electrical conductivity of a new perovskite type barium cobaltate BaCoO1.80(OH)0.86. Dalton Trans. 47:11136–45
    [Google Scholar]
  119. 119. 
    Duan C, Huang J, Sullivan N, O'Hayre R. 2020. Proton-conducting oxides for energy conversion and storage. Appl. Phys. Rev. 7:011314
    [Google Scholar]
  120. 120. 
    Kim J-H, Manthiram A. 2015. Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: an overview and perspective. J. Mater. Chem. A 3:24195–210
    [Google Scholar]
  121. 121. 
    Bernuy-Lopez C, Rioja-Monllor L, Nakamura T, Ricote S, O'Hayre R et al. 2018. Effect of cation ordering on the performance and chemical stability of layered double perovskite cathodes. Materials 11:196
    [Google Scholar]
  122. 122. 
    Lei L, Tao Z, Wang X, Lemmon JP, Chen FL. 2017. Intermediate-temperature solid oxide electrolysis cells with thin proton-conducting electrolyte and a robust air electrode. J. Mater. Chem. A 5:22945–51
    [Google Scholar]
  123. 123. 
    Dailly J, Fourcade S, Largeteau A, Mauvy F, Grenier JC, Marrony M. 2010. Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochim. Acta 55:5847–53
    [Google Scholar]
  124. 124. 
    Grimaud A, Mauvy F, Bassat JM, Fourcade S, Marrony M, Grenier JC. 2012. Hydration and transport properties of the Pr2−xSrxNiO4+δ compounds as H+-SOFC cathodes. J. Mater. Chem. 22:16017–25
    [Google Scholar]
  125. 125. 
    Wang Z, Yang W, Shafi SP, Bi L, Wang Z et al. 2015. A high performance cathode for proton conducting solid oxide fuel cells. J. Mater. Chem. A 3:8405–12
    [Google Scholar]
  126. 126. 
    Lehtimäki M, Yamauchi H, Karppinen M. 2013. Stability of Ruddlesden-Popper structures oxides in humid conditions. J. Solid State Chem. 204:95–101
    [Google Scholar]
  127. 127. 
    Oygarden V, Fjellvag H, Sorby MH, Sjastad AO. 2016. Crystal structure of LaSr3Fe3O8(OH)2⋅xH2O. Inorg. Chem. 55:7630–36
    [Google Scholar]
  128. 128. 
    Cheng S, Wang Y, Zhuang L, Xue J, Wei Y et al. 2018. A dual-phase ceramic membrane with extremely high H2 permeation flux prepared by autoseparation of a ceramic precursor. Angew. Chem. Int. Ed. 55:10895–98
    [Google Scholar]
  129. 129. 
    Song Y, Chen Y, Wang W, Zhou C, Zhong Y et al. 2019. Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule 3:2842–53
    [Google Scholar]
  130. 130. 
    Huan D, Wang W, Xie Y, Shi N, Wan Y et al. 2018. Investigation of real polarization resistance for electrode performance in proton-conducting electrolysis cells. J. Mater. Chem. A 6:18508–17
    [Google Scholar]
  131. 131. 
    Tao Z, Bi L, Zhu Z, Liu W. 2009. Novel cobalt-free cathode materials BaCexFe1−xO3−δ for proton-conducting solid oxide fuel cells. J. Power Sources 194:801–4
    [Google Scholar]
  132. 132. 
    Strandbakke R, Vøllestad E, Robinson SA, Fontaine M-L, Norby T. 2017. Ba0.5Gd0.8La0.7Co2O6−δ infiltrated porous BaZr0.7Ce0.2Y0.1O3 backbones as electrode material for protonic ceramic electrolytes. J. Electrochem. Soc. 164:F196–202
    [Google Scholar]
  133. 133. 
    Hou J, Miao L, Hui J, Bi L, Liu W, Irvine JTS. 2018. A novel in situ diffusion strategy to fabricate high performance cathodes for low temperature proton-conducting solid oxide fuel cells. J. Mater. Chem. A 6:10411–20
    [Google Scholar]
  134. 134. 
    Rioja-Monllor L, Bernuy-Lopez C, Fontaine M-L, Grande T, Einarsrud M-A. 2019. Processing of high performance composite cathodes for protonic ceramic fuel cells by exsolution. J. Mater. Chem. A 7:8609–19
    [Google Scholar]
  135. 135. 
    Bae K, Kim DH, Choi HJ, Son JW, Shim JH. 2018. High-performance protonic ceramic fuel cells with 1 μm thick Y:Ba(Ce, Zr)O3 electrolytes. Adv. Energy Mater. 8:1801315
    [Google Scholar]
  136. 136. 
    An H, Lee H-W, Kim B-K, Son J-W, Yoon KJ et al. 2018. A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm−2 at 600°C. Nat. Energy 3:870–75
    [Google Scholar]
  137. 137. 
    Dubois A, Ricote S, Braun RJ. 2017. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology. J. Power Sources 369:65–77
    [Google Scholar]
  138. 138. 
    Han F, Zhou X, Dayaghi AM, Norby T, Stange M et al. 2019. Development of metal supported cells using BaZrO3-based proton conducting ceramics. ECS Trans. 91:11035–45
    [Google Scholar]
  139. 139. 
    Wang RF, Byrne C, Tucker MC. 2019. Assessment of co-sintering as a fabrication approach for metal-supported proton-conducting solid oxide cells. Solid State Ionics 332:25–33
    [Google Scholar]
  140. 140. 
    Udomsilp D, Rechberger J, Neubauer R, Bischof C, Thaler F et al. 2020. Metal-supported solid oxide fuel cells with exceptionally high power density for range extender systems. Cell Rep. Phys. Sci. 1:100072
    [Google Scholar]
  141. 141. 
    Exner J, Nazarenus T, Kita J, Moos R. 2020. Dense Y-doped ion conducting perovskite films of BaZrO3, BaSnO3, and BaCeO3 for SOFC applications produced by powder aerosol deposition at room temperature. Int. J. Hydrog. Energy 45:10000–16
    [Google Scholar]
  142. 142. 
    Harboe S, Sohn YJ, Guillon O, Menzler NH. 2020. Investigation of LSM-8YSZ cathode within an all ceramic SOFC. Part I: Chemical interactions. J. Eur. Ceram. Soc. 40:3608–17
    [Google Scholar]
  143. 143. 
    Duan C, Kee R, Zhu H, Sullivan N, Zhu L et al. 2019. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4:230–40
    [Google Scholar]
  144. 144. 
    Choi S, Davenport TC, Haile SM. 2019. Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy Environ. Sci. 12:206–15
    [Google Scholar]
  145. 145. 
    Malerød-Fjeld H, Clark D, Yuste-Tirados I, Zanón R, Catalán-Martinez D et al. 2017. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nat. Energy 2:923–31
    [Google Scholar]
  146. 146. 
    Vøllestad E, Strandbakke R, Tarach M, Catalán-Martinez D, Fontaine M-L et al. 2019. Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nat. Mater. 18:752–59
    [Google Scholar]
  147. 147. 
    Morejudo SH, Zanón R, Escolástico S, Yuste-Tirados I, Malerød-Fjeld H et al. 2016. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353:563–66
    [Google Scholar]
  148. 148. 
    Nakamura T, Mizunuma S, Kimura Y, Mikami Y, Yamauchi K et al. 2018. Energy efficiency of ionic transport through proton conducting ceramic electrolytes for energy conversion applications. J. Mater. Chem. A 6:15771–80
    [Google Scholar]
  149. 149. 
    Matsuzaki Y, Tachikawa Y, Iinuma H, Sato K, Baba Y et al. 2019. Modified energy efficiencies of proton-conducting SOFCs with partial conductions of oxide-ions and holes. Fuel Cells 19:503–11
    [Google Scholar]
  150. 150. 
    Shimada H, Yamaguchi T, Sumi H, Yamaguchi Y, Nomura K et al. 2019. A key for achieving higher open-circuit voltage in protonic ceramic fuel cells: lowering interfacial electrode polarization. ACS Appl. Energy Mater. 2:587–97
    [Google Scholar]
  151. 151. 
    Poetzsch D, Merkle R, Maier J. 2013. Investigation of oxygen exchange kinetics in proton-conducting ceramic fuel cells: effect of electronic leakage current using symmetric cells. J. Power Sources 242:784–89
    [Google Scholar]
  152. 152. 
    Zhu H, Kee RJ. 2016. Membrane polarization in mixed-conducting ceramic fuel cells and electrolyzers. Int. J. Hydrog. Energy 41:2931–43
    [Google Scholar]
  153. 153. 
    Leonard K, Okuyama Y, Takamura Y, Lee YS, Miyazaki K et al. 2018. Efficient intermediate-temperature steam electrolysis with Y:SrZrO3–SrCeO3 and Y:BaZrO3–BaCeO3 proton conducting perovskites. J. Mater. Chem. A 6:19113–24
    [Google Scholar]
  154. 154. 
    Ding H, Lin B, Liu X, Meng G. High performance protonic ceramic membrane fuel cells (PCMFCs) with Ba0.5Sr0.5 Zn0.2Fe0.8O3−δ perovskite cathode. Electrochem. Commun. 10:1388–91
    [Google Scholar]
  155. 155. 
    Matsuzaki Y, Tachikawa Y, Baba Y, Sato K, Kojo G et al. 2020. Suppression of leakage current in proton-conducting BaZr0.8Y0.2O3−δ electrolyte by forming hole-blocking layer. J. Electochem. Soc. 167:084515
    [Google Scholar]
  156. 156. 
    Bae K, Jang DY, Choi HJ, Kim D, Hong J et al. 2017. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat. Commun. 8:14553
    [Google Scholar]
  157. 157. 
    Nien SH, Hsu CS, Chang CL, Hwang BH. 2011. Preparation of BaZr0.1Ce0.7Y0.2O3−δ based solid oxide fuel cells with anode functional layers by tape casting. Fuel Cells 11:178–83
    [Google Scholar]
  158. 158. 
    Ding H, Xie Y, Xue X. 2011. Electrochemical performance of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte based proton-conducting SOFC solid oxide fuel cell with layered perovskite PrBaCo2O5+δ cathode. J. Power Sources 196:2602–7
    [Google Scholar]
  159. 159. 
    Tarutin AP, Gorshkov MY, Bainov IN, Vdovin GK, Vylkov AI et al. 2020. Barium-doped nickelates Nd2−xBaxNiO4±δ as promising electrode materials for protonic ceramic electrochemical cells. Ceram. Int. 46:24355–64
    [Google Scholar]
  160. 160. 
    Wang N, Hinokuma S, Ina T, Zhu C, Habazaki H, Aoki Y. 2020. Mixed proton–electron–oxide ion triple conducting manganite as an efficient cobalt-free cathode for protonic ceramic fuel cells. J. Mater. Chem. A 8:11043–55
    [Google Scholar]
  161. 161. 
    Grimaud A, Bassat J-M, Mauvy F, Pollet M, Wattiaux A et al. 2014. Oxygen reduction reaction of PrBaCo2−xFexO3+δ compounds as H+-SOFC cathodes: correlation with physical properties. J. Mater. Chem. A 2:3594–604
    [Google Scholar]
  162. 162. 
    Lv X, Chen H, Zhou W, Li SD, Shao ZP. 2020. A CO2-tolerant SrCo0.8Fe0.15Zr0.05O3−δ cathode for proton-conducting solid oxide fuel cells. J. Mater. Chem. A 8:11292–301
    [Google Scholar]
  163. 163. 
    Lin Y, Ran R, Zheng Y, Shao ZP, Jin WQ et al. 2008. Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. J. Power Sources 180:15–22
    [Google Scholar]
  164. 164. 
    Ding H, Xue X. 2010. A novel cobalt-free layered GdBaFe2O5+δ cathode for proton-conducting solid oxide fuel cells. J. Power Sources 195:4139–42
    [Google Scholar]
  165. 165. 
    Shang M, Tong JH, O'Hayre R. 2013. A promising cathode for intermediate temperature protonic ceramic fuel cells: BaCo0.4Fe0.4Zr0.2O3−δ. RSC Adv. 3:15769–75
    [Google Scholar]
  166. 166. 
    Duan C, Tong J, Shang M, Nikodemski S, Sanders M et al. 2015. Readily processed protonic ceramic fuel cell with high performance at low temperatures. Science 349:1321–26
    [Google Scholar]
  167. 167. 
    Lv H, Jin Z, Peng R, Liu W, Gong Z 2019. BaCoxFe0.7−xZr0.3O3−δ (0.2 ≤ x ≤ 0.5) as cathode materials for proton-based SOFCs. Ceram. Int. 45:23948–53
    [Google Scholar]
  168. 168. 
    Ding H, Sullivan NP, Ricote S. 2017. Double perovskite Ba2FeMoO6−δ as fuel electrode for protonic-ceramic membranes. Solid State Ionics 306:97–103
    [Google Scholar]
  169. 169. 
    Xia Y, Jin Z, Wang H, Gong Z, Lv H et al. 2019. A novel cobalt-free cathode with triple-conduction for proton-conducting solid oxide fuel cells with unprecedented performance. J. Mater. Chem. A 7:16136–48
    [Google Scholar]
  170. 170. 
    Zhou C, Sunarso J, Song Y, Dai J, Zhang J et al. 2019. New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode. J. Mater. Chem. A 7:13265–74
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-091819-010219
Loading
/content/journals/10.1146/annurev-matsci-091819-010219
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error