1932

Abstract

Successful strategies for the design of crystalline materials with useful function are frequently based on the systematic tuning of chemical composition within a given structural family. Perovskites with the formula , perhaps the best-known example of such a family, have a vast range of elements on , , and sites, which are associated with a similarly vast range of functionality. Layered double perovskites (LDPs), a subset of this family, are obtained by suitable slicing and restacking of the perovskite structure, with the additional design feature of ordered cations and/or anions. In addition to inorganic LDPs, we also discuss hybrid (organic-inorganic) LDPs here, where the -site cation is a protonated organic amine. Several examples of inorganic LDPs are presented with a discussion of their ferroic, magnetic, and optical properties. The emerging area of hybrid LDPs is particularly rich and is leading to exciting discoveries of new compounds with unique structures and fascinating optoelectronic properties. We provide context for what is important to consider when designing new materials and conclude with a discussion of future opportunities in the broad LDP area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-092320-102133
2021-07-26
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-092320-102133.html?itemId=/content/journals/10.1146/annurev-matsci-092320-102133&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Goldschmidt VM. 1926. Die Gesetze der Krystallochemie. Naturwissenschaften 14:477–85
    [Google Scholar]
  2. 2. 
    Megaw HD. 1946. Crystal structure of double oxides of the perovskite type. Proc. Phys. Soc. 58:133
    [Google Scholar]
  3. 3. 
    von Hippel A. 1950. Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev. Mod. Phys. 22:221–37
    [Google Scholar]
  4. 4. 
    Sleight AW, Gillson JL, Bierstedt PE. 1993. High-temperature superconductivity in the BaPb1–xBixO3 system. Solid State Commun. 88:841–42
    [Google Scholar]
  5. 5. 
    Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL et al. 1987. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58:908–10
    [Google Scholar]
  6. 6. 
    von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K. 1993. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71:2331–33
    [Google Scholar]
  7. 7. 
    Jin S, Tiefel TH, McCormack M, Fastnacht R, Ramesh R, Chen L 1994. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264:413–15
    [Google Scholar]
  8. 8. 
    Li W, Wang Z, Deschler F, Gao S, Friend RH, Cheetham AK. 2017. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2:16099
    [Google Scholar]
  9. 9. 
    Kojima A, Teshima K, Shirai Y, Miyasaka T. 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131:6050–51
    [Google Scholar]
  10. 10. 
    Wang X-Y, Gan L, Zhang SW, Gao S. 2004. Perovskite-like metal formates with weak ferromagnetism and as precursors to amorphous materials. Inorg. Chem. 43:4615–25
    [Google Scholar]
  11. 11. 
    King G, Woodward PM. 2010. Cation ordering in perovskites. J. Mater. Chem. 20:5785–96
    [Google Scholar]
  12. 12. 
    Sarma D, Sampathkumaran E, Ray S, Nagarajan R, Majumdar S et al. 2000. Magnetoresistance in ordered and disordered double perovskite oxide, Sr2FeMoO6. Solid State Commun. 114:465–68
    [Google Scholar]
  13. 13. 
    Wei F, Deng Z, Sun S, Xie F, Kieslich G et al. 2016. The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Mater. Horiz. 3:328–32
    [Google Scholar]
  14. 14. 
    Sekiya T, Yamamoto T, Torii Y. 1984. Cation ordering in (NaLa)(MgW)O6 with the perovskite structure. Bull. Chem. Soc. Jpn. 57:1859–62
    [Google Scholar]
  15. 15. 
    Yang M, Oró-Solé J, Rodgers JA, Jorge AB, Fuertes A, Attfield JP. 2011. Anion order in perovskite oxynitrides. Nat. Chem. 3:47–52
    [Google Scholar]
  16. 16. 
    Wu Y, Halat DM, Wei F, Binford T, Seymour ID et al. 2018. Mixed X-site formate-hypophosphite hybrid perovskites. Chem. Eur. J. 24:11309–13
    [Google Scholar]
  17. 17. 
    Balz D, Plieth K. 1955. Die Struktur des Kaliumnickelfluorids, K2NiF. Z. Elektrochem. 59:545–51
    [Google Scholar]
  18. 18. 
    Bednorz JG, Müller KA. 1986. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64:189–93
    [Google Scholar]
  19. 19. 
    Ruddlesden S, Popper P. 1958. The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11:54–55
    [Google Scholar]
  20. 20. 
    Dion M, Ganne M, Tournoux M. 1981. Nouvelles familles de phases MIM2IINb3O10 a feuillets “perovskites. Mater. Res. Bull. 16:1429–35
    [Google Scholar]
  21. 21. 
    Jacobson A, Johnson JW, Lewandowski J. 1985. Interlayer chemistry between thick transition-metal oxide layers: synthesis and intercalation reactions of K[Ca2Nan–3NbnO3n+1] (3 ≤ n ≤ 7). Inorg. Chem. 24:3727–29
    [Google Scholar]
  22. 22. 
    Smith MD, Crace EJ, Jaffe A, Karunadasa HI. 2018. The diversity of layered halide perovskites. Annu. Rev. Mater. Res. 48:111–36
    [Google Scholar]
  23. 23. 
    Vargas B, Ramos E, Pérez-Gutiérrez E, Alonso JC, Solis-Ibarra D. 2017. A direct bandgap copper–antimony halide perovskite. J. Am. Chem. Soc. 139:9116–19
    [Google Scholar]
  24. 24. 
    Battle PD, Green MA, Laskey NS, Millburn JE, Rosseinsky MJ et al. 1996. Coupled metal-insulator and magnetic transitions in LnSr2Mn2O7 (Ln = La, Tb). Chem. Commun. 207:767–68
    [Google Scholar]
  25. 25. 
    Seshadri R, Martin C, Maignan A, Hervieu M, Raveau B, Rao CNR. 1996. Structure and magnetotransport properties of the layered manganites RE1.2Sr1.8Mn2O7 (RE = La, Pr, Nd). J. Mater. Chem. 6:1585–90
    [Google Scholar]
  26. 26. 
    Clarke SJ, Hardstone KA, Michie CW, Rosseinsky MJ. 2002. High-temperature synthesis and structures of perovskite and n = 1 Ruddlesden-Popper tantalum oxynitrides. Chem. Mater. 14:2664–69
    [Google Scholar]
  27. 27. 
    Connor BA, Leppert L, Smith MD, Neaton JB, Karunadasa HI. 2018. Layered halide double perovskites: dimensional reduction of Cs2AgBiBr6. J. Am. Chem. Soc. 140:5235–40
    [Google Scholar]
  28. 28. 
    Akamatsu H, Fujita K, Kuge T, Sen Gupta A, Togo A et al. 2014. Inversion symmetry breaking by oxygen octahedral rotations in the Ruddlesden-Popper NaRTiO4 family. Phys. Rev. Lett. 112:187602
    [Google Scholar]
  29. 29. 
    Kanade K, Baeg J, Kong K, Kale B, Lee S et al. 2008. A new layer perovskites Pb2Ga2Nb2O10 and RbPb2Nb2O7: an efficient visible light driven photocatalysts to hydrogen generation. Int. J. Hydrog. Energy 33:6904–12
    [Google Scholar]
  30. 30. 
    Fjellvåg ØS, Armstrong J, Vajeeston P, Sjåstad AO. 2018. New insights into hydride bonding, dynamics, and migration in La2LiHO3 oxyhydride. J. Phys. Chem. Lett. 9:353–58
    [Google Scholar]
  31. 31. 
    Park GE, Byeon SH. 1996. Correlation between structures and ionic conductivities of Na2Ln2Ti3O10 (Ln = La, Nd, Sm, and Gd). Bull. Korean Chem. Soc. 17:168–72
    [Google Scholar]
  32. 32. 
    Schaak RE, Mallouk TE. 2000. Prying apart Ruddlesden-Popper phases: exfoliation into sheets and nanotubes for assembly of perovskite thin films. Chem. Mater. 12:3427–34
    [Google Scholar]
  33. 33. 
    Ma R, Sasaki T. 2015. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res. 48:136–43
    [Google Scholar]
  34. 34. 
    ten Elshof JE, Yuan H, Gonzalez Rodriguez P 2016. Two-dimensional metal oxide and metal hydroxide nanosheets: synthesis, controlled assembly and applications in energy conversion and storage. Adv. Energy Mater. 6:1600355
    [Google Scholar]
  35. 35. 
    Gönen ZS, Paluchowski D, Zavalij P, Eichhorn BW, Gopalakrishnan J. 2006. Reversible cation/anion extraction from K2La2Ti3O10: formation of new layered titanates, KLa2Ti3O9.5 and La2Ti3O9. Inorg. Chem. 45:8736–42
    [Google Scholar]
  36. 36. 
    Toda K, Teranishi T, Ye ZG, Sato M, Hinatsu Y. 1999. Structural chemistry of new ion-exchangeable tantalates with layered perovskite structure: new Dion–Jacobson phase MCa2Ta3O10 (M = alkali metal) and Ruddlesden–Popper phase Na2Ca2Ta3O10. Mater. Res. Bull. 34:971–82
    [Google Scholar]
  37. 37. 
    Hyeon KA, Byeon SH. 1999. Synthesis and structure of new layered oxides, MIILa2Ti3O10 (M = Co, Cu, and Zn). Chem. Mater. 11:352–57
    [Google Scholar]
  38. 38. 
    Fukuoka H, Isami T, Yamanaka S. 2000. Crystal structure of a layered perovskite niobate KCa2Nb3O10. J. Solid State Chem. 151:40–45
    [Google Scholar]
  39. 39. 
    Thangadurai V, Schmid-Beurmann P, Weppner W 2001. Synthesis, structure, and electrical conductivity of A′[A2B3O10] (A′ = Rb, Cs; A = Sr, Ba; B = Nb, Ta): new members of Dion-Jacobson-type layered perovskites. J. Solid State Chem. 158:279–89
    [Google Scholar]
  40. 40. 
    Anderson MT, Greenwood KB, Taylor GA, Poeppelmeier KR. 1993. B-cation arrangements in double perovskites. Prog. Solid State Chem. 22:197–233
    [Google Scholar]
  41. 41. 
    Toda K, Teranishi T, Takahashi M, Ye ZG, Sato M. 1998. Structural chemistry of new ion-exchangeable tantalates with layered perovskite structure: new reduced Ruddlesden-Popper phase, Na2Ca2Ta3O10. Solid State Ionics 113-115:501–8
    [Google Scholar]
  42. 42. 
    Shannon RDT, Prewitt CT. 1969. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25:925–46
    [Google Scholar]
  43. 43. 
    Uma S, Gopalakrishnan J. 1993. K1–xLaxCa2–xNb3O10, a layered perovskite series with variable interlayer cation density, and LaCaNb3O10, a novel layered perovskite oxide with no interlayer cations. J. Solid State Chem. 102:332–39
    [Google Scholar]
  44. 44. 
    Nishimoto S, Matsuda M, Harjo S, Hoshikawa A, Kamiyama T et al. 2006. Structure determination of n = 1 Ruddlesden–Popper compound HLaTiO4 by powder neutron diffraction. J. Eur. Ceram. Soc. 26:725–29
    [Google Scholar]
  45. 45. 
    Chen D, Jiao X, Xu R 1999. Hydrothermal synthesis and characterization of the layered titanates MLaTiO4 (M = Li, Na, K) powders. Mater. Res. Bull. 34:685–91
    [Google Scholar]
  46. 46. 
    Toda K, Kurita S, Sato M. 1996. New layered perovskite compounds, LiLaTiO4 and LiEuTiO4. J. Ceram. Soc. Jpn. 104:140–42
    [Google Scholar]
  47. 47. 
    Zhu BC, Tang KB. 2011. Rietveld refinement of KLaTiO4 from X-ray powder data. Acta Crystallogr. E 67:i26
    [Google Scholar]
  48. 48. 
    Toda K, Kurita S, Sato M. 1995. Synthesis and ionic conductivity of novel layered perovskite compounds, AgLaTiO4 and AgEuTiO4. Solid State Ionics 81:267–71
    [Google Scholar]
  49. 49. 
    Byeon SH, Park K, Itoh M. 1996. Structure and ionic conductivity of NaLnTiO4; comparison with those of Na2Ln2Ti3O10 (Ln = La, Nd, Sm, and Gd). J. Solid State Chem. 121:430–36
    [Google Scholar]
  50. 50. 
    Toda K, Kameo Y, Kurita S, Sato M. 1996. Crystal structure determination and ionic conductivity of layered perovskite compounds NaLnTiO4 (Ln = rare earth). J. Alloys Compd. 234:19–25
    [Google Scholar]
  51. 51. 
    Reddy VR, Hwang DW, Lee JS. 2003. Effect of Zr substitution for Ti in KLaTiO4 for photocatalytic water splitting. Catal. Lett. 90:39–43
    [Google Scholar]
  52. 52. 
    Gupta AS, Akamatsu H, Strayer ME, Lei S, Kuge T et al. 2016. Improper inversion symmetry breaking and piezoelectricity through oxygen octahedral rotations in layered perovskite family, LiRTiO4 (R = rare earths). Adv. Electron. Mater. 2:1500196
    [Google Scholar]
  53. 53. 
    Sen Gupta A, Akamatsu H, Brown FG, Nguyen MAT, Strayer ME et al. 2017. Competing structural instabilities in the Ruddlesden–Popper derivatives HRTiO4 (R = rare earths): oxygen octahedral rotations inducing noncentrosymmetricity and layer sliding retaining centrosymmetricity. Chem. Mater. 29:656–65
    [Google Scholar]
  54. 54. 
    Akamatsu H, Fujita K, Kuge T, Gupta AS, Rondinelli JM et al. 2019. A-site cation size effect on oxygen octahedral rotations in acentric Ruddlesden-Popper alkali rare-earth titanates. Phys. Rev. Mater. 5:065001
    [Google Scholar]
  55. 55. 
    Su Y, Tsujimoto Y, Fujii K, Tatsuta M, Oka K et al. 2018. Synthesis, crystal structure, and optical properties of layered perovskite scandium oxychlorides: Sr2ScO3Cl, Sr3Sc2O5Cl2, and Ba3Sc2O5Cl2. Inorg. Chem. 57:5615–23
    [Google Scholar]
  56. 56. 
    Kamegashira N, Meng J, Fujita K, Satoh H, Shishido T, Nakajima K. 2006. Study on the phase behavior of BaEu2Mn2O7 through heat treatment of a single crystal. J. Alloys Compd. 408-412:603–7
    [Google Scholar]
  57. 57. 
    Armstrong AR, Anderson PA. 1994. Synthesis and structure of a new layered niobium blue bronze: Rb2LaNb2O7. Inorg. Chem. 33:4366–69
    [Google Scholar]
  58. 58. 
    Strayer ME, Gupta AS, Akamatsu H, Lei S, Benedek NA et al. 2016. Emergent noncentrosymmetry and piezoelectricity driven by oxygen octahedral rotations in n = 2 Dion-Jacobson phase layer perovskites. Adv. Funct. Mater. 26:1930–37
    [Google Scholar]
  59. 59. 
    Kumada N, Kinomura N, Sleight AW. 1996. CsLaNb2O7. Acta Crystallogr. C 52:1063–65
    [Google Scholar]
  60. 60. 
    Toda K, Sato M. 1996. Synthesis and structure determination of new layered perovskite compounds, ALaTa2O7 and ACa2Ta3O10 (A = Rb, Li). J. Mater. Chem. 6:1067–71
    [Google Scholar]
  61. 61. 
    Subramanian M, Gopalakrishnan J, Sleight A. 1988. New layered perovskites: ABiNb2O7 and APb2Nb3O10 (A = Rb or Cs). Mater. Res. Bull. 23:837–42
    [Google Scholar]
  62. 62. 
    Goff RJ, Keeble D, Thomas PA, Ritter C, Morrison FD, Lightfoot P. 2009. Leakage and proton conductivity in the predicted ferroelectric CsBiNb2O7. Chem. Mater. 21:1296–302
    [Google Scholar]
  63. 63. 
    Snedden A, Knight KS, Lightfoot P. 2003. Structural distortions in the layered perovskites CsANb2O7 (A = Nd, Bi). J. Solid State Chem. 173:309–13
    [Google Scholar]
  64. 64. 
    Benedek NA. 2014. Origin of ferroelectricity in a family of polar oxides: the Dion-Jacobson phases. Inorg. Chem. 53:3769–77
    [Google Scholar]
  65. 65. 
    Mulder AT, Benedek NA, Rondinelli JM, Fennie CJ. 2013. Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden-Popper compounds. Adv. Funct. Mater. 23:4810–20
    [Google Scholar]
  66. 66. 
    Zhang R, Abbett BM, Read G, Lang F, Lancaster T et al. 2016. La2SrCr2O7: controlling the tilting distortions of n = 2 Ruddlesden–Popper phases through A-site cation order. Inorg. Chem. 55:8951–60
    [Google Scholar]
  67. 67. 
    Zhu T, Cohen T, Gibbs AS, Zhang W, Halasyamani PS et al. 2017. Theory and neutrons combine to reveal a family of layered perovskites without inversion symmetry. Chem. Mater. 29:9489–97
    [Google Scholar]
  68. 68. 
    Zhu T, Khalsa G, Havas DM, Gibbs AS, Zhang W et al. 2018. Cation exchange as a mechanism to engineer polarity in layered perovskites. Chem. Mater. 30:8915–24
    [Google Scholar]
  69. 69. 
    Autieri C, Barone P, Sławińska J, Picozzi S. 2019. Persistent spin helix in Rashba-Dresselhaus ferroelectric CsBiNb2O7. Phys. Rev. Mater. 3:084416
    [Google Scholar]
  70. 70. 
    Honma T, Toda K, Ye ZG, Sato M. 1998. Concentration quenching of the Eu3+ -activated luminescence in some layered perovskites with two-dimensional arrangement. J. Phys. Chem. Solids 59:1187–93
    [Google Scholar]
  71. 71. 
    Argyriou DN, Bordallo HN, Campbell BJ, Cheetham AK, Cox DE et al. 2000. Charge ordering and phase competition in the layered perovskite LaSr2Mn2O7. Phys. Rev. B 61:15269–76
    [Google Scholar]
  72. 72. 
    Zhou G, Jiang X, Zhao J, Molokeev M, Lin Z et al. 2018. Two-dimensional-layered perovskite ALaTa2O7: Bi3+ (A = K and Na) phosphors with versatile structures and tunable photoluminescence. ACS Appl. Mater. Interfaces 10:24648–55
    [Google Scholar]
  73. 73. 
    Liang Z, Tang K, Shao Q, Li G, Zeng S, Zheng H. 2008. Synthesis, crystal structure, and photocatalytic activity of a new two-layer Ruddlesden–Popper phase, Li2CaTa2O7. J. Solid State Chem. 181:964–70
    [Google Scholar]
  74. 74. 
    Galven C, Mounier D, Bouchevreau B, Suard E, Bulou A et al. 2016. Phase transitions in the Ruddlesden–Popper phase Li2CaTa2O7: X-ray and neutron powder thermodiffraction, TEM, Raman, and SHG experiments. Inorg. Chem. 55:2309–23
    [Google Scholar]
  75. 75. 
    Zhang W, Fujii K, Niwa E, Hagihala M, Kamiyama T, Yashima M. 2020. Oxide-ion conduction in the Dion-Jacobson phase CsBi2Ti2NbO10–δ. Nat. Commun. 11:1224
    [Google Scholar]
  76. 76. 
    Kim HG, Tran TT, Choi W, You TS, Halasyamani PS, Ok KM. 2016. Two new non-centrosymmetric n = 3 layered Dion-Jacobson perovskites: polar RbBi2Ti2NbO10 and nonpolar CsBi2Ti2TaO10. Chem. Mater. 28:2424–32
    [Google Scholar]
  77. 77. 
    Acosta M, Novak N, Rojas V, Patel S, Vaish R et al. 2017. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4:041305
    [Google Scholar]
  78. 78. 
    Zahedi E, Hojamberdiev M, Bekheet MF. 2015. Electronic, optical and photocatalytic properties of three-layer perovskite Dion-Jacobson phase CsBa2M3O10 (M = Ta, Nb): a DFT study. RSC Adv. 5:88725–35
    [Google Scholar]
  79. 79. 
    Gopalakrishnan J, Sivakumar T, Thangadurai V, Subbanna GN. 1999. A[Bi3Ti4O13] and A[Bi3PbTi5O16] (A = K, Cs): new n = 4 and n = 5 members of the layered perovskite series, A[A′n–1BnO3n+1], and their hydrates. Inorg. Chem. 38:2802–6
    [Google Scholar]
  80. 80. 
    Zong X, Sun C, Chen Z, Mukherji A, Wu H et al. 2011. Nitrogen doping in ion-exchangeable layered tantalate towards visible-light induced water oxidation. Chem. Commun. 47:6293
    [Google Scholar]
  81. 81. 
    Maeda K, Eguchi M, Oshima T. 2014. Perovskite oxide nanosheets with tunable band-edge potentials and high photocatalytic hydrogen-evolution activity. Angew. Chem. Int. Ed. 53:13164–68
    [Google Scholar]
  82. 82. 
    Sato M, Toda K, Watanabe J, Uematsu K. 1993. Structure determination and silver ion conductivity of layered perovskite compounds M2La2Ti3O10 (M = K and Ag). Nippon Kagaku Kaishi 1993:640–46
    [Google Scholar]
  83. 83. 
    Rodionov IA, Silyukov OI, Utkina TD, Chislov MV, Sokolova YP, Zvereva IA. 2012. Photocatalytic properties and hydration of perovskite-type layered titanates A2Ln2Ti3O10 (A = Li, Na, K; Ln = La, Nd). Russ. J. Gen. Chem. 82:1191–96
    [Google Scholar]
  84. 84. 
    Gustin L, Hosaka Y, Tassel C, Aharen T, Shimakawa Y et al. 2016. From tetrahedral to octahedral iron coordination: layer compression in topochemically prepared FeLa2Ti3O10. Inorg. Chem. 55:11529–37
    [Google Scholar]
  85. 85. 
    Pratt JA, Shepherd AM, Hayward MA. 2015. Diamagnetic Ru2+ in Na2La2Ti2RuO10–x (0 < x < 2): a series of complex oxides prepared by topochemical reduction. Inorg. Chem. 54:10993–97
    [Google Scholar]
  86. 86. 
    Schaak RE, Guidry EN, Mallouk TE. 2001. Converting a layer perovskite into a non-defective higher-order homologue: topochemical synthesis of Eu2CaTi2O7. Chem. Commun. 2001:853–54
    [Google Scholar]
  87. 87. 
    Thangadurai V, Gopalakrishnan J, Subbanna GN. 1998. Ln2Ti2O7 (Ln = La, Nd, Sm, Gd): a novel series of defective Ruddlesden-Popper phases formed by topotactic dehydration of HLnTiO4. Chem. Commun. 7:1299–300
    [Google Scholar]
  88. 88. 
    Abou-Warda S, Pietzuch W, Berghöfer G, Kesper U, Massa W, Reinen D. 1998. Ordered K2NiF4 structure of the solids La2Li1/2M1/2O4 (M(III) = Co, Ni, Cu) and the bonding properties of the MO6 polyhedra in various compounds of this type. J. Solid State Chem. 138:18–31
    [Google Scholar]
  89. 89. 
    Abbattista F, Vallino M, Mazza D. 1985. Preparation and crystallographic characteristics of the new phase La2Au0.5Li0.5O4. J. Less Common Met. 110:391–96
    [Google Scholar]
  90. 90. 
    Lehner AJ, Fabini DH, Evans HA, Hébert CA, Smock SR et al. 2015. Crystal and electronic structures of complex bismuth iodides A3Bi2I9 (A = K, Rb, Cs) related to perovskite: aiding the rational design of photovoltaics. Chem. Mater. 27:7137–48
    [Google Scholar]
  91. 91. 
    Teneze N, Mercurio D, Trolliard G, Frit B. 2000. Cation-deficient perovskite-related compounds (Ba,La)n Tin–1O3n (n = 4, 5, and 6): a Rietveld refinement from neutron powder diffraction data. Mater. Res. Bull. 35:1603–14
    [Google Scholar]
  92. 92. 
    Kemmler-Sack S, Wischert W, Treiber U. 1978. Über hexagonale Perowskite mit Kationenfehlstellen. III. Strukturbestimmungen an Verbindungen vom Typ Ba2B1/3III2/3ReVIIO6. Z. Anorg. Allg. Chem. 444:190–94
    [Google Scholar]
  93. 93. 
    Yu R, Fan A, Li T, Yuan M, Wang J. 2017. Structure and luminescence properties of Eu3+-doped trigonal double-perovskite Ba2Lu0.667WO6. Mater. Chem. Phys. 196:75–81
    [Google Scholar]
  94. 94. 
    Longo JM, Katz L, Ward R. 1965. Rhenium-containing complex metal oxides of the formula type AII4ReVII2MIIO12. Inorg. Chem. 4:235–41
    [Google Scholar]
  95. 95. 
    Herrmann M, Kemmler-Sack S. 1980. Über hexagonale Perowskite mit Kationenfehlstellen. XXII. Die Polymorphie bei rhomboedrischen 12 L-Stapelvarianten im System Sr4–xBaxNiRe2O12. Z. Anorg. Allg. Chem. 469:51–60
    [Google Scholar]
  96. 96. 
    Rawl R, Lee M, Choi ES, Li G, Chen KW et al. 2017. Magnetic properties of the triangular lattice magnets A4B′B2O12 (A = Ba, Sr, La; B′ = Co, Ni, Mn; B = W, Re). Phys. Rev. B 95:174438
    [Google Scholar]
  97. 97. 
    Rother H, Kemmler-Sack S. 1980. Uber hexagonale Perowskite mit Kationenfehlstellen. XIX. Die rhomboedrischen 12 L-Stapelvarianten vom Typ Ba3LaBIII (W2VIO12). Z. Anorg. Allg. Chem. 465:179–82
    [Google Scholar]
  98. 98. 
    Falk F, Hackbarth L, Lochbrunner S, Marciniak H, Küppers T, Köckerling M. 2018. Rare-earth metal tetracyanidoborate hydrate salts: structural, spectral, and thermal properties as well as the luminescence of dehydrated salts. Z. Anorg. Allg. Chem. 644:1495–502
    [Google Scholar]
  99. 99. 
    Saito M, Watanabe M, Kurita N, Matsuo A, Kindo K et al. 2019. Successive phase transitions and magnetization plateau in the spin-1 triangular-lattice antiferromagnet Ba2La2NiTe2O12 with small easy-axis anisotropy. Phys. Rev. B 100:064417
    [Google Scholar]
  100. 100. 
    Doi Y, Wakeshima M, Tezuka K, Shan YJ, Ohoyama K et al. 2017. Crystal structures, magnetic properties, and DFT calculation of B-site defected 12L-perovskites Ba2La2MW2O12 (M = Mn, Co, Ni, Zn). J. Condens. Matter Phys. 29:365802
    [Google Scholar]
  101. 101. 
    Li Z, Sun J, Wang Y, You L, Lin JH. 2005. Structural and magnetic properties of Ba3La3Mn2W3O18. J. Solid State Chem. 178:114–19
    [Google Scholar]
  102. 102. 
    Kim SW, Zhang R, Halasyamani PS, Hayward MA. 2015. K4Fe3F12: an Fe2+/Fe3+ charge-ordered, ferrimagnetic fluoride with a cation-deficient, layered perovskite structure. Inorg. Chem. 54:6647–52
    [Google Scholar]
  103. 103. 
    Liu S, Xu Y, Qu N, Zhang Y, Wang J et al. 2017. Charge ordering in K4Fe3F12 from a first principles study. ChemistrySelect 2:714–19
    [Google Scholar]
  104. 104. 
    Frenzen G, Kummer S, Massa W, Babel D. 1987. Tetragonale Fluorperowskite AM0,7500,25F3 mit Kationendefizit: K4MnIIMn2IIIF12 und Ba2Cs2Cu3F12. Z. Anorg. Allg. Chem. 553:75–84
    [Google Scholar]
  105. 105. 
    Manaka H, Miyashita Y, Watanabe Y, Masuda T. 2007. Synthesis of double-layer perovskite fluoride K3Cu2F7 with spin gap and orbital order. J. Phys. Soc. Jpn. 76:044710
    [Google Scholar]
  106. 106. 
    Herdtweck E, Babel D. 1981. Röntgenographische Einkristallstrukturbestimmungen an den Kalium-Kupfer(II)-Fluoriden K2CuF4 und K3Cu2F7. Z. Anorg. Allg. Chem. 474:113–22
    [Google Scholar]
  107. 107. 
    Herdtweck E, Kummer S, Babel D. 1991. Cation-deficient perovskites Ba2AIM2IIF9 (MII = Fe, Co, Ni, Zn) and their hexagonal layer structure. Eur. J. Solid State Inorg. Chem. 28:959–69
    [Google Scholar]
  108. 108. 
    Vargas B, Torres-Cadena R, Rodríguez-Hernández J, Gembicky M, Xie H et al. 2018. Optical, electronic, and magnetic engineering of <111> layered halide perovskites. Chem. Mater. 30:5315–21
    [Google Scholar]
  109. 109. 
    Tang G, Xiao Z, Hosono H, Kamiya T, Fang D, Hong J. 2018. Layered halide double perovskites Cs3+nM(II)nSb2X9+3n (M = Sn, Ge) for photovoltaic applications. J. Phys. Chem. Lett. 9:43–48
    [Google Scholar]
  110. 110. 
    Xu J, Liu JB, Wang J, Liu BX, Huang B. 2018. Prediction of novel p-type transparent conductors in layered double perovskites: a first-principles study. Adv. Funct. Mater. 28:1800332
    [Google Scholar]
  111. 111. 
    Liu Z, Zhao X, Zunger A, Zhang L. 2019. Design of mixed-cation tri-layered Pb-free halide perovskites for optoelectronic applications. Adv. Electron. Mater. 5:1900234
    [Google Scholar]
  112. 112. 
    Li J, Yu Q, He Y, Stoumpos CC, Niu G et al. 2018. Cs2PbI2Cl2, all-inorganic two-dimensional Ruddlesden-Popper mixed halide perovskite with optoelectronic response. J. Am. Chem. Soc. 140:11085–90
    [Google Scholar]
  113. 113. 
    Li J, Stoumpos CC, Trimarchi GG, Chung I, Mao L et al. 2018. Air-stable direct bandgap perovskite semiconductors: all-inorganic tin-based heteroleptic halides AxSnClyIz (A = Cs, Rb). Chem. Mater. 30:4847–56
    [Google Scholar]
  114. 114. 
    Xu Z, Chen M, Liu SF. 2019. Layer-dependent ultrahigh-mobility transport properties in all-inorganic two-dimensional Cs2PbI2Cl2 and Cs2SnI2Cl2 perovskites. J. Phys. Chem. C 123:27978–85
    [Google Scholar]
  115. 115. 
    McCall KM, Stoumpos CC, Kontsevoi OY, Alexander GCB, Wessels BW, Kanatzidis MG. 2019. From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: Dimensional expansion induces a direct band gap but enhances electron–phonon coupling. Chem. Mater. 31:2644–50
    [Google Scholar]
  116. 116. 
    Morgan EE, Mao L, Teicher SML, Wu G, Seshadri R. 2020. Tunable perovskite-derived bismuth halides: Cs3Bi2 (Cl1–xIx)9. Inorg. Chem. 59:3387–93
    [Google Scholar]
  117. 117. 
    Hodgkins TL, Savory CN, Bass KK, Seckman BL, Scanlon DO et al. 2019. Anionic order and band gap engineering in vacancy ordered triple perovskites. Chem. Commun. 55:3164–67
    [Google Scholar]
  118. 118. 
    Kobayashi Y, Tsujimoto Y, Kageyama H. 2018. Property engineering in perovskites via modification of anion chemistry. Annu. Rev. Mater. Res. 48:303–26
    [Google Scholar]
  119. 119. 
    Harada JK, Charles N, Poeppelmeier KR, Rondinelli JM. 2019. Heteroanionic materials by design: progress toward targeted properties. Adv. Mater. 31:1805295
    [Google Scholar]
  120. 120. 
    Fuertes A. 2006. Prediction of anion distributions using Pauling's second rule. Inorg. Chem. 45:9640–42
    [Google Scholar]
  121. 121. 
    Loureiro SM, Felser C, Huang Q, Cava RJ. 2000. Refinement of the crystal structures of strontium cobalt oxychlorides by neutron powder diffraction. Chem. Mater. 12:3181–85
    [Google Scholar]
  122. 122. 
    Tsujimoto Y, Yamaura K, Uchikoshi T. 2013. Extended Ni(III) oxyhalide perovskite derivatives: Sr2NiO3X (X = F, Cl). Inorg. Chem. 52:10211–16
    [Google Scholar]
  123. 123. 
    Knee CS, Weller MT. 2002. New layered manganese oxide halides. Chem. Commun. 2:256–57
    [Google Scholar]
  124. 124. 
    Romero FD, Hayward MA. 2012. Structure and magnetism of the topotactically reduced oxychloride Sr4Mn3O6.5Cl2. Inorg. Chem. 51:5325–31
    [Google Scholar]
  125. 125. 
    Su Y, Tsujimoto Y, Fujii K, Tatsuta M, Oka K et al. 2018. Synthesis, crystal structure, and optical properties of layered perovskite scandium oxychlorides: Sr2ScO3Cl, Sr3Sc2O5Cl2, and Ba3Sc2O5Cl2. Inorg. Chem. 57:5615–23
    [Google Scholar]
  126. 126. 
    Yoo CY, Kim J, Kim SC, Kim SJ. 2018. Crystal structures of new layered perovskite-type oxyfluorides, CsANb2O6F (A = Sr and Ca) and comparison with pyrochlore-type CsNb2O5F. J. Solid State Chem. 267:146–52
    [Google Scholar]
  127. 127. 
    Tsujimoto Y, Yamaura K, Takayama-Muromachi E. 2012. Oxyfluoride chemistry of layered perovskite compounds. Appl. Sci. 2:206–19
    [Google Scholar]
  128. 128. 
    Harada JK, Poeppelmeier KR, Rondinelli JM. 2019. Predicting the structure stability of layered heteroanionic materials exhibiting anion order. Inorg. Chem. 58:13229–40
    [Google Scholar]
  129. 129. 
    Wang Y, Tang K, Zhu B, Wang D, Hao Q, Wang Y. 2015. Synthesis and structure of a new layered oxyfluoride Sr2ScO3F with photocatalytic property. Mater. Res. Bull. 65:42–46
    [Google Scholar]
  130. 130. 
    Choy JH, Kim JY, Kim SJ, Sohn JS, Han OH. 2001. New Dion-Jacobson-type layered perovskite oxyfluorides, ASrNb2O6F (A = Li, Na, and Rb). Chem. Mater. 13:906–12
    [Google Scholar]
  131. 131. 
    Su Y, Tsujimoto Y, Matsushita Y, Yuan Y, He J, Yamaura K. 2016. High-pressure synthesis, crystal structure, and magnetic properties of Sr2MnO3F: a new member of layered perovskite oxyfluorides. Inorg. Chem. 55:2627–33
    [Google Scholar]
  132. 132. 
    Kobayashi Y, Tian M, Eguchi M, Mallouk TE. 2009. Ion-exchangeable, electronically conducting layered perovskite oxyfluorides. J. Am. Chem. Soc. 131:9849–55
    [Google Scholar]
  133. 133. 
    Needs RL, Weller MT. 1995. Synthesis and structure of Ba2InO3F: oxide/fluoride ordering in a new K2NiF4 superstructure. Chem. Commun. 7:353–54
    [Google Scholar]
  134. 134. 
    Tarasova NA, Animitsa IE. 2018. The influence of the nature of halogen on the local structure and intercalation of water in oxyhalides Ba2InO3X (X = F, Cl, Br). Opt. Spectrosc. 124:163–66
    [Google Scholar]
  135. 135. 
    Needs RL, Weller MT, Scheler U, Harris RK. 1996. Synthesis and structure of Ba2InO3X (X = F, Cl, Br) and Ba2ScO3F; oxide/halide ordering in K2NiF4-type structures. J. Mater. Chem. 6:1219–24
    [Google Scholar]
  136. 136. 
    Galasso F, Darby W. 1963. Preparation and properties of Sr2FeO3F. J. Phys. Chem. 67:1451–53
    [Google Scholar]
  137. 137. 
    Case GS, Hector AL, Levason W, Needs RL, Thomas MF, Weller MT. 1999. Syntheses, powder neutron diffraction structures and Mössbauer studies of some complex iron oxyfluorides: Sr3Fe2O6F0.87, Sr2FeO3F and Ba2InFeO5F0.68. J. Mater. Chem. 9:2821–27
    [Google Scholar]
  138. 138. 
    Hector AL, Hutchings JA, Needs RL, Thomas MF, Weller MT. 2001. Structural and Mössbauer study of Sr2FeO3X (X = F, Cl, Br) and the magnetic structure of Sr2FeO3F. J. Mater. Chem. 11:527–32
    [Google Scholar]
  139. 139. 
    Yoo CY, Hong KP, Kim SJ. 2007. A new layered perovskite, KSrNb2O6F, by powder neutron diffraction. Acta Crystallogr. C 63:i63–65
    [Google Scholar]
  140. 140. 
    Subramanian M, Aravamudan G, Subba Rao G 1983. Oxide pyrochlores—a review. Prog. Solid State Chem. 15:55–143
    [Google Scholar]
  141. 141. 
    Yoo CY, Kim SJ. 2008. Dimensional modification of oxyfluoride lattice: preparation and structure of A′ANb2O6F (A′ = Na, K, A = Ca, Sr). J. Phys. Chem. Solids 69:1475–78
    [Google Scholar]
  142. 142. 
    Hector AL, Knee CS, MacDonald AI, Price DJ, Weller MT. 2005. An unusual magnetic structure in Sr2FeO3F and magnetic structures of K2NiF4-type iron(III) oxides and oxide halides, including the cobalt substituted series Sr2Fe1–xCoxO3Cl. J. Mater. Chem. 15:3093–103
    [Google Scholar]
  143. 143. 
    Knee CS, Zhukov AA, Weller MT. 2002. Crystal structures and magnetic properties of the manganese oxide chlorides Sr2MnO3Cl and Sr4Mn3O8–yCl2. Chem. Mater. 14:4249–55
    [Google Scholar]
  144. 144. 
    Ronning F, Kim C, Feng DL, Marshall DS, Loeser AG et al. 1998. Photoemission evidence for a remnant Fermi surface and a d-wave-like dispersion in insulating Ca2CuO2Cl2. Science 282:2067–72
    [Google Scholar]
  145. 145. 
    Kohsaka Y, Azuma M, Yamada I, Sasagawa T, Hanaguri T et al. 2002. Growth of Na-doped Ca2CuO2Cl2 single crystals under high pressures of several GPa. J. Am. Chem. Soc. 124:12275–78
    [Google Scholar]
  146. 146. 
    Muller-Buschbaum H, Boje J. 1991. Zur Kenntnis eines Halogenooxo-Cobaltats(III): Sr8Co6O15Cl4. Z. Anorg. Allg. Chem. 592:73–78
    [Google Scholar]
  147. 147. 
    Vaknin D, Miller LL, Zarestky JL. 1997. Stacking of the square-lattice antiferromagnetic planes in Ca2CuO2Cl2. Phys. Rev. B 56:8351–59
    [Google Scholar]
  148. 148. 
    Knee CS, Weller MT. 2002. Synthesis and structure of cobalt(II) oxide halides—Sr2CoO2X2 (X = Cl, Br). J. Solid State Chem. 168:1–4
    [Google Scholar]
  149. 149. 
    Knee CS, Weller MT. 2003. Synthesis and structure of new layered copper oxide iodides, Sr2CuO2I2 and Sr2Cu3O4I2. J. Mater. Chem. 13:1507–9
    [Google Scholar]
  150. 150. 
    Lafond A, Leynaud O, André G, Bourée F, Meerschaut A. 2002. Magnetic properties of Ln2Ti2S2O5 compounds and magnetic structure of Tb2Ti2S2O5. J. Alloys Compd. 338:185–93
    [Google Scholar]
  151. 151. 
    Yashima M, Ogisu K, Domen K. 2008. Structure and electron density of oxysulfide Sm2Ti2S2O4.9, a visible-light-responsive photocatalyst. Acta Crystallogr. B 64:291–98
    [Google Scholar]
  152. 152. 
    Goga M, Seshadri R, Ksenofontov V, Gütlich P, Tremel W. 1999. Ln2Ti2S2O5 (Ln = Nd, Pr, Sm): a novel series of defective Ruddlesden–Popper phases. Chem. Commun. 2006:979–80
    [Google Scholar]
  153. 153. 
    Rutt OJ, Hill TL, Gál ZA, Hayward MA, Clarke SJ. 2003. The cation-deficient Ruddlesden-Popper oxysulfide Y2Ti2O5S2 as a layered sulfide: topotactic potassium intercalation to form KY2Ti2O5S2. Inorg. Chem. 42:7906–11
    [Google Scholar]
  154. 154. 
    Wang Q, Nakabayashi M, Hisatomi T, Sun S, Akiyama S et al. 2019. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater. 18:827–32
    [Google Scholar]
  155. 155. 
    Fuertes A. 2015. Metal oxynitrides as emerging materials with photocatalytic and electronic properties. Mater. Horiz. 2:453–61
    [Google Scholar]
  156. 156. 
    Wu Y, Lazic P, Hautier G, Persson K, Ceder G. 2013. First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy Environ. Sci. 6:157–68
    [Google Scholar]
  157. 157. 
    Fuertes A. 2012. Chemistry and applications of oxynitride perovskites. J. Mater. Chem. 22:3293–99
    [Google Scholar]
  158. 158. 
    Oshima T, Ichibha T, Qin KS, Muraoka K, Vequizo JJM et al. 2018. Undoped layered perovskite oxynitride Li2LaTa2O6N for photocatalytic CO2 reduction with visible light. Angew. Chem. 130:8286–90
    [Google Scholar]
  159. 159. 
    Diot N, Marchand R, Haines J, Léger J, Macaudière P, Hull S. 1999. Crystal structure determination of the oxynitride Sr2TaO3N. J. Solid State Chem. 146:390–93
    [Google Scholar]
  160. 160. 
    Tobías G, Oró-Solé J, Beltrán-Porter D, Fuertes A. 2001. New family of Ruddlesden-Popper strontium niobium oxynitrides: (SrO)(SrNbO2–xN)n (n = 1, 2). Inorg. Chem. 40:6867–69
    [Google Scholar]
  161. 161. 
    Bouri M, Aschauer U. 2018. Bulk and surface properties of the Ruddlesden–Popper oxynitride Sr2TaO3N. Phys. Chem. Chem. Phys. 20:2771–76
    [Google Scholar]
  162. 162. 
    Wei S, Xu X. 2018. Boosting photocatalytic water oxidation reactions over strontium tantalum oxynitride by structural laminations. Appl. Catal. B 228:10–18
    [Google Scholar]
  163. 163. 
    Tobías G, Beltrán-Porter D, Lebedev OI, Van Tendeloo G, Rodríguez-Carvajal J, Fuertes A. 2004. Anion ordering and defect structure in Ruddlesden-Popper strontium niobium oxynitrides. Inorg. Chem. 43:8010–17
    [Google Scholar]
  164. 164. 
    Kim YI, Woodward PM, Baba-Kishi KZ, Tai CW 2004. Characterization of the structural, optical, and dielectric properties of oxynitride perovskites AMO2N (A = Ba, Sr, Ca; M = Ta, Nb). Chem. Mater. 16:1267–76
    [Google Scholar]
  165. 165. 
    Cordes N, Nentwig M, Eisenburger L, Oeckler O, Schnick W. 2019. Ammonothermal synthesis of the mixed-valence nitrogen-rich europium tantalum Ruddlesden-Popper phase EuIIEu2IIITa2N4O3. Eur. J. Inorg. Chem. 2019:2304–11
    [Google Scholar]
  166. 166. 
    Marchand R. 1982. Structure cristalline de Nd2AlO3N. Détermination de l'ordre oxygène-azote par diffraction de neutrons. Rev. Chim. Miner. 19:684–89
    [Google Scholar]
  167. 167. 
    Pelloquin D, Hadermann J, Giot M, Caignaert V, Michel C et al. 2004. Novel, oxygen-deficient n = 3 RP-member Sr3NdFe3O9–δ and its topotactic derivatives. Chem. Mater. 16:1715–24
    [Google Scholar]
  168. 168. 
    Raveau B, Hervieu M, Pelloquin D, Michel C, Retoux R. 2005. A large family of iron Ruddlesden-Popper relatives: from oxides to oxycarbonates and oxyhydroxides. Z. Anorg. Allg. Chem. 631:1831–39
    [Google Scholar]
  169. 169. 
    Jantsky L, Okamoto H, Demont A, Fjellvåg H. 2012. Tuning of water and hydroxide content of intercalated Ruddlesden-Popper-type oxides in the PrSr3Co1.5Fe1.5O10–δ system. Inorg. Chem. 51:9181–91
    [Google Scholar]
  170. 170. 
    Pelloquin D, Barrier N, Flahaut D, Caignaert V, Maignan A. 2005. Two new hydrated oxyhydroxides Sr3Co1.7Ti0.3O5 (OH)2xH2O and Sr4Co1.6Ti1.4O8 (OH)2xH2O derived from the RP n = 2 and 3 members: structural and magnetic behavior versus temperature. Chem. Mater. 17:773–80
    [Google Scholar]
  171. 171. 
    Motohashi T, Raveau B, Caignaert V, Pralong V, Hervieu M et al. 2005. Spin glass to weak ferromagnetic transformation in a new layered cobaltite: consequence of topotactic reactions with water at room temperature. Chem. Mater. 17:6256–62
    [Google Scholar]
  172. 172. 
    Bang J, Matsuishi S, Hiraka H, Fujisaki F, Otomo T et al. 2014. Hydrogen ordering and new polymorph of layered perovskite oxyhydrides: Sr2VO4–xHx. J. Am. Chem. Soc. 136:7221–24
    [Google Scholar]
  173. 173. 
    Hayward MA. 2002. The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7. Science 295:1882–84
    [Google Scholar]
  174. 174. 
    Hernandez OJ, Geneste G, Yajima T, Kobayashi Y, Okura M et al. 2018. Site selectivity of hydride in early-transition-metal Ruddlesden–Popper oxyhydrides. Inorg. Chem. 57:11058–67
    [Google Scholar]
  175. 175. 
    Schwarz H. 1991. Neuartige Hydrid-Oxide der Seltenen Erden: Ln2LiHO3mit Ln Diss., Inst Anorg. Chem:.
    [Google Scholar]
  176. 176. 
    Kobayashi G, Hinuma Y, Matsuoka S, Watanabe A, Iqbal M et al. 2016. Pure H-conduction in oxyhydrides. Science 351:1314–17
    [Google Scholar]
  177. 177. 
    Minervini L, Grimes RW, Kilner JA, Sickafus KE. 2000. Oxygen migration in La2NiO4+δ. J. Mater. Chem. 10:2349–54
    [Google Scholar]
  178. 178. 
    Numata Y, Sanehira Y, Ishikawa R, Shirai H, Miyasaka T. 2018. Thiocyanate containing two-dimensional cesium lead iodide perovskite, Cs2PbI2(SCN)2: characterization, photovoltaic application, and degradation mechanism. ACS Appl. Mater. Interfaces 10:42363–71
    [Google Scholar]
  179. 179. 
    Chiang YH, Li MH, Cheng HM, Shen PS, Chen P. 2017. Mixed cation thiocyanate-based pseudohalide perovskite solar cells with high efficiency and stability. ACS Appl. Mater. Interfaces 9:2403–9
    [Google Scholar]
  180. 180. 
    Labram J, Venkatesan N, Takacs C, Evans H, Perry E et al. 2017. Charge transport in a two-dimensional hybrid metal halide thiocyanate compound. J. Mater. Chem. C 5:5930–38
    [Google Scholar]
  181. 181. 
    Headspith DA, Sullivan E, Greaves C, Francesconi MG. 2009. Synthesis and characterisation of the quaternary nitride-fluoride Ce2MnN3F2–δ. Dalton Trans. 2009:9273–79
    [Google Scholar]
  182. 182. 
    Nazarenko O, Kotyrba MR, Wörle M, Cuervo-Reyes E, Yakunin S, Kovalenko MV. 2017. Luminescent and photoconductive layered lead halide perovskite compounds comprising mixtures of cesium and guanidinium cations. Inorg. Chem. 56:11552–64
    [Google Scholar]
  183. 183. 
    Soe CMM, Stoumpos CC, Kepenekian M, Traoré B, Tsai H et al. 2017. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139:16297–309
    [Google Scholar]
  184. 184. 
    McNulty JA, Lightfoot P. 2020. Unprecedented tin iodide perovskite-like structures featuring ordering of organic moieties. Chem. Commun. 56:4543–46
    [Google Scholar]
  185. 185. 
    Guo YY, McNulty JA, Mica NA, Samuel IDW, Slawin AMZ et al. 2019. Structure-directing effects in (110)-layered hybrid perovskites containing two distinct organic moieties. Chem. Commun. 55:9935–38
    [Google Scholar]
  186. 186. 
    Salah MBH, Mercier N, Allain M, Zouari N, Giovanella U, Botta C. 2019. Mechanochromic and electroluminescence properties of a layered hybrid perovskite belonging to the <110> series. Eur. J. Inorg. Chem. 2019:4527–31
    [Google Scholar]
  187. 187. 
    Guo YY, Yang LJ, Biberger S, McNulty JA, Li T et al. 2020. Structural diversity in layered hybrid perovskites, A2PbBr4 or AA′PbBr4, templated by small disc-shaped amines. Inorg. Chem. 59:12858–66
    [Google Scholar]
  188. 188. 
    Nazarenko O, Kotyrba MR, Yakunin S, Aebli M, Rainò G et al. 2018. Guanidinium-formamidinium lead iodide: a layered perovskite-related compound with red luminescence at room temperature. J. Am. Chem. Soc. 140:3850–53
    [Google Scholar]
  189. 189. 
    Daub M, Hillebrecht H. 2018. First representatives of (210)-oriented perovskite variants—synthesis, crystal structures and properties of the new 2D hybrid perovskites A[HC(NH2)2]PbI4; A = [C(NH2)3], [HSC(NH2)2]. Z. Kristallogr. Cryst. Mater. 233:555–64
    [Google Scholar]
  190. 190. 
    Mao L, Stoumpos CC, Kanatzidis MG. 2019. Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141:1171–90
    [Google Scholar]
  191. 191. 
    Mercier N. 2019. Hybrid halide perovskites: discussions on terminology and materials. Angew. Chem. Int. Ed 58:17912–17
    [Google Scholar]
  192. 192. 
    Smith MD, Connor BA, Karunadasa HI. 2019. Tuning the luminescence of layered halide perovskites. Chem. Rev. 119:3104–39
    [Google Scholar]
  193. 193. 
    Fu Y, Hautzinger MP, Luo Z, Wang F, Pan D et al. 2019. Incorporating large A cations into lead iodide perovskite cages: relaxed Goldschmidt tolerance factor and impact on exciton–phonon interaction. ACS Cent. Sci. 5:1377–86
    [Google Scholar]
  194. 194. 
    Hautzinger MP, Pan D, Pigg AK, Fu Y, Morrow DJ et al. 2020. Band edge tuning of two-dimensional Ruddlesden-Popper perovskites by A cation size revealed through nanoplates. ACS Energy Lett. 5:1430–37
    [Google Scholar]
  195. 195. 
    Kieslich G, Sun S, Cheetham AK. 2015. An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6:3430–33
    [Google Scholar]
  196. 196. 
    Fu Y, Jiang X, Li X, Traore B, Spanopoulos I et al. 2020. Cation engineering in two-dimensional Ruddlesden-Popper lead iodide perovskites with mixed large A-site cations in the cages. J. Am. Chem. Soc. 142:4008–21
    [Google Scholar]
  197. 197. 
    Liang M, Lin W, Lan Z, Meng J, Zhao Q et al. 2020. Electronic structure and trap states of two-dimensional Ruddlesden-Popper perovskites with the relaxed Goldschmidt tolerance factor. ACS Appl. Electron. Mater. 2:1402–12
    [Google Scholar]
  198. 198. 
    Li X, Fu Y, Pedesseau L, Guo P, Cuthriell S et al. 2020. Negative pressure engineering with large cage cations in 2D halide perovskites causes lattice softening. J. Am. Chem. Soc. 142:11486–96
    [Google Scholar]
  199. 199. 
    Jana MK, Janke SM, Dirkes DJ, Dovletgeldi S, Liu C et al. 2019. Direct-bandgap 2D silver–bismuth iodide double perovskite: the structure-directing influence of an oligothiophene spacer cation. J. Am. Chem. Soc. 141:7955–64
    [Google Scholar]
  200. 200. 
    Bi LY, Hu YQ, Li MQ, Hu TL, Zhang HL et al. 2019. Two-dimensional lead-free iodide-based hybrid double perovskites: crystal growth, thin-film preparation and photocurrent responses. J. Mater. Chem. A 7:19662–67
    [Google Scholar]
  201. 201. 
    Bi LY, Hu TL, Li MQ, Ling BK, Lassoued MS et al. 2020. Template effects in Cu(I)–Bi(III) iodide double perovskites: a study of crystal structure, film orientation, band gap and photocurrent response. J. Mater. Chem. A 8:7288–96
    [Google Scholar]
  202. 202. 
    Mao L, Teicher SML, Stoumpos CC, Kennard RM, DeCrescent RA et al. 2019. Chemical and structural diversity of hybrid layered double perovskite halides. J. Am. Chem. Soc. 141:19099–109
    [Google Scholar]
  203. 203. 
    McClure ET, McCormick AP, Woodward PM. 2020. Four lead-free layered double perovskites with the n = 1 Ruddlesden-Popper structure. Inorg. Chem. 59:6010–17
    [Google Scholar]
  204. 204. 
    Guo W, Liu X, Han S, Liu Y, Xu Z et al. 2020. Room-temperature ferroelectric material composed of a two-dimensional metal halide double perovskite for X-ray detection. Angew. Chem. Int. Ed. 59:13879–84
    [Google Scholar]
  205. 205. 
    Connor BA, Biega RI, Leppert L, Karunadasa HI. 2020. Dimensional reduction of the small-bandgap double perovskite Cs2AgTlBr6. Chem. Sci. 11:7708–15
    [Google Scholar]
  206. 206. 
    Xu Z, Liu X, Li Y, Liu X, Yang T et al. 2019. Exploring lead-free hybrid double perovskite crystals of (BA)2CsAgBiBr7 with large mobility-lifetime product toward X-ray detection. Angew. Chem. 131:15904–8
    [Google Scholar]
  207. 207. 
    Zhang W, Hong M, Luo J. 2020. Halide double perovskite ferroelectrics. Angew. Chem. Int. Ed. 59:9305–8
    [Google Scholar]
  208. 208. 
    Castro-Castro LM, Guloy AM. 2003. Organic-based layered perovskites of mixed-valent gold(I)/gold(III) iodides. Angew. Chem. Int. Ed. 42:2771–74
    [Google Scholar]
  209. 209. 
    Yao Y, Kou B, Peng Y, Wu Z, Li L et al. 2020. (C3H9NI)4AgBiI8: a direct-bandgap layered double perovskite based on a short-chain spacer cation for light absorption. Chem. Commun. 56:3206–9
    [Google Scholar]
  210. 210. 
    Lassoued MS, Bi LY, Wu Z, Zhou G, Zheng YZ. 2020. Piperidine-induced switching of the direct band gaps of Ag(I)/Bi(III) bimetallic iodide double perovskites. J. Mater. Chem. C 8:5349–54
    [Google Scholar]
  211. 211. 
    Sheng R, Ho-Baillie A, Huang S, Chen S, Wen X et al. 2015. Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J. Phys. Chem. C 119:3545–49
    [Google Scholar]
  212. 212. 
    Evans HA, Schueller EC, Smock SR, Wu G, Seshadri R, Wudl F. 2017. Perovskite-related hybrid noble metal iodides: formamidinium platinum iodide [(FA)2PtIVI6] and mixed-valence methylammonium gold iodide [(MA)2AuIAuIIII6]. Inorg. Chim. Acta 468:280–84
    [Google Scholar]
  213. 213. 
    Wei F, Deng Z, Sun S, Zhang F, Evans DM et al. 2017. Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6. Chem. Mater. 29:1089–94
    [Google Scholar]
  214. 214. 
    Tran TT, Panella JR, Chamorro JR, Morey JR, McQueen TM. 2017. Designing indirect–direct bandgap transitions in double perovskites. Mater. Horiz. 4:688–93
    [Google Scholar]
  215. 215. 
    Evans HA, Wu Y, Seshadri R, Cheetham AK. 2020. Perovskite-related ReO3-type structures. Nat. Rev. Mater. 5:196–213
    [Google Scholar]
  216. 216. 
    Yu Y, Shang R, Chen S, Wang BW, Wang ZM, Gao S. 2017. A series of bimetallic ammonium AlNa formates. Chem. Eur. J. 23:9857–71
    [Google Scholar]
  217. 217. 
    Kieslich G, Forse AC, Sun S, Butler KT, Kumagai S et al. 2016. Role of amine–cavity interactions in determining the structure and mechanical properties of the ferroelectric hybrid perovskite [NH3NH2]Zn(HCOO)3. Chem. Mater. 28:312–17
    [Google Scholar]
  218. 218. 
    Wu Y, Shaker S, Brivio F, Murugavel R, Bristowe PD, Cheetham AK. 2017. [Am]Mn(H2POO)3: a new family of hybrid perovskites based on the hypophosphite ligand. J. Am. Chem. Soc. 139:16999–7002
    [Google Scholar]
  219. 219. 
    Evans HA, Deng Z, Collings IE, Wu Y, Andrews JL et al. 2019. Polymorphism in M(H2PO2)3 (M = V, Al, Ga) compounds with the perovskite-related ReO3 structure. Chem. Commun. 55:2964–67
    [Google Scholar]
  220. 220. 
    Chen S, Shang R, Wang BW, Wang ZM, Gao S. 2018. Electric and magnetic transitions with 90° turning of polarizations in a layered perovskite of [NH4Cl]2 [Ni(HCOO)2 (NH3)2]. APL Mater. 6:114205
    [Google Scholar]
  221. 221. 
    Shi C, Ye L, Gong ZX, Ma JJ, Wang QW et al. 2020. Two-dimensional organic–inorganic hybrid rare-earth double perovskite ferroelectrics. J. Am. Chem. Soc. 142:545–51
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-092320-102133
Loading
/content/journals/10.1146/annurev-matsci-092320-102133
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error