1932

Abstract

Abstract

Noble metals (Ru, Os, Rh, Ir, Pd, Pt, Ag, and Au) are known for their extraordinary oxidant-resistant behavior, good electrical and thermal conductivity, high work function, and brilliant luster. All occur in close-packed crystal structures: Ru and Os in hexagonal close-packed (hcp) and the rest in face-centered cubic (fcc) structures, both possessing high-symmetry structures and, therefore, a high degree of stabilization. Numerous studies in the literature have attempted to stabilize these metals away from their conventional crystal structures with the aim of realizing new properties. While obtaining conventional fcc metals in hcp structure or vice versa has been the subject of most studies, there are also examples of fcc metals crystallizing in lower-symmetry structures such as monoclinic. The nonnative crystal structures are generally realized during the crystallite growth itself, with a few exceptions in which a posttreatment was required for lattice transformation. In most cases, the new crystal structures pertain to the nanometer-length scale in the form of nanoparticles, nanoplates, nanoribbons, and nanowires, but there are good examples from microcrystallites as well. In this article, we review this active area of research, focusing on ambient stable crystal systems with some account of their interesting properties as reported in recent literature.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-092519-103517
2020-07-01
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-092519-103517.html?itemId=/content/journals/10.1146/annurev-matsci-092519-103517&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hammer B, Nørskov JK. 1995. Why gold is the noblest of all the metals. Nature 376:238–40
    [Google Scholar]
  2. 2. 
    Wormeester H, Hüger E, Bauer E 1996. hcp and bcc Cu and Pd films. Phys. Rev. Lett. 77:81540–43
    [Google Scholar]
  3. 3. 
    Hüger E, Osuch K. 2003. Ferromagnetism in hexagonal close-packed Pd. Europhys. Lett. 63:190–96
    [Google Scholar]
  4. 4. 
    Hildner ML, Johnson KE, Wilson RJ 1997. The role of stress in the heteroepitaxy of Au on W(110). Surf. Sci. 388:1–3110–20
    [Google Scholar]
  5. 5. 
    Deisl C, Bertel E, Bürgener M, Meister G, Goldmann A 2005. Epitaxial growth of Ag on W(110). Phys. Rev. B. 72:15155433
    [Google Scholar]
  6. 6. 
    Radeke MR, Carter EA. 1995. Interfacial strain-enhanced reconstruction of Au multilayer films on Rh(100). Phys. Rev. B. 51:74388–401
    [Google Scholar]
  7. 7. 
    Chen Q, Cheng T, Fu H, Zhu Y 2019. Crystal phase regulation in noble metal nanocrystals. Chin. J. Catal. 40:71035–56
    [Google Scholar]
  8. 8. 
    Cheng H, Yang N, Lu Q, Zhang Z, Zhang H 2018. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 30:261707189
    [Google Scholar]
  9. 9. 
    Benaissa H, Ferhat M. 2017. Polytypism-induced stabilization of hexagonal 2H, 4H and 6H phases of gold. Superlattices Microstruct 109:170–75
    [Google Scholar]
  10. 10. 
    Wiley B, Sun Y, Chen J, Cang H, Li Z-Y et al. 2005. Shape-controlled synthesis of silver and gold nanostructures. MRS Bull 30:356–61
    [Google Scholar]
  11. 11. 
    Sun Y, Xia Y. 2002. Shape-controlled synthesis of gold and silver nanoparticles. Science 298:56012176–79
    [Google Scholar]
  12. 12. 
    Sun Y, Mayers B, Herricks T, Xia Y 2003. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:7955–60
    [Google Scholar]
  13. 13. 
    Sun Y, Gates B, Mayers B, Xia Y 2002. Crystalline silver nanowires by soft solution processing. Nano Lett 2:2165–68
    [Google Scholar]
  14. 14. 
    Harfenist SA, Wang ZL, Whetten RL, Vezmar I, Alvarez MM 1997. Three-dimensional hexagonal close-packed superlattice of passivated Ag nanocrystals. Adv. Mater. 9:10817–22
    [Google Scholar]
  15. 15. 
    Howie A, Marks LD. 1984. Elastic strains and the energy balance for multiply twinned particles. Philos. Mag. A. 49:195–109
    [Google Scholar]
  16. 16. 
    Tsuji M, Ogino M, Matsuo R, Kumagae H, Hikino S et al. 2010. Stepwise growth of decahedral and icosahedral silver nanocrystals in DMF. Cryst. Growth Des. 10:1296–301
    [Google Scholar]
  17. 17. 
    Johnson CL, Snoeck E, Ezcurdia M, Rodríguez-González B, Pastoriza-Santos I et al. 2008. Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nat. Mater. 7:2120–24
    [Google Scholar]
  18. 18. 
    Sun Y, Ren Y, Liu Y, Wen J, Okasinski JS, Miller DJ 2012. Ambient-stable tetragonal phase in silver nanostructures. Nat. Commun. 3:971
    [Google Scholar]
  19. 19. 
    Mettela G, Bhogra M, Waghmare UV, Kulkarni GU 2015. Ambient stable tetragonal and orthorhombic phases in penta-twinned bipyramidal Au microcrystals. J. Am. Chem. Soc. 137:83024–30
    [Google Scholar]
  20. 20. 
    Xia Y, Xiong Y, Lim B, Skrabalak SE 2009. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew. Chem. Int. Ed. 48:160–103
    [Google Scholar]
  21. 21. 
    Xia Y, Xia X, Peng H-C 2015. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137:257947–66
    [Google Scholar]
  22. 22. 
    Chakraborty I, Carvalho D, Shirodkar SN, Kumar S, Bhattacharyya S et al. 2011. Novel hexagonal polytypes of silver: growth, characterization and first-principles calculations. J. Phys. Condens. Matter 23:325401
    [Google Scholar]
  23. 23. 
    Mettela G, Boya R, Singh D, Kumar GVP, Kulkarni GU 2013. Highly tapered pentagonal bipyramidal Au microcrystals with high index faceted corrugation: synthesis and optical properties. Sci. Rep. 3:1793
    [Google Scholar]
  24. 24. 
    Wang C, Hu Y, Lieber CM, Sun S 2008. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 130:288902–3
    [Google Scholar]
  25. 25. 
    Lu X, Yavuz MS, Tuan H-Y, Korgel BA, Xia Y 2008. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 130:288900–1
    [Google Scholar]
  26. 26. 
    Huo Z, Tsung C-K, Huang W, Zhang X, Yang P 2008. Sub-two nanometer single crystal Au nanowires. Nano Lett 8:72041–44
    [Google Scholar]
  27. 27. 
    Huang X, Li S, Huang Y, Wu S, Zhou X et al. 2011. Synthesis of hexagonal close-packed gold nano-structures. Nat. Commun. 2:292
    [Google Scholar]
  28. 28. 
    Gu J, Guo Y, Jiang Y-Y, Zhu W, Xu Y-S et al. 2015. Robust phase control through hetero-seeded epitaxial growth for face-centered cubic Pt@Ru nanotetrahedrons with superior hydrogen electro-oxidation activity. J. Phys. Chem. C. 119:3117697–706
    [Google Scholar]
  29. 29. 
    Fan Z, Chen Y, Zhu Y, Wang J, Li B et al. 2017. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons. Chem. Sci. 8:1795–99
    [Google Scholar]
  30. 30. 
    Novgorodova MI, Gorshkov AI, Mokhov AV 1979. Native silver and its new structural modifications. Int. Geol. Rev. 23:4552–63
    [Google Scholar]
  31. 31. 
    Taneja P, Banerjee R, Ayyub P, Dey GK 2001. Observation of a hexagonal (4H) phase in nanocrystalline silver. Phys. Rev. B. 64:3033405
    [Google Scholar]
  32. 32. 
    Liu X, Luo J, Zhu J 2006. Size effect on the crystal structure of silver nanowires. Nano Lett 6:3408–12
    [Google Scholar]
  33. 33. 
    Liang C, Terabe K, Hasegawa T, Aono M 2006. Formation of metastable silver nanowires of hexagonal structure and their structural transformation under electron beam irradiation. Jpn. J. Appl. Phys. 45:76046–48
    [Google Scholar]
  34. 34. 
    Zhou Y, Fei GT, Cui P, Wu B, Wang B, Zhang LD 2008. The fabrication and thermal expansion properties of 4H-Ag nanowire arrays in porous anodic alumina templates. Nanotechnology 19:285711
    [Google Scholar]
  35. 35. 
    Liu X, Zhu J, Jin C, Peng L-M, Tang D, Cheng H 2008. In situ electrical measurements of polytypic silver nanowires. Nanotechnology 19:8085711
    [Google Scholar]
  36. 36. 
    Singh A, Ghosh A. 2008. Stabilizing high-energy crystal structure in silver nanowires with underpotential electrochemistry. J. Phys. Chem. C. 112:103460–63
    [Google Scholar]
  37. 37. 
    Singh A, Sai TP, Ghosh A 2008. Electrochemical fabrication of ultralow noise metallic nanowires with hcp crystalline lattice. Appl. Phys. Lett. 93:10102107
    [Google Scholar]
  38. 38. 
    Liu T, Li D, Yang D, Jiang M 2011. Preparation of echinus-like SiO2@Ag structures with the aid of the HCP phase. Chem. Commun. 47:185169–71
    [Google Scholar]
  39. 39. 
    Liu T, Li D, Yang D, Jiang M 2011. Fabrication of flower-like silver structures through anisotropic growth. Langmuir 27:106211–17
    [Google Scholar]
  40. 40. 
    Zhelev DV, Zheleva TS. 2014. Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis. J. Appl. Phys. 115:4044309
    [Google Scholar]
  41. 41. 
    Lee M-H, Oh S-G, Suh K-D, Kim D-G, Sohn D 2002. Preparation of silver nanoparticles in hexagonal phase formed by nonionic Triton X-100 surfactant. Colloids Surf. A Physicochem. Eng. Asp. 210:149–60
    [Google Scholar]
  42. 42. 
    Murzakaev AM. 2017. Size dependence of the phase composition of silver nanoparticles formed by the electric explosion of a wire. Phys. Met. Metallogr. 118:5459–65
    [Google Scholar]
  43. 43. 
    Shen XS, Wang GZ, Hong X, Xie X, Zhu W, Li DP 2009. Anisotropic growth of one-dimensional silver rod-needle and plate-belt heteronanostructures induced by twins and hcp phase. J. Am. Chem. Soc. 131:3110812–13
    [Google Scholar]
  44. 44. 
    Huang T-K, Cheng T-H, Yen M-Y, Hsiao W-H, Wang L-S et al. 2007. Growth of Cu nanobelt and Ag belt-like materials by surfactant-assisted galvanic reductions. Langmuir 23:105722–26
    [Google Scholar]
  45. 45. 
    Chakraborty I, Shirodkar SN, Gohil S, Waghmare UV, Ayyub P 2014. A stable, quasi-2D modification of silver: optical, electronic, vibrational and mechanical properties, and first principles calculations. J. Phys. Condens. Matter 26:2025402
    [Google Scholar]
  46. 46. 
    Sharma B, Chalke B, Kulkarni N, Parmar J, Gohil S, Ayyub P 2019. Hexagonal → cubic transition in Ag: prototype for a general mechanism for irreversible solid–solid structural transformations. J. Phys. Chem. C. 123:3723177–85
    [Google Scholar]
  47. 47. 
    Chakraborty I, Shirodkar SN, Gohil S, Waghmare UV, Ayyub P 2014. The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver. J. Phys. Condens. Matter 26:11115405
    [Google Scholar]
  48. 48. 
    Wang B, Fei GT, Zhou Y, Wu B, Zhu X, Zhang L 2008. Controlled growth and phase transition of silver nanowires with dense lengthwise twins and stacking faults. Cryst. Growth Des. 8:83073–76
    [Google Scholar]
  49. 49. 
    Fan Z, Bosman M, Huang X, Huang D, Yu Y et al. 2015. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 6:7684
    [Google Scholar]
  50. 50. 
    Li Q, Niu W, Liu X, Chen Y, Wu X et al. 2018. Pressure-induced phase engineering of gold nanostructures. J. Am. Chem. Soc. 140:4615783–90
    [Google Scholar]
  51. 51. 
    Wang Q, Zhao ZL, Cai C, Li H, Gu M 2019. Ultra-stable 4H-gold nanowires up to 800°C in a vacuum. J. Mater. Chem. A 7:23812–17
    [Google Scholar]
  52. 52. 
    Lu Q, Wang A-L, Gong Y, Hao W, Cheng H et al. 2018. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nat. Chem. 10:4456–61
    [Google Scholar]
  53. 53. 
    Chen Y, Fan Z, Luo Z, Liu X, Lai Z et al. 2017. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core-shell nanorods for electrocatalytic ethanol oxidation. Adv. Mater. 29:361701331
    [Google Scholar]
  54. 54. 
    Niu W, Liu J, Huang J, Chen B, He Q et al. 2019. Unusual 4H-phase twinned noble metal nanokites. Nat. Commun. 10:2881
    [Google Scholar]
  55. 55. 
    Chushak Y, Bartell LS. 2001. Molecular dynamics simulations of the freezing of gold nanoparticles. Eur. Phys. J. D. 16:43–46
    [Google Scholar]
  56. 56. 
    Kondo Y, Takayanagi K. 1997. Gold nanobridge stabilized by surface structure. Phys. Rev. Lett. 79:183455–58
    [Google Scholar]
  57. 57. 
    Peng S, Meng AC, Braun MR, Marshall AF, McIntyre PC 2019. Plasmons and inter-band transitions of hexagonal close packed gold nanoparticles. Appl. Phys. Lett. 115:5051107
    [Google Scholar]
  58. 58. 
    Marshall AF, Thombare SV, McIntyre PC 2015. Crystallization pathway for metastable hexagonal close-packed gold in germanium nanowire catalysts. Cryst. Growth Des. 15:83734–39
    [Google Scholar]
  59. 59. 
    Marshall AF, Goldthorpe IA, Adhikari H, Koto M, Wang Y-C et al. 2010. Hexagonal close-packed structure of Au nanocatalysts solidified after Ge nanowire vapor-liquid-solid growth. Nano Lett 10:93302–6
    [Google Scholar]
  60. 60. 
    Marshall AF, Thombare S, McIntyre PC 2013. In situ TEM studies of metastable hexagonal close-packed Au nanocatalysts at the tips of Ge nanowires. Microsc. Microanal. 19:Suppl. 21462–63
    [Google Scholar]
  61. 61. 
    Jany BR, Gauquelin N, Willhammar T, Nikiel M, van den Bos KHW et al. 2017. Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface. Sci. Rep. 7:42420
    [Google Scholar]
  62. 62. 
    Huang X, Li H, Li S, Wu S, Boey F et al. 2011. Synthesis of gold square-like plates from ultrathin gold square sheets: the evolution of structure phase and shape. Angew. Chem. Int. Ed. 50:5112245–48
    [Google Scholar]
  63. 63. 
    Huang X, Li S, Wu S, Huang Y, Boey F et al. 2012. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. Adv. Mater. 24:7979–83
    [Google Scholar]
  64. 64. 
    Huo D, Cao Z, Li J, Xie M, Tao J, Xia Y 2019. Seed-mediated growth of Au nanospheres into hexagonal stars and the emergence of a hexagonal close-packed phase. Nano Lett 19:53115–21
    [Google Scholar]
  65. 65. 
    Duan H, Yan N, Yu R, Chang C-R, Zhou G et al. 2014. Ultrathin rhodium nanosheets. Nat. Commun. 5:3093
    [Google Scholar]
  66. 66. 
    Huang JL, Li Z, Duan HH, Cheng ZY, Li YD et al. 2017. Formation of hexagonal-close packed (HCP) rhodium as a size effect. J. Am. Chem. Soc. 139:2575–78
    [Google Scholar]
  67. 67. 
    Chien C-H, Blaisten-Barojas E, Pederson MR 2000. Many-body potential and structure for rhodium clusters. J. Chem. Phys. 112:52301–6
    [Google Scholar]
  68. 68. 
    Lu Q, Wang A-L, Cheng H, Gong Y, Yun Q et al. 2018. Synthesis of hierarchical 4H/fcc Ru nanotubes for highly efficient hydrogen evolution in alkaline media. Small 14:301801090
    [Google Scholar]
  69. 69. 
    Kusada K, Kobayashi H, Yamamoto T, Matsumura S, Sumi N et al. 2013. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method. J. Am. Chem. Soc. 135:155493–96
    [Google Scholar]
  70. 70. 
    Jin H, Lee KW, Khi NT, An H, Park J et al. 2015. Rational synthesis of heterostructured M/Pt (M = Ru or Rh) octahedral nanoboxes and octapods and their structure-dependent electrochemical activity toward the oxygen evolution reaction. Small 11:354462–68
    [Google Scholar]
  71. 71. 
    Ye H, Wang Q, Catalano M, Lu N, Vermeylen J et al. 2016. Ru nanoframes with an fcc structure and enhanced catalytic properties. Nano Lett 16:42812–17
    [Google Scholar]
  72. 72. 
    Zhao M, Hood ZD, Vara M, Gilroy KD, Chi M, Xia Y 2019. Ruthenium nanoframes in the face-centered cubic phase: facile synthesis and their enhanced catalytic performance. ACS Nano 13:67241–51
    [Google Scholar]
  73. 73. 
    Yao Y, He DS, Lin Y, Feng X, Wang X et al. 2016. Modulating fcc and hcp ruthenium on the surface of palladium–copper alloy through tunable lattice mismatch. Angew. Chem. Int. Ed. 55:185501–5
    [Google Scholar]
  74. 74. 
    Zhao M, Elnabawy AO, Vara M, Xu L, Hood ZD et al. 2017. Facile synthesis of Ru-based octahedral nanocages with ultrathin walls in a face-centered cubic structure. Chem. Mater. 29:219227–37
    [Google Scholar]
  75. 75. 
    Zhao M, Chen Z, Lyu Z, Hood ZD, Xie M et al. 2019. Ru octahedral nanocrystals with a face-centered cubic structure, {111} facets, thermal stability up to 400°C, and enhanced catalytic activity. J. Am. Chem. Soc. 141:177028–36
    [Google Scholar]
  76. 76. 
    Zhao M, Figueroa-Cosme L, Elnabawy AO, Vara M, Yang X et al. 2016. Synthesis and characterization of Ru cubic nanocages with a face-centered cubic structure by templating with Pd nanocubes. Nano Lett 16:85310–17
    [Google Scholar]
  77. 77. 
    Diao J, Gall K, Dunn ML 2003. Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2:10656–60
    [Google Scholar]
  78. 78. 
    Gall K, Diao J, Dunn ML, Haftel M, Bernstein N, Mehl MJ 2005. Tetragonal phase transformation in gold nanowires. J. Eng. Mater. Technol. 127:4417–22
    [Google Scholar]
  79. 79. 
    Li Z, Okasinski JS, Almer JD, Ren Y, Zuo X, Sun Y 2014. Quantitative determination of fragmentation kinetics and thermodynamics of colloidal silver nanowires by in situ high-energy synchrotron X-ray diffraction. Nanoscale 6:1365–70
    [Google Scholar]
  80. 80. 
    Zhou Y, Fichthorn KA. 2014. Internal stress-induced orthorhombic phase in 5-fold-twinned noble metal nanowires. J. Phys. Chem. C. 118:3218746–55
    [Google Scholar]
  81. 81. 
    Zheng H, Cao A, Weinberger CR, Huang JY, Du K et al. 2010. Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 1:9144
    [Google Scholar]
  82. 82. 
    Bowles JS, Wayman CM. 1972. The Bain strain, lattice correspondences, and deformations related to martensitic transformations. Metall. Trans. 3:1113–21
    [Google Scholar]
  83. 83. 
    Mettela G, Mammen N, Joardar J, Narasimhan S, Kulkarni GU 2017. Non-fcc rich Au crystallites exhibiting unusual catalytic activity. Nano Res 10:72271–79
    [Google Scholar]
  84. 84. 
    Mettela G, Sorb YA, Shukla A, Bellin C, Svitlyk V et al. 2017. Extraordinarily stable noncubic structures of Au: a high-pressure and -temperature study. Chem. Mater. 29:41485–89
    [Google Scholar]
  85. 85. 
    Mendoza-Cruz R, Parajuli P, Ojeda-Galván HJ, Rodríguez ÁG, Navarro-Contreras HR et al. 2019. Orthorhombic distortion in Au nanoparticles induced by high pressure. CrystEngComm 21:3451–59
    [Google Scholar]
  86. 86. 
    Chen CL, Furusho H, Mori H 2009. Silver nanowires with a monoclinic structure fabricated by a thermal evaporation method. Nanotechnology 20:405605
    [Google Scholar]
  87. 87. 
    Fan Z, Huang X, Han Y, Bosman M, Wang Q et al. 2015. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 6:6571
    [Google Scholar]
  88. 88. 
    Mettela G, Kulkarni GU. 2015. Site selective Cu deposition on Au microcrystallites: corners, edges versus planar surfaces. CrystEngComm 17:489459–65
    [Google Scholar]
  89. 89. 
    Gilroy KD, Ruditskiy A, Peng H-C, Qin D, Xia Y 2016. Bimetallic nanocrystals: syntheses, properties, and applications. Chem. Rev. 116:1810414–72
    [Google Scholar]
  90. 90. 
    Bian T, Zhang H, Jiang Y, Jin C, Wu J et al. 2015. Epitaxial growth of twinned Au−Pt core−shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett 15:127808–15
    [Google Scholar]
  91. 91. 
    Mettela G, Kouser S, Sow C, Pantelides ST, Kulkarni GU 2018. Nobler than the noblest: noncubic gold microcrystallites. Angew. Chem. Int. Ed. 57:299018–22
    [Google Scholar]
  92. 92. 
    Lim D-H, Aboud S, Wilcox J 2012. Investigation of adsorption behavior of mercury on Au(111) from first principles. Environ. Sci. Technol. 46:137260–66
    [Google Scholar]
  93. 93. 
    Hou T, Chen M, Greene GW, Horn RG 2015. Mercury vapor sorption and amalgamation with a thin gold film. ACS Appl. Mater. Interfaces 7:4123172–81
    [Google Scholar]
  94. 94. 
    Johnston P, Carthey N, Hutchings GJ 2015. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination. J. Am. Chem. Soc. 137:4614548–57
    [Google Scholar]
  95. 95. 
    Martin WJ. 1896. The cyanide method of extracting gold from its ores. Application to the assays of ores poor in gold and silver. J. Am. Chem. Soc. 18:3309–10
    [Google Scholar]
  96. 96. 
    Lässer R, Smith NV. 1981. Interband optical transitions in gold in the photon energy range 2–25 eV. Solid State Commun 37:6507–9
    [Google Scholar]
  97. 97. 
    Taneja P, Ayyub P, Chandra R 2002. Size dependence of the optical spectrum in nanocrystalline silver. Phys. Rev. B. 65:24245412
    [Google Scholar]
  98. 98. 
    Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T et al. 2008. Trends in the catalytic CO oxidation activity of nanoparticles. Angew. Chem. Int. Ed. 47:264835–39
    [Google Scholar]
  99. 99. 
    Sun S, Li H, Xu ZJ 2018. Impact of surface area in evaluation of catalyst activity. Joule 2:61019–27
    [Google Scholar]
  100. 100. 
    Hvolbæk B, Janssens TVW, Clausen BS, Falsig H, Christensen CH 2007. Catalytic activity of Au nanoparticles. Nanotoday 2:414–18
    [Google Scholar]
  101. 101. 
    Sanchez A, Abbet S, Heiz U, Schneider W-D, Häkkinen H et al. 1999. When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A. 103:9573–78
    [Google Scholar]
  102. 102. 
    Janssens TVW, Clausen BS, Hvolbæk B, Falsig H, Christensen CH et al. 2007. Insights into the reactivity of supported Au nanoparticles: combining theory and experiments. Top. Catal. 44:1–215–26
    [Google Scholar]
  103. 103. 
    Mavrikakis M, Hammer B, Nørskov JK 1998. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81:132819–22
    [Google Scholar]
  104. 104. 
    Ruban A, Hammer B, Stoltze P, Skriver HL, Nørskov JK 1997. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A Chem. 115:421–29
    [Google Scholar]
  105. 105. 
    Aßmann J, Crihan D, Knapp M, Lundgren E, Löffler E et al. 2005. Understanding the structural deactivation of ruthenium catalysts on an atomic scale under both oxidizing and reducing conditions. Angew. Chem. Int. Ed. 44:6917–20
    [Google Scholar]
  106. 106. 
    Assmann J, Narkhede V, Khodeir L, Löffler E, Hinrichsen O et al. 2004. On the nature of the active state of supported ruthenium catalysts used for the oxidation of carbon monoxide: steady-state and transient kinetics combined with in situ infrared spectroscopy. J. Phys. Chem. B. 108:3814634–42
    [Google Scholar]
  107. 107. 
    Reuter K, Stampfl C, Ganduglia-Pirovano MV, Scheffler M 2002. Atomistic description of oxide formation on metal surfaces: the example of ruthenium. Chem. Phys. Lett. 352:5–6311–17
    [Google Scholar]
  108. 108. 
    Song C, Sakata O, Kumara LSR, Kohara S, Yang A et al. 2016. Size dependence of structural parameters in fcc and hcp Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data. Sci. Rep. 6:31400
    [Google Scholar]
  109. 109. 
    Kumara LSR, Sakata O, Kohara S, Yang A, Song C et al. 2016. Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure. Phys. Chem. Chem. Phys. 18:4430622–29
    [Google Scholar]
  110. 110. 
    Joo SH, Park JY, Renzas JR, Butcher DR, Huang W, Somorjai GA 2010. Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett 10:72709–13
    [Google Scholar]
  111. 111. 
    Kusada K, Kitagawa H. 2016. A route for phase control in metal nanoparticles: a potential strategy to create advanced materials. Adv. Mater. 28:61129–42
    [Google Scholar]
  112. 112. 
    Alyami NM, Lagrow AP, Anjum DH, Guan C, Miao X-H et al. 2018. Synthesis and characterization of branched fcc/hcp ruthenium nanostructures and their catalytic activity in ammonia borane hydrolysis. Cryst. Growth Des. 18:31509–16
    [Google Scholar]
  113. 113. 
    Seo O, Sakata O, Kim JM, Hiroi S, Song C et al. 2017. Stacking fault density and bond orientational order of fcc ruthenium nanoparticles. Appl. Phys. Lett. 111:25253101
    [Google Scholar]
  114. 114. 
    Mi J-L, Shen Y, Becker J, Bremholm M, Iversen BB 2014. Controlling allotropism in ruthenium nanoparticles: a pulsed-flow supercritical synthesis and in situ synchrotron X-ray diffraction study. J. Phys. Chem. C. 118:2011104–10
    [Google Scholar]
  115. 115. 
    Abo-Hamed EK, Pennycook T, Vaynzof Y, Toprakcioglu C, Koutsioubas A, Scherman OA 2014. Highly active metastable ruthenium nanoparticles for hydrogen production through the catalytic hydrolysis of ammonia borane. Small 10:153145–52
    [Google Scholar]
  116. 116. 
    Fang Y, Li J, Togo T, Jin F, Xiao Z et al. 2018. Ultra-small face-centered-cubic Ru nanoparticles confined within a porous coordination cage for dehydrogenation. Chem 4:3555–63
    [Google Scholar]
  117. 117. 
    Gao K, Wang Y, Wang Z, Zhu Z, Wang J et al. 2018. Ru nanodendrites composed of ultrathin fcc/hcp nanoblades for the hydrogen evolution reaction in alkaline solutions. Chem. Commun. 54:364613–16
    [Google Scholar]
  118. 118. 
    Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y et al. 2016. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 138:4916174–81
    [Google Scholar]
  119. 119. 
    McMahon MI, Nelmes RJ. 2006. High-pressure structures and phase transformations in elemental metals. Chem. Soc. Rev. 35:10943–63
    [Google Scholar]
  120. 120. 
    Dubrovinsky L, Dubrovinskaia N, Crichton WA, Mikhaylushkin AS, Simak SI et al. 2007. Noblest of all metals is structurally unstable at high pressure. Phys. Rev. Lett. 98:045503
    [Google Scholar]
  121. 121. 
    Guo Q, Zhao Y, Mao WL, Wang Z, Xiong Y, Xia Y 2008. Cubic to tetragonal phase transformation in cold-compressed Pd nanocubes. Nano Lett 8:3972–75
    [Google Scholar]
  122. 122. 
    Guo Q, Zhao Y, Wang Z, Skrabalak SE, Lin Z, Xia Y 2008. Size dependence of cubic to trigonal structural distortion in silver micro- and nanocrystals under high pressure. J. Phys. Chem. C. 112:5120135–37
    [Google Scholar]
  123. 123. 
    Sun Y, Yang W, Ren Y, Wang L, Lei C 2011. Multiple-step phase transformation in silver nanoplates under high pressure. Small 7:5606–11
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-092519-103517
Loading
/content/journals/10.1146/annurev-matsci-092519-103517
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error