1932

Abstract

Symmetry is fundamental to understanding our physical world. An antisymmetry operation switches between two different states of a trait, such as two time states, position states, charge states, spin states, or chemical species. This review covers the fundamental concepts of antisymmetry and focuses on four antisymmetries, namely, spatial inversion in point groups, time reversal, distortion reversal, and wedge reversion. The distinction between classical and quantum mechanical descriptions of time reversal is presented. Applications of these antisymmetries—in crystallography, diffraction, determining the form of property tensors, classifying distortion pathways in transition state theory, finding minimum energy pathways, diffusion, magnetic structures and properties, ferroelectric and multiferroic switching, classifying physical properties in arbitrary dimensions, and antisymmetry-protected topological phenomena—are described.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-100219-101404
2020-07-01
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-100219-101404.html?itemId=/content/journals/10.1146/annurev-matsci-100219-101404&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Wigner EP. 1964. Symmetry and conservation laws. PNAS 51:5956–65
    [Google Scholar]
  2. 2. 
    Newnham RE. 2005. Properties of Materials: Anisotropy, Symmetry, Structure Oxford, UK: Oxford Univ. Press
  3. 3. 
    Trolier-McKinstry S, Newnham RE. 2017. Materials Engineering: Bonding, Structure, and Structure-Property Relationships Cambridge, UK: Cambridge Univ. Press
  4. 4. 
    Fedorov ES. 1891. Симмтрія правильныхъ системъ фигуръ. Zap. Imp. St. Petersburgskogo Mineral. Obshchestva 2:281–146
    [Google Scholar]
  5. 5. 
    Schönflies AM. 1891. Kristallsysteme und Kristallstruktur Leipzig, Ger.: B.G. Teubner
  6. 6. 
    Burckhardt JJ. 1967. Zur Geschichte der Entdeckung der 230 Raumgruppen. Arch. Hist. Exact Sci. 4:235–46
    [Google Scholar]
  7. 7. 
    Friedrich W, Knipping P, Laue M 1913. Interferenzerscheinungen bei Röntgenstrahlen. Ann. Phys. 346:10971–88
    [Google Scholar]
  8. 8. 
    Zamorzaev AM, Palistrant AF. 1980. Antisymmetry, its generalizations and geometrical applications. Z. Krist. Cryst. Struct. 151:3–4231–48
    [Google Scholar]
  9. 9. 
    Zamorzaev AM. 1988. Generalized antisymmetry. Comput. Math. Appl. 16:5–8555–62
    [Google Scholar]
  10. 10. 
    VanLeeuwen BK, Gopalan V. 2015. The antisymmetry of distortions. Nat. Commun. 6:8818
    [Google Scholar]
  11. 11. 
    Gopalan V. 2020. Forty-one types of physical quantities in arbitrary dimensions. Acta Crystallogr. A 76:31827
    [Google Scholar]
  12. 12. 
    Deleted in proof
  13. 13. 
    Hestenes D. 2015. Geometric calculus. Space-Time Algebra63–85 Cham, Switz.: Birkhäuser, 2nd ed..
    [Google Scholar]
  14. 14. 
    Aroyo MI, Kirov A, Capillas C, Perez-Mato JM, Wondratschek H 2006. Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr. A 62:2115–28
    [Google Scholar]
  15. 15. 
    Aroyo MI 2016. International Tables for Crystallography, Vol. A: Space-Group Symmetry Chester, UK: Int. Union Crystallogr.
    [Google Scholar]
  16. 16. 
    Fennie CJ. 2008. Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 100:167203
    [Google Scholar]
  17. 17. 
    Ederer C, Fennie CJ. 2008. Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO3 versus BiFeO3. J. Phys. Condens. Matter 20:43434219
    [Google Scholar]
  18. 18. 
    Cotton FA. 1990. Chemical Applications of Group Theory New York: Wiley-Interscience, 3rd ed..
  19. 19. 
    Lifshitz R. 1997. Theory of color symmetry for periodic and quasiperiodic crystals. Rev. Mod. Phys. 69:41181–218
    [Google Scholar]
  20. 20. 
    Schwarzenberger RLE. 1984. Colour symmetry. Bull. Lond. Math. Soc. 16:3209–40
    [Google Scholar]
  21. 21. 
    Opechowski W. 1986. Crystallographic and Metacrystallographic Groups Amsterdam: North-Holland
  22. 22. 
    Heesch H. 1930. Über die vierdimensionalen Gruppen des dreidimensionalen Raumes. Z. Krist. 73:325–45
    [Google Scholar]
  23. 23. 
    Wills AS. 2017. A historical introduction to the symmetries of magnetic structures. Part 1. Early quantum theory, neutron powder diffraction and the coloured space groups. Powder Diffr 32:2148–55
    [Google Scholar]
  24. 24. 
    Zamorzaev AM. 1953. Generalization of Fedorov groups PhD Diss., Leningrad State Univ USSR:
  25. 25. 
    Zamorzaev AM. 1957. Generalization of the Fedorov groups. Kristallografiya 2:15–20
    [Google Scholar]
  26. 26. 
    Landau LD, Lifshitz EM. 1980. Statistical Physics Amsterdam: Butterworth-Heinemann, 3rd ed..
  27. 27. 
    Gopalan V, Litvin DB. 2011. Rotation-reversal symmetries in crystals and handed structures. Nat. Mater. 10:5376–81
    [Google Scholar]
  28. 28. 
    VanLeeuwen BK. 2015. The symmetry and antisymmetry of distortions PhD Diss., Pa. State Univ State College:
  29. 29. 
    Munro JM, Akamatsu H, Padmanabhan H, Liu VS, Shi Y et al. 2018. Discovering minimum energy pathways via distortion symmetry groups. Phys. Rev. B 98:8085107
    [Google Scholar]
  30. 30. 
    Munro JM, Liu VS, Gopalan V, Dabo I 2019. Implementation of distortion symmetry for the nudged elastic band method with DiSPy. NPJ Comput. Mater. 5:52
    [Google Scholar]
  31. 31. 
    Litvin DB. 2001. Magnetic space-group types. Acta Crystallogr. A 57:6729–30
    [Google Scholar]
  32. 32. 
    Litvin DB. 2013. Magnetic Group Tables Chester, UK: Int. Union Crystallogr.
  33. 33. 
    VanLeeuwen BK, Gopalan V, Litvin DB 2014. Double antisymmetry and the rotation-reversal space groups. Acta Crystallogr. A 70:124–38
    [Google Scholar]
  34. 34. 
    Huang M, VanLeeuwen BK, Litvin DB, Gopalan V 2014. Crystallographic data of double antisymmetry space groups. Acta Crystallogr. A 70:4373–81
    [Google Scholar]
  35. 35. 
    Padmanabhan H, Kingsland ML, Munro JM, Litvin DB, Gopalan V 2017. Spatio-temporal symmetry—point groups with time translations. Symmetry 9:9187
    [Google Scholar]
  36. 36. 
    Liu VS, VanLeeuwen BK, Munro JM, Padmanabhan H, Dabo I et al. 2018. Spatio-temporal symmetry—crystallographic point groups with time translations and time inversion. Acta Crystallogr. A 74:399–402
    [Google Scholar]
  37. 37. 
    Landau LD, Pitaevskii LP, Lifshitz EM 1984. Electrodynamics of Continuous Media New York: Pergamon Press, 2nd ed..
  38. 38. 
    Shull CG, Smart JS. 1949. Detection of antiferromagnetism by neutron diffraction. Phys. Rev. 76:81256–57
    [Google Scholar]
  39. 39. 
    Shull CG, Strauser WA, Wollan EO 1951. Neutron diffraction by paramagnetic and antiferromagnetic substances. Phys. Rev. 83:2333–45
    [Google Scholar]
  40. 40. 
    Astrov DN. 1961. Magnetoelectric effect in chromium oxide. Sov. Phys. JETP 13:4729–33
    [Google Scholar]
  41. 41. 
    Birss RR, Fletcher D. 1980. Space-time symmetry restrictions on transport coefficients. J. Magn. Magn. Mater. 15–18:2915–16
    [Google Scholar]
  42. 42. 
    Ashcroft NW, Mermin ND. 1976. Solid State Physics Orlando, FL. Saunders Coll. Publ.
    [Google Scholar]
  43. 43. 
    Sakurai JJ, Napolitano J. 2017. Modern Quantum Mechanics Cambridge, UK: Cambridge Univ. Press, 2nd ed..
  44. 44. 
    Watanabe H, Po HC, Vishwanath A 2018. Structure and topology of band structures in the 1651 magnetic space groups. Sci. Adv. 4:8eaat8685
    [Google Scholar]
  45. 45. 
    Wigner E. 1932. Über die Operation der Zeitumkehr in der Quantenmechanik. Nachr. Ges. Wiss. Gött. Math.-Phys. Kl. 1932:546–59
    [Google Scholar]
  46. 46. 
    Bigi II, Sanda AI. 2009. The strong CP problem. CP Violation314–32 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  47. 47. 
    Kaxiras E, Joannopoulos JD. 2019. Quantum Theory of Materials Cambridge, UK: Cambridge Univ. Press
  48. 48. 
    Moore JE, Balents L. 2007. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75:12121306
    [Google Scholar]
  49. 49. 
    Ando Y. 2013. Topological insulator materials. J. Phys. Soc. Jpn. 82:10102001
    [Google Scholar]
  50. 50. 
    Peshkin M, Tonomura A. 1989. The Aharonov-Bohm Effect Berlin: Springer-Verlag
  51. 51. 
    Bradley CJ, Cracknell AP. 1972. The Mathematical Theory of Symmetry in Solids Oxford, UK: Oxford Univ. Press
  52. 52. 
    Glazer AM. 1972. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 28:3384–92
    [Google Scholar]
  53. 53. 
    Ciullo PA. 1996. Silicate structures. Industrial Minerals and Their Uses1–16 Westwood, NJ: Noyes
    [Google Scholar]
  54. 54. 
    Boyle L, Khoo JY, Smith K 2016. Symmetric satellite swarms and choreographic crystals. Phys. Rev. Lett. 116:115503
    [Google Scholar]
  55. 55. 
    Pechukas P. 1981. Transition state theory. Annu. Rev. Phys. Chem. 32:159–77
    [Google Scholar]
  56. 56. 
    Hratchian HP, Schlegel HB. 2005. Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. Theory and Applications of Computational Chemistry, the First Forty Years CE Dykstra, G Frenking, KS Kim, GE Scuseria 195–249 Amsterdam: Elsevier
    [Google Scholar]
  57. 57. 
    McKee ML, Page M. 1993. Computing Reaction Pathways on Molecular Potential Energy Surfaces New York: VCH
  58. 58. 
    Henkelman G, Jónsson H. 2000. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113:229978–85
    [Google Scholar]
  59. 59. 
    Henkelman G, Jóhannesson G, Jónsson H 2002. Methods for finding saddle points and minimum energy paths. Theoretical Methods in Condensed Phase Chemistry SD Schwartz 269–300 Dordrecht, Neth.: Springer
    [Google Scholar]
  60. 60. 
    Jonsson H, Mills G, Jacobsen K 1998. Nudged elastic band method for finding minimum energy paths of transitions. Classical and Quantum Dynamics in Condensed Phase Simulations BJ Berne, G Ciccotti, DF Coker 385–404 Singapore: World Sci.
    [Google Scholar]
  61. 61. 
    Ong SP, Richards WD, Jain A, Hautier G, Kocher M et al. 2013. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68:314–19
    [Google Scholar]
  62. 62. 
    Nowadnick EA, Fennie CJ. 2016. Domains and ferroelectric switching pathways in Ca3Ti2O7 from first principles. Phys. Rev. B 94:10104105
    [Google Scholar]
  63. 63. 
    Ye M, Vanderbilt D. 2016. Ferroelectricity in corundum derivatives. Phys. Rev. B 93:13134303
    [Google Scholar]
  64. 64. 
    Heron JT, Bosse JL, He Q, Gao Y, Trassin M et al. 2014. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516:7531370–73
    [Google Scholar]
  65. 65. 
    Baettig P, Ederer C, Spaldin NA 2005. First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3: structure, polarization, and magnetic ordering temperature. Phys. Rev. B 72:21214105
    [Google Scholar]
  66. 66. 
    Lee D, Behera RK, Wu P, Xu H, Sinnott SB et al. 2009. Mixed Bloch-Néel-Ising character of 180° ferroelectric domain walls. Phys. Rev. B 80:6060102
    [Google Scholar]
  67. 67. 
    Hlinka J. 2014. Eight types of symmetrically distinct vectorlike physical quantities. Phys. Rev. Lett. 113:16165502
    [Google Scholar]
  68. 68. 
    Denker J. 2012. Introduction to Clifford Algebra https://www.av8n.com/physics/clifford-intro.htm
  69. 69. 
    Snygg J. 2012. A New Approach to Differential Geometry Using Clifford's Geometric Algebra New York: Springer
  70. 70. 
    Doran C, Lasenby A. 2003. Geometric Algebra for Physicists Cambridge, UK: Cambridge Univ. Press
  71. 71. 
    Massey WS. 1983. Cross products of vectors in higher dimensional Euclidean spaces. Am. Math. Mon. 90:10697–701
    [Google Scholar]
  72. 72. 
    Koptsik VA. 1988. Generalized symmetry in crystal physics. Comput. Math. Appl. 16:5–8407–24
    [Google Scholar]
  73. 73. 
    Ando Y, Fu L. 2015. Topological crystalline insulators and topological superconductors: from concepts to materials. Annu. Rev. Condens. Matter Phys. 6:361–81
    [Google Scholar]
  74. 74. 
    Yan B, Zhang SC. 2012. Topological materials. Rep. Prog. Phys. 75:996501
    [Google Scholar]
  75. 75. 
    Ren Y, Qiao Z, Niu Q 2016. Topological phases in two-dimensional materials: a review. Rep. Prog. Phys. 79:666501
    [Google Scholar]
  76. 76. 
    Fu L, Kane CL. 2007. Topological insulators with inversion symmetry. Phys. Rev. B 76:4045302
    [Google Scholar]
  77. 77. 
    Fu L, Kane CL, Mele EJ 2007. Topological insulators in three dimensions. Phys. Rev. Lett. 98:10106803
    [Google Scholar]
  78. 78. 
    Resta R, Vanderbilt D. 2007. Theory of polarization: a modern approach. Physics of Ferroelectrics KM Rabe, CH Ahn, JM Triscone 31–68 Berlin: Springer
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-100219-101404
Loading
/content/journals/10.1146/annurev-matsci-100219-101404
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error