1932

Abstract

The mechanical properties of superalloys are strongly governed by the resistance to shearing of ordered precipitates by dislocations. In the operating environments of superalloys, the stresses and temperatures present during thermomechanical loading influence the dislocation shearing dynamics, which involve diffusion and segregation processes that result in a diverse array of planar defects in the ordered 1 γ′ precipitate phase. This review discusses the current understanding of high-temperature deformation mechanisms of γ′ precipitates in two-phase Ni-, Co-, and CoNi-base superalloys. The sensitivity of planar fault energies to chemical composition results in a variety of unique deformation mechanisms, and methods to determine fault energies are therefore reviewed. The degree of chemical segregation in the vicinity of planar defects reveals an apparent phase transformation within the parent γ′ phase. The kinetics of segregation to linear and planar defects play a significant role in high-temperature properties. Understanding and controlling fault energies and the associated dislocation dynamics provide a new pathway for the design of superalloys with exceptional properties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-102419-011433
2021-07-26
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-102419-011433.html?itemId=/content/journals/10.1146/annurev-matsci-102419-011433&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Reed RC. 2006. Superalloys New York: Cambridge University Press. , 1st ed..
  2. 2. 
    Viguier B, Touratier F, Andrieu E. 2011. High-temperature creep of single-crystal nickel-based superalloy: microstructural changes and effects of thermal cycling. Philos. Mag. 91:354427–46
    [Google Scholar]
  3. 3. 
    Pollock TM, Tin S. 2006. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propuls. Power 22:2361–74
    [Google Scholar]
  4. 4. 
    Pollock TM, Dibbern J, Tsunekane M, Zhu J, Suzuki A. 2010. New Co-based γ-γ′ high-temperature alloys. JOM 62:158–63
    [Google Scholar]
  5. 5. 
    Titus MS, Suzuki A, Pollock TM 2012. High temperature creep of new L12-containing cobalt-base superalloys. Superalloys 2012 ES Huron, RC Reed, MC Hardy, MJ Mills, RE Montero et al.823–32 Hoboken, NJ: Wiley
    [Google Scholar]
  6. 6. 
    Zenk CH, Neumeier S, Engl NM, Fries SG, Dolotko O et al. 2016. Intermediate Co/Ni-base model superalloys—thermophysical properties, creep and oxidation. Scr. Mater. 112:83–86
    [Google Scholar]
  7. 7. 
    Weiser M, Eggeler YM, Spiecker E, Virtanen S. 2018. Early stages of scale formation during oxidation of γ/γ′ strengthened single crystal ternary Co-base superalloy at 900°C. Corros. Sci. 135:78–86
    [Google Scholar]
  8. 8. 
    Zenk CH, Volz N, Bezold A, Huber L-K, Eggeler YM et al. 2020. The effect of alloying on the thermophysical and mechanical properties of Co-Ti-Cr-based superalloys. Superalloys 2020 S Tim, M Hardy, J Clews, J Cormier, Q Feng et al.909–19 Cham, Switz: Springer
    [Google Scholar]
  9. 9. 
    Reyes Tirado FL, Taylor S, Dunand DC 2019. Effect of Al, Ti and Cr additions on the γ-γ′ microstructure of W-free Co-Ta-V-based superalloys. Acta Mater 172:44–54
    [Google Scholar]
  10. 10. 
    Elliott AJ, Pollock TM, Tin S, King WT, Huang SC, Gigliotti MFX. 2004. Directional solidification of large superalloy castings with radiation and liquid-metal cooling: a comparative assessment. Metall. Mater. Trans. A 35:103221–31
    [Google Scholar]
  11. 11. 
    Elliott AJ, Pollock TM. 2007. Thermal analysis of the Bridgman and liquid-metal-cooled directional solidification investment casting processes. Metall. Mater. Trans. A 38:871–82
    [Google Scholar]
  12. 12. 
    Hofmeister M, Franke MM, Koerner C, Singer RF. 2017. Single crystal casting with fluidized carbon bed cooling: a process innovation for quality improvement and cost reduction. Metall. Mater. Trans. B 48:63132–42
    [Google Scholar]
  13. 13. 
    Tsunekane M, Suzuki A, Pollock TM. 2011. Single-crystal solidification of new Co-Al-W-base alloys. Intermetallics 19:5636–43
    [Google Scholar]
  14. 14. 
    Barba D, Smith TM, Miao J, Mills MJ, Reed RC. 2018. Segregation-assisted plasticity in Ni-based superalloys. Metall. Mater. Trans. A 49:94173–85
    [Google Scholar]
  15. 15. 
    Titus MS, Eggeler YM, Suzuki A, Pollock TM. 2015. Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys. Acta Mater. 82:530–39
    [Google Scholar]
  16. 16. 
    Eggeler YM, Titus MS, Suzuki A, Pollock TM. 2014. Creep deformation–induced antiphase boundaries in L12-containing single-crystal cobalt-base superalloys. Acta Mater. 77:352–59
    [Google Scholar]
  17. 17. 
    Volz N, Zenk CH, Cherukuri R, Kalfhaus T, Weiser M et al. 2018. Thermophysical and mechanical properties of advanced single crystalline Co-base superalloys. Metall. Mater. Trans. A 49:94099–109
    [Google Scholar]
  18. 18. 
    Hemmersmeier U, Feller-Kniepmeier M. 1998. Element distribution in the macro- and microstructure of nickel base superalloy CMSX-4. Mater. Sci. Eng. A 248:1–287–97
    [Google Scholar]
  19. 19. 
    Wu X, Makineni SK, Liebscher CH, Dehm G, Rezaei Mianroodi J et al. 2020. Unveiling the Re effect in Ni-based single crystal superalloys. Nat. Commun. 11:1389
    [Google Scholar]
  20. 20. 
    Smith TM, Esser BD, Antolin N, Carlsson A, Williams REA et al. 2016. Phase transformation strengthening of high-temperature superalloys. Nat. Commun. 7:113434
    [Google Scholar]
  21. 21. 
    Mughrabi H. 2014. The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—with special reference to the new γ′-hardened cobalt-base superalloys. Acta Mater. 81:21–29
    [Google Scholar]
  22. 22. 
    Demtröder K, Eggeler G, Schreuer J. 2015. Influence of microstructure on macroscopic elastic properties and thermal expansion of nickel-base superalloys ERBO/1 and LEK94. Materwiss. Werksttech. 46:6563–76
    [Google Scholar]
  23. 23. 
    Gump J, Xia H, Chirita M, Sooryakumar R, Tomaz MA, Harp GR. 1999. Elastic constants of face-centered-cubic cobalt. J. Appl. Phys. 86:116005–9
    [Google Scholar]
  24. 24. 
    Tanaka K, Ohashi T, Kishida K, Inui H. 2007. Single-crystal elastic constants of Co3(Al,W) with the L12 structure. Appl. Phys. Lett. 91:18181907
    [Google Scholar]
  25. 25. 
    Pollock TM, Argon AS. 1992. Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall. Mater. 40:11–30
    [Google Scholar]
  26. 26. 
    Pollock T, Field RD. 2002. Dislocations and high-temperature plastic deformation of superalloy single crystals. Dislocat. Solids 11:547–618
    [Google Scholar]
  27. 27. 
    Veyssière P. 1998. The mechanical anomaly of L12 alloys: a review of recent experiments and models. Intermetallics 6:7–8587–92
    [Google Scholar]
  28. 28. 
    Reppich B. 1998. On the attractive particle-dislocation interaction in dispersion-strengthened material. Acta Mater. 46:161–67
    [Google Scholar]
  29. 29. 
    Reppich B, Heilmaier M, Liebig K, Schumann G, Stein K-D, Woller T. 1990. Microstructural modelling of the creep behaviour of particle-strengthened superalloys. Steel Res. 61:6251–57
    [Google Scholar]
  30. 30. 
    Probst-Hein M, Dlouhy A, Eggeler G. 1999. Interface dislocations in superalloy single crystals. Acta Mater. 47:82497–510
    [Google Scholar]
  31. 31. 
    Epishin A, Link T, Portella PD, Brückner U. 2000. Evolution of the γ/γ′ microstructure during high-temperature creep of a nickel-base superalloy. Acta Mater. 48:164169–77
    [Google Scholar]
  32. 32. 
    Link T, Feller-Kniepmeier M. 1992. Shear mechanisms of the γ′ phase in single-crystal superalloys and their relation to creep. Metall. Trans. A 23:199–105
    [Google Scholar]
  33. 33. 
    Kear BH, Giamei AF, Silcock JM, Ham RK. 1968. Slip and climb processes in γ′ precipitation hardened nickel-base alloys. Scr. Metall. 2:287–93
    [Google Scholar]
  34. 34. 
    Field RD, Pollock TM, Murphy WH 1992. The development of γ/γ′ interfacial dislocation networks during creep in Ni-base superalloys. Superalloys 1992 SD Antolovich, RW Stusrud, RA MacKay, DL Anton, T Khan et al.557–66 Warrendale, PA: Miner. Met. Mater. Soc.
    [Google Scholar]
  35. 35. 
    Feller-Kniepmeier M, Link T. 1989. Dislocation structures in γ-γ′ interfaces of the single-crystal superalloy SRR 99 after annealing and high temperature creep. Mater. Sci. Eng. A 113:C191–95
    [Google Scholar]
  36. 36. 
    Keller RR, Maier HJ, Mughrabi H. 1993. Characterization of interfacial dislocation networks in a creep-deformed nickel-base superalloy. Scr. Metall. Mater. 28:123–28
    [Google Scholar]
  37. 37. 
    Agudo Jácome L, Nörtershäuser P, Heyer J-K, Lahni A, Frenzel J et al. 2013. High-temperature and low-stress creep anisotropy of single-crystal superalloys. Acta Mater. 61:82926–43
    [Google Scholar]
  38. 38. 
    Paris O, Fährmann M, Fährmann E, Pollock TM, Fratzl P. 1997. Early stages of precipitate rafting in a single crystal NiAlMo model alloy investigated by small-angle X-ray scattering and TEM. Acta Mater. 45:31085–97
    [Google Scholar]
  39. 39. 
    Epishin A, Link T. 2004. Mechanisms of high-temperature creep of nickel-based superalloys under low applied stresses. Philos. Mag. 84:191979–2000
    [Google Scholar]
  40. 40. 
    Parsa AB, Wollgramm P, Buck H, Kostka A, Somsen C et al. 2015. Ledges and grooves at γ/γ′ interfaces of single crystal superalloys. Acta Mater. 90:105–17
    [Google Scholar]
  41. 41. 
    Prakash A, Guénolé J, Wang J, Müller J, Spiecker E et al. 2015. Atom probe informed simulations of dislocation-precipitate interactions reveal the importance of local interface curvature. Acta Mater. 92:33–45
    [Google Scholar]
  42. 42. 
    Huang M, Cheng Z, Xiong J, Li J, Hu J et al. 2014. Coupling between Re segregation and γ/γ′ interfacial dislocations during high-temperature, low-stress creep of a nickel-based single-crystal superalloy. Acta Mater. 76:294–305
    [Google Scholar]
  43. 43. 
    Kontis P, Li Z, Collins DM, Cormier J, Raabe D, Gault B. 2018. The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys. Scr. Mater. 145:76–80
    [Google Scholar]
  44. 44. 
    He J, Cao L, Makineni SK, Gault B, Eggeler G. 2021. Effect of interface dislocations on mass flow during high temperature and low stress creep of single crystal Ni-base superalloys. Scr. Mater. 191:23–28
    [Google Scholar]
  45. 45. 
    Ilschner B. 1974. Hochtemperatur-Plastizität, Vol. 5 Berlin/Heidelberg, Ger: Springer176 pp. , 1st ed..
  46. 46. 
    Nabarro FRN, De Villiers HL. 1995. The Physics of Creep London: Taylor & Francis
  47. 47. 
    Matan N, Cox DC, Rae CMF, Reed RC 1999. On the kinetics of rafting in CMSX-4 superalloy single crystals. Acta Mater. 47:72031–45
    [Google Scholar]
  48. 48. 
    Reed R, Matan N, Cox D, Rist M, Rae CM 1999. Creep of CMSX-4 superalloy single crystals: effects of rafting at high temperature. Acta Mater. 47:123367–81
    [Google Scholar]
  49. 49. 
    Shen C, Wang Y. 2003. Phase field model of dislocation networks. Acta Mater. 51:92595–610
    [Google Scholar]
  50. 50. 
    Kamaraj M. 2003. Rafting in single crystal nickel-base superalloys—an overview. Sadhana 28:1–2115–28
    [Google Scholar]
  51. 51. 
    Nabarro FRN. 1996. Rafting in superalloys. Metall. Mater. Trans. A 27:3513–30
    [Google Scholar]
  52. 52. 
    Long H, Mao S, Liu Y, Zhang Z, Han X. 2018. Microstructural and compositional design of Ni-based single crystalline superalloys―a review. J. Alloys Compd. 743:203–20
    [Google Scholar]
  53. 53. 
    Buck H, Wollgramm P, Parsa AB, Eggeler G. 2015. A quantitative metallographic assessment of the evolution of porosity during processing and creep in single crystal Ni-base super alloys. Materwiss. Werksttech. 46:6577–90
    [Google Scholar]
  54. 54. 
    Gleiter H, Hornbogen E. 1967. Precipitation hardening by coherent particles. Mater. Sci. Eng. 2:285–302
    [Google Scholar]
  55. 55. 
    Beauchamp P, Douin J, Veyssière P. 1987. Dependence of the antiphase boundary energy upon orientation in the L12 structure. Philos. Mag. A 55:5565–81
    [Google Scholar]
  56. 56. 
    Caron P, Khan T, Veyssière P. 1988. On precipitate shearing by superlattice stacking faults in superalloys. Philos. Mag. A 57:6859–75
    [Google Scholar]
  57. 57. 
    Voskoboinikov RE, Rae CMF. 2009. A new γ-surface in {111} plane in L12 Ni3Al. IOP Conf. Ser. Mater. Sci. Eng. 3:012009
    [Google Scholar]
  58. 58. 
    Paidar V. 1985. The structure and energy of antiphase boundaries in L12 alloys. Acta Metall. 33:101803–11
    [Google Scholar]
  59. 59. 
    Nembach E, Neite G. 1985. Precipitation hardening of superalloys by ordered γ′-particles. Prog. Mater. Sci. 29:3177–319
    [Google Scholar]
  60. 60. 
    Hirth JP. 1961. On dislocation interactions in the fcc lattice. J. Appl. Phys. 32:4700–6
    [Google Scholar]
  61. 61. 
    Van Swygenhoven H, Derlet PM, Frøseth AG. 2004. Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3:6399–403
    [Google Scholar]
  62. 62. 
    McCabe RJ, Beyerlein IJ, Carpenter JS, Mara NA. 2014. The critical role of grain orientation and applied stress in nanoscale twinning. Nat. Commun. 5:13806
    [Google Scholar]
  63. 63. 
    Müller J, Eggeler G, Spiecker E. 2015. On the identification of superdislocations in the γ′-phase of single-crystal Ni-base superalloys: an application of the LACBED method to complex microstructures. Acta Mater. 87:34–44
    [Google Scholar]
  64. 64. 
    Condat M, Décamps B. 1987. Shearing of γ′ precipitates by single a/2 <110>matrix dislocations in a γ/γ′ Ni-based superalloy. Scr. Metall. 21:5607–12
    [Google Scholar]
  65. 65. 
    Link T, Epishin A, Klaus M, Brückner U, Reznicek A. 2005. <100>dislocations in nickel-base superalloys: formation and role in creep deformation. Mater. Sci. Eng. A 405:1–2254–65
    [Google Scholar]
  66. 66. 
    Wu X, Dlouhy A, Eggeler YM, Spiecker E, Kostka A et al. 2018. On the nucleation of planar faults during low temperature and high stress creep of single crystal Ni-base superalloys. Acta Mater. 144:642–55
    [Google Scholar]
  67. 67. 
    Rae CMF, Matan N, Reed RC. 2001. The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750°C and 750 MPa. Mater. Sci. Eng. A 300:1–2125–34
    [Google Scholar]
  68. 68. 
    Rae CMF, Reed RC. 2007. Primary creep in single crystal superalloys: origins, mechanisms and effects. Acta Mater. 55:31067–81
    [Google Scholar]
  69. 69. 
    Feng L, Lv D, Rhein RK, Goiri JG, Titus MS et al. 2018. Shearing of γ′ particles in Co-base and Co-Ni-base superalloys. Acta Mater. 161:99–109
    [Google Scholar]
  70. 70. 
    Lenz M, Eggeler YM, Müller J, Zenk CH, Volz N et al. 2019. Tension/compression asymmetry of a creep deformed single crystal Co-base superalloy. Acta Mater. 166:597–610
    [Google Scholar]
  71. 71. 
    Kear BH, Giamei AF, Leverant GR, Oblak JM. 1969. On intrinsic/extrinsic stacking fault pairs in the L12 lattice. Scr. Metall. 3:2123–29
    [Google Scholar]
  72. 72. 
    Kear BH, Oblak JM, Giamei AF. 1970. Stacking faults in γ′ Ni3(Al,Ti) precipitation hardened nickel-base alloys. Metall. Trans. 1:Sept.2477–86
    [Google Scholar]
  73. 73. 
    Hirth JP, Lothe J. 1982. Theory of Dislocations Malabar, FL: Wiley857 pp. , 2nd ed..
  74. 74. 
    Nembach E, Schänzer S, Trinckauf K. 2006. The antiphase boundary energy of γ′ precipitates in nickel-based superalloys. Philos. Mag. A 66:5729–38
    [Google Scholar]
  75. 75. 
    Wang Y, Khachaturyan A. 1994. Effect of antiphase domains on shape and spatial arrangement of coherent ordered intermetallics. Scr. Metall. Mater. 31:101425–30
    [Google Scholar]
  76. 76. 
    Vorontsov VA, Shen C, Wang Y, Dye D, Rae CMF. 2010. Shearing of γ′ precipitates by a 〈112〉 dislocation ribbons in Ni-base superalloys: a phase field approach. Acta Mater. 58:124110–19
    [Google Scholar]
  77. 77. 
    Suzuki A, Inui H, Pollock TM. 2015. L12-strengthened cobalt-base superalloys. Annu. Rev. Mater. Res. 45:345–68
    [Google Scholar]
  78. 78. 
    Edington JW. 1976. Practical Electron Microscopy in Materials Science Eindhoven, Neth: TechBooks
  79. 79. 
    Morniroli JP. 2002. Large Angle Convergent Electron Beam Diffraction (LACBED): Application to Crystal Defects Paris: Soc. Franç. Microsc.
  80. 80. 
    Phillips PJ, Brandes MC, Mills MJ, De Graef M. 2011. Diffraction contrast STEM of dislocations: imaging and simulations. Ultramicroscopy 111:9–101483–87
    [Google Scholar]
  81. 81. 
    Kear BH, Giamei AF, Oblak JM. 1970. On the origin of stacking faults in plastically deformed Ni3Al (γ′-phase). Scr. Metall. 4:567–74
    [Google Scholar]
  82. 82. 
    Leverant GR, Kear BH. 1970. The mechanism of creep in γ′ precipitation-hardened nickel-base alloys at intermediate temperatures. Metall. Mater. Trans. B 1:2491–98
    [Google Scholar]
  83. 83. 
    Agudo Jácome L, Nörtershäuser P, Somsen C, Dlouhý A, Eggeler G 2014. On the nature of γ′ phase cutting and its effect on high temperature and low stress creep anisotropy of Ni-base single crystal superalloys. Acta Mater. 69:246–64
    [Google Scholar]
  84. 84. 
    Dlouhý A, Schäublin R, Eggeler G. 1998. Transmission electron microscopy contrast simulations of <100>-superdislocations in the L12 ordered structure. Scr. Mater. 39:91325–32
    [Google Scholar]
  85. 85. 
    Yoo MH. 1987. Stability of superdislocations. Acta Metall. 35:71559–69
    [Google Scholar]
  86. 86. 
    Liebscher CH, Glatzel U. 2014. Configuration of superdislocations in the γ′-Pt3Al phase of a Pt-based superalloy. Intermetallics 48:71–78
    [Google Scholar]
  87. 87. 
    Eggeler YM, Müller J, Titus MS, Suzuki A, Pollock TM, Spiecker E. 2016. Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys. Acta Mater. 113:335–49
    [Google Scholar]
  88. 88. 
    Rae C, Vorontsov V, Kovarik L, Mills M. 2014. Dislocations in a Ni-based superalloy during low temperature creep. MATEC Web Conf. 14:01006
    [Google Scholar]
  89. 89. 
    Vorontsov VA, Kovarik L, Mills MJ, Rae CMF. 2012. High-resolution electron microscopy of dislocation ribbons in a CMSX-4 superalloy single crystal. Acta Mater. 60:124866–78
    [Google Scholar]
  90. 90. 
    Vorontsov VA, Voskoboinikov RE, Rae CMF. 2011. Prediction of mechanical behaviour in Ni-base superalloys using the phase field model of dislocations. Adv. Mater. Res. 278:150–55
    [Google Scholar]
  91. 91. 
    Vorontsov VA, Voskoboinikov RE, Rae CMF. 2012. Shearing of γ′ precipitates in Ni-base superalloys: a phase field study incorporating the effective γ-surface. Philos. Mag. 92:5608–34
    [Google Scholar]
  92. 92. 
    Milligan WW, Antolovich SD. 1991. The mechanisms and temperature dependence of superlattice stacking fault formation in the single-crystal superalloy PWA 1480. Metall. Trans. A 22:102309–18
    [Google Scholar]
  93. 93. 
    Décamps B, Raujol S, Coujou A, Pettinari-Sturmel F, Clément N et al. 2004. On the shearing mechanism of γ′ precipitates by a single (a/6)⟨112⟩ Shockley partial in Ni-based superalloys. Philos. Mag. 84:191–107
    [Google Scholar]
  94. 94. 
    Chen QZ, Knowles DM. 2003. Mechanism of <112>/3 slip initiation and anisotropy of γ′ phase in CMSX-4 during creep at 750°C and 750 MPa. Mater. Sci. Eng. A 356:1–2352–67
    [Google Scholar]
  95. 95. 
    Viswanathan GB, Sarosi PM, Henry MF, Whitis DD, Milligan WW, Mills MJ. 2005. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT. Acta Mater. 53:103041–57
    [Google Scholar]
  96. 96. 
    Suzuki A, Pollock TM. 2008. High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys. Acta Mater. 56:61288–97
    [Google Scholar]
  97. 97. 
    Knowles DM, Chen QZ. 2003. Superlattice stacking fault formation and twinning during creep in γ/γ′ single crystal superalloy CMSX-4. Mater. Sci. Eng. A 340:1–288–102
    [Google Scholar]
  98. 98. 
    Zhang YH, Chen QZ, Knowles DM. 2001. Mechanism of dislocation shearing of γ in fine precipitate strengthened superalloy. Mater. Sci. Technol. 17:121551–55
    [Google Scholar]
  99. 99. 
    Knowles DM, Gunturi S. 2002. The role of <112>{111} slip in the asymmetric nature of creep of single crystal superalloy CMSX-4. Mater. Sci. Eng. A 328:1–2223–37
    [Google Scholar]
  100. 100. 
    Kolbe M. 2001. The high temperature decrease of the critical resolved shear stress in nickel-base superalloys. Mater. Sci. Eng. A 319–321:383–87
    [Google Scholar]
  101. 101. 
    Unocic RR, Zhou N, Kovarik L, Shen C, Wang Y, Mills MJ. 2011. Dislocation decorrelation and relationship to deformation microtwins during creep of a γ′ precipitate strengthened Ni-based superalloy. Acta Mater. 59:197325–39
    [Google Scholar]
  102. 102. 
    Freund LP, Messé OMDM, Barnard JS, Göken M, Neumeier S, Rae CMF. 2017. Segregation assisted microtwinning during creep of a polycrystalline L12-hardened Co-base superalloy. Acta Mater. 123:295–304
    [Google Scholar]
  103. 103. 
    Unocic RR 2008. On the creep deformation mechanisms of an advanced disk Ni-base superalloy PhD Diss., Ohio State Univ. Columbus, OH:
  104. 104. 
    Kovarik L, Unocic RR, Li J, Sarosi P, Shen C et al. 2009. Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Prog. Mater. Sci. 54:6839–73
    [Google Scholar]
  105. 105. 
    Sarosi PM, Viswanathan GB, Whitis D, Mills MJ. 2005. Imaging and characterization of fine γ′ precipitates in a commercial nickel-base superalloy. Ultramicroscopy 103:183–93
    [Google Scholar]
  106. 106. 
    Smith TM, Unocic RR, Deutchman H, Mills MJ 2016. Creep deformation mechanism mapping in nickel base disk superalloys. Mater. High Temp. 33:4–5372–83
    [Google Scholar]
  107. 107. 
    Viswanathan GB, Karthikeyan S, Sarosi PM, Unocic RR, Mills MJ. 2006. Microtwinning during intermediate temperature creep of polycrystalline Ni-based superalloys: mechanisms and modelling. Philos. Mag. 86:29–314823–40
    [Google Scholar]
  108. 108. 
    Kovarik L, Unocic RR, Li J, Mills MJ 2009. The intermediate temperature deformation of Ni-based superalloys: importance of reordering. JOM 61:242–48
    [Google Scholar]
  109. 109. 
    Titus MS, Mottura A, Babu Viswanathan G, Suzuki A, Mills MJ, Pollock TM. 2015. High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys. Acta Mater. 89:423–37
    [Google Scholar]
  110. 110. 
    Gianola DS, Sedlmayr A, Mönig R, Volkert CA, Major RC et al. 2011. In situ nanomechanical testing in focused ion beam and scanning electron microscopes. Rev. Sci. Instrum. 82:6063901
    [Google Scholar]
  111. 111. 
    Legros M, Gianola DS, Motz C. 2010. Quantitative in situ mechanical testing in electron microscopes. MRS Bull. 35:5354–60
    [Google Scholar]
  112. 112. 
    Dehm G, Jaya BN, Raghavan R, Kirchlechner C. 2018. Overview on micro- and nanomechanical testing: new insights in interface plasticity and fracture at small length scales. Acta Mater. 142:248–82
    [Google Scholar]
  113. 113. 
    Legros M, Clément N, Caron P, Coujou A 2002. In-situ observation of deformation micromechanisms in a rafted γ/γ′ superalloy at 850°C. Mater. Sci. Eng. A 337:1–2160–69
    [Google Scholar]
  114. 114. 
    Stinville JC, Yao ER, Callahan PG, Shin J, Wang F et al. 2019. Dislocation dynamics in a nickel-based superalloy via in-situ transmission scanning electron microscopy. Acta Mater. 168:152–66
    [Google Scholar]
  115. 115. 
    Callahan PG, Stinville J-C, Yao ER, Echlin MP, Titus MS et al. 2018. Transmission scanning electron microscopy: defect observations and image simulations. Ultramicroscopy 186:49–61
    [Google Scholar]
  116. 116. 
    Stinville JC, Vanderesse N, Bridier F, Bocher P, Pollock TM. 2015. High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy. Acta Mater. 98:29–42
    [Google Scholar]
  117. 117. 
    Stinville JC, Echlin MP, Texier D, Bridier F, Bocher P, Pollock TM. 2016. Sub-grain scale digital image correlation by electron microscopy for polycrystalline materials during elastic and plastic deformation. Exp. Mech. 56:2197–216
    [Google Scholar]
  118. 118. 
    Stinville JC, Callahan PG, Charpagne MA, Echlin MP, Valle V, Pollock TM. 2020. Direct measurements of slip irreversibility in a nickel-based superalloy using high resolution digital image correlation. Acta Mater. 186:172–89
    [Google Scholar]
  119. 119. 
    Charpagne MA, Stinville JC, Callahan PG, Texier D, Chen Z et al. 2020. Automated and quantitative analysis of plastic strain localization via multi-modal data recombination. Mater. Charact. 163:110245
    [Google Scholar]
  120. 120. 
    Bourdin F, Stinville JC, Echlin MP, Callahan PG, Lenthe WC et al. 2018. Measurements of plastic localization by Heaviside–digital image correlation. Acta Mater. 157:307–25
    [Google Scholar]
  121. 121. 
    Kruml T, Conforto E, Lo Piccolo B, Caillard D, Martin JL 2002. From dislocation cores to strength and work-hardening: a study of binary Ni3Al. Acta Mater. 50:205091–101
    [Google Scholar]
  122. 122. 
    Baither D, Rentenberger C, Karnthaler HP, Nembach E. 2002. Three alternative experimental methods to determine the antiphase-boundary energies of the γ′ precipitates in superalloys. Philos. Mag. A 82:91795–805
    [Google Scholar]
  123. 123. 
    Hemker KJ, Mills MJ. 1993. Measurements of antiphase boundary and complex stacking fault energies in binary and B-doped Ni3Al using TEM. Philos. Mag. A 68:2305–24
    [Google Scholar]
  124. 124. 
    Zunger A, Wei S-H, Ferreira LG, Bernard JE. 1990. Special quasirandom structures. Phys. Rev. Lett. 65:3353–56
    [Google Scholar]
  125. 125. 
    Gorbatov OI, Lomaev IL, Gornostyrev YN, Ruban AV, Furrer D et al. 2016. Effect of composition on antiphase boundary energy in Ni3Al based alloys: ab initio calculations. Phys. Rev. B 93:22224106
    [Google Scholar]
  126. 126. 
    Vitos L. 2007. Computational Quantum Mechanics for Materials Engineers London: Springer
  127. 127. 
    Sanchez JM, Ducastelle F, Gratias D. 1984. Generalized cluster description of multicomponent systems. Physica A Stat. Mech. Appl. 128:1–2334–50
    [Google Scholar]
  128. 128. 
    Sun R, van de Walle A. 2016. Automating impurity-enhanced antiphase boundary energy calculations from ab initio Monte Carlo. CALPHAD 53:20–24
    [Google Scholar]
  129. 129. 
    Denteneer PJH, van Haeringen W. 1987. Stacking-fault energies in semiconductors from first-principles calculations. J. Phys. C Solid State Phys. 20:32L883–87
    [Google Scholar]
  130. 130. 
    Breidi A, Allen J, Mottura A 2017. First-principles calculations of thermodynamic properties and planar fault energies in Co3X and Ni3X L12 compounds. Phys. Status Solid. 254:91–12
    [Google Scholar]
  131. 131. 
    Mottura A, Janotti A, Pollock TM. 2012. A first-principles study of the effect of Ta on the superlattice intrinsic stacking fault energy of L12-Co3(Al,W). Intermetallics 28:138–43
    [Google Scholar]
  132. 132. 
    Breidi A, Allen J, Mottura A 2018. First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys. Acta Mater. 145:97–108
    [Google Scholar]
  133. 133. 
    Paxton AT, Sun YQ. 1998. The role of planar fault energy in the yield anomaly in L12 intermetallics. Philos. Mag. A 78:185–104
    [Google Scholar]
  134. 134. 
    Vamsi KV, Karthikeyan S. 2018. High-throughput estimation of planar fault energies in A3B compounds with L12 structure. Acta Mater. 145:532–42
    [Google Scholar]
  135. 135. 
    Dodaran M, Ettefagh AH, Guo SM, Khonsari MM, Meng WJ et al. 2020. Effect of alloying elements on the γ′ antiphase boundary energy in Ni-base superalloys. Intermetallics 117:106670
    [Google Scholar]
  136. 136. 
    Thomas JC, Puchala B, Van der Ven A. 2017. CASMcode: v0.2.1 Software. https://zenodo.org/record/546148#.YA8LNOhKg2w
  137. 137. 
    Puchala B, Van der Ven A. 2013. Thermodynamics of the Zr-O system from first-principles calculations. Phys. Rev. B 88:9094108
    [Google Scholar]
  138. 138. 
    Van der Ven A, Thomas JC, Xu Q, Bhattacharya J. 2010. Linking the electronic structure of solids to their thermodynamic and kinetic properties. Math. Comput. Simul. 80:71393–410
    [Google Scholar]
  139. 139. 
    Vamsi KV, Pollock TM. 2020. A new proximate structure for the APB (111) in L12 compounds. Scr. Mater. 182:38–42
    [Google Scholar]
  140. 140. 
    Rao Y, Smith TM, Mills MJ, Ghazisaeidi M. 2018. Segregation of alloying elements to planar faults in γ′-Ni3Al. Acta Mater. 148:173–84
    [Google Scholar]
  141. 141. 
    Eurich NC, Bristowe PD. 2015. Segregation of alloying elements to intrinsic and extrinsic stacking faults in γ′-Ni3Al via first principles calculations. Scr. Mater. 102:87–90
    [Google Scholar]
  142. 142. 
    Vamsi KV, Karthikeyan S 2012. Effect of off-stoichiometry and ternary additions on planar fault energies in Ni3Al. Superalloys 2012 ES Huron, RC Reed, MC Hardy, MJ Mills, RE Montero et al.521–30 Hoboken, NJ: Wiley
    [Google Scholar]
  143. 143. 
    Vamsi KV. 2017. Planar fault energies in L12 compounds PhD Diss., Indian Inst. Sci. Bangalore:
    [Google Scholar]
  144. 144. 
    Vamsi KV, Karthikeyan S. 2020. Deformation modes and yield strength anomaly in L12 compounds. J. Alloys Compd. 860:158411
    [Google Scholar]
  145. 145. 
    Mianroodi JR, Shanthraj P, Kontis P, Cormier J, Gault B et al. 2019. Atomistic phase field chemomechanical modeling of dislocation-solute-precipitate interaction in Ni-Al-Co. Acta Mater. 175:250–61
    [Google Scholar]
  146. 146. 
    Vamsi KV, Karthikeyan S. 2014. Modelling ternary effects on antiphase boundary energy of Ni3Al. MATEC Web Conf. 14:11005
    [Google Scholar]
  147. 147. 
    Crudden DJ, Mottura A, Warnken N, Raeisinia B, Reed RC. 2014. Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloys. Acta Mater. 75:356–70
    [Google Scholar]
  148. 148. 
    Sun R, Woodward C, van de Walle A. 2017. First-principles study on Ni3Al (111) antiphase boundary with Ti and Hf impurities. Phys. Rev. B 95:21214121
    [Google Scholar]
  149. 149. 
    Chandran M, Sondhi SK. 2011. First-principle calculation of APB energy in Ni-based binary and ternary alloys. Model. Simul. Mater. Sci. Eng. 19:2025008
    [Google Scholar]
  150. 150. 
    Allen JDT, Mottura A, Breidi A. 2018. First-principles modeling of the temperature dependence for the superlattice intrinsic stacking fault energies in L12 Ni75−xXxAl25 alloys. Metall. Mater. Trans. A 49:94167–72
    [Google Scholar]
  151. 151. 
    Breidi A, Allen J, Mottura A 2018. First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys. Acta Mater. 145:97–108
    [Google Scholar]
  152. 152. 
    Rhein RK, Callahan PG, Murray SP, Stinville J-C, Titus MS et al. 2018. Creep behavior of quinary γ′-strengthened Co-based superalloys. Metall. Mater. Trans. A 49:94090–98
    [Google Scholar]
  153. 153. 
    Mryasov ON, Gornostyrev YN, van Schilfgaarde M, Freeman AJ. 2002. Superdislocation core structure in L12 Ni3Al, Ni3Ge and Fe3Ge: Peierls-Nabarro analysis starting from ab-initio GSF energetics calculations. Acta Mater. 50:184545–54
    [Google Scholar]
  154. 154. 
    Schoeck G, Kohlhammer S, Fahnle M. 1999. Planar dissociations and recombination energy of [110]superdislocations in Ni3Al: generalized Peierls model in combination with ab initio electron theory. Philos. Mag. Lett. 79:11849–57
    [Google Scholar]
  155. 155. 
    Mishin Y. 2004. Atomistic modeling of the γ and γ′-phases of the Ni-Al system. Acta Mater. 52:61451–67
    [Google Scholar]
  156. 156. 
    Baluc N, Schaeublin R. 1996. Weak beam transmission electron microscopy imaging of superdislocations in ordered Ni3Al. Philos. Mag. A 74:1113–36
    [Google Scholar]
  157. 157. 
    Vamsi KV, Karthikeyan S. 2017. Yield anomaly in L12 Co3AlxW1−x vis-à-vis Ni3Al. Scr. Mater. 130:269–73
    [Google Scholar]
  158. 158. 
    Vamsi KV, Murray SP, Pollock TM 2020. The yield strength anomaly in Co-Ni design space. Superalloys 2020 S Tim, M Hardy, J Clews, J Cormier, Q Feng et al.948–58 Cham, Switz: Springer
    [Google Scholar]
  159. 159. 
    Hasan H, Mlkvik P, Haynes PD, Vorontsov VA. 2020. Generalised stacking fault energy of Ni-Al and Co-Al-W superalloys: density-functional theory calculations. Materialia 9:100555
    [Google Scholar]
  160. 160. 
    Saal JE, Wolverton C. 2016. Energetics of antiphase boundaries in γ′ Co3(Al,W)-based superalloys. Acta Mater. 103:57–62
    [Google Scholar]
  161. 161. 
    Okamoto NL, Oohashi T, Adachi H, Kishida K, Inui H, Veyssière P. 2011. Plastic deformation of polycrystals of Co3(Al,W) with the L12 structure. Philos. Mag. 91:283667–84
    [Google Scholar]
  162. 162. 
    Wang YU, Jin YM, Cuitiño AM, Khachaturyan AG. 2001. Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater. 49:101847–57
    [Google Scholar]
  163. 163. 
    Wang YU, Jin YM, Cuitiño AM, Khachaturyan AG. 2001. Phase field microelasticity theory and modeling of multiple dislocation dynamics. Appl. Phys. Lett. 78:162324–26
    [Google Scholar]
  164. 164. 
    Allen SM, Cahn JW. 1979. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27:61085–95
    [Google Scholar]
  165. 165. 
    Bauer A, Neumeier S, Pyczak F, Singer RF, Göken M. 2012. Creep properties of different γ′-strengthened Co-base superalloys. Mater. Sci. Eng. A 550:333–41
    [Google Scholar]
  166. 166. 
    Pyczak F, Bauer A, Göken M, Neumeier S, Lorenz U et al. 2013. Plastic deformation mechanisms in a crept L12 hardened Co-base superalloy. Mater. Sci. Eng. A 571:13–18
    [Google Scholar]
  167. 167. 
    Gibbs J. 1906. The Scientific Papers of J. Willard Gibbs London: Longmans Green Co.
  168. 168. 
    Hirth JP. 1970. Thermodynamics of stacking faults. Metall. Trans. 1:2367–74
    [Google Scholar]
  169. 169. 
    Hondros ED, Seah MP. 1977. Segregation to interfaces. Int. Met. Rev. 22:1262–301
    [Google Scholar]
  170. 170. 
    Kirchheim R. 2007. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55:155129–38
    [Google Scholar]
  171. 171. 
    Morris DG, Muñoz-Morris MA 2005. Thermal and mechanical disordering of ordered alloys. Solid-Solid Phase Transformations in Inorganic Materials Y Bréchet, E Clouet, A Deschamps, A Finel, F Soisson 199–208 Zürich, Switz: Trans Tech
    [Google Scholar]
  172. 172. 
    Suzuki H. 1952. Chemical interaction of solute atoms with dislocations. Chem. Metall. 4:455–63
    [Google Scholar]
  173. 173. 
    Hetherington C. 2004. Aberration correction for TEM. Mater. Today 7:1250–55
    [Google Scholar]
  174. 174. 
    Allen LJ, D'Alfonso AJ, Freitag B, Klenov DO 2012. Chemical mapping at atomic resolution using energy-dispersive X-ray spectroscopy. MRS Bull. 37:147–52
    [Google Scholar]
  175. 175. 
    Makineni SK, Kumar A, Lenz M, Kontis P, Meiners T et al. 2018. On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy. Acta Mater. 155:362–71
    [Google Scholar]
  176. 176. 
    Makineni SK, Lenz M, Neumeier S, Spiecker E, Raabe D, Gault B. 2018. Elemental segregation to antiphase boundaries in a crept CoNi-based single crystal superalloy. Scr. Mater. 157:62–66
    [Google Scholar]
  177. 177. 
    Lenz M, Wu M, Spiecker E. 2020. Segregation-assisted climb of Frank partial dislocations: an alternative route to superintrinsic stacking faults in L12-hardened superalloys. Acta Mater. 191:270–79
    [Google Scholar]
  178. 178. 
    Smith TM, Esser BD, Antolin N, Viswanathan GB, Hanlon T et al. 2015. Segregation and η phase formation along stacking faults during creep at intermediate temperatures in a Ni-based superalloy. Acta Mater. 100:19–31
    [Google Scholar]
  179. 179. 
    Smith TM, Duchao LV, Hanlon T, Wessman A, Wang Y, Mills MJ 2016. Determination of orientation and alloying effects on creep response and deformation mechanisms in single crystals of Ni-base disk superalloys. Superalloys 2016 M Hardy, E Huron, U Glatzel, B Griffin, B Lewis et al.579–88 Hoboken, NJ: Wiley
    [Google Scholar]
  180. 180. 
    Barba D, Pedrazzini S, Vilalta-Clemente A, Wilkinson AJ, Moody MP et al. 2017. On the composition of microtwins in a single crystal nickel-based superalloy. Scr. Mater. 127:37–40
    [Google Scholar]
  181. 181. 
    Barba D, Alabort E, Pedrazzini S, Collins DM, Wilkinson AJ et al. 2017. On the microtwinning mechanism in a single crystal superalloy. Acta Mater. 135:314–29
    [Google Scholar]
  182. 182. 
    Smith TM, Esser BD, Good B, Hooshmand MS, Viswanathan GB et al. 2018. Segregation and phase transformations along superlattice intrinsic stacking faults in Ni-based superalloys. Metall. Mater. Trans. A 49:94186–98
    [Google Scholar]
  183. 183. 
    Viswanathan GB, Shi R, Genc A, Vorontsov VA, Kovarik L et al. 2015. Segregation at stacking faults within the γ′ phase of two Ni-base superalloys following intermediate temperature creep. Scr. Mater. 94:5–8
    [Google Scholar]
  184. 184. 
    Smith TM, Rao Y, Wang Y, Ghazisaeidi M, Mills MJ. 2017. Diffusion processes during creep at intermediate temperatures in a Ni-based superalloy. Acta Mater. 141:261–72
    [Google Scholar]
  185. 185. 
    Titus MS, Suzuki A, Mills MJ, Pollock TM. 2014. Sub-nanometer resolution chemi-STEM EDS mapping of superlattice intrinsic stacking faults in Co-based superalloys. Microsc. Microanal. 20:Suppl. 31028–29
    [Google Scholar]
  186. 186. 
    Titus MS, Rhein RK, Wells PB, Dodge PC, Viswanathan GB et al. 2016. Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects. Sci. Adv. 2:12e1601796
    [Google Scholar]
  187. 187. 
    Cottrell AH, Bilby BA. 1949. Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. A 62:149–62
    [Google Scholar]
  188. 188. 
    Cottrell AH, Jaswon MA. 1949. Distribution of solute atoms round a moving dislocation. Mater. Sci. Eng. A 199:104–14
    [Google Scholar]
  189. 189. 
    Kontis P, Li Z, Collins DM, Cormier J, Raabe D, Gault B. 2018. The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys. Scr. Mater. 145:76–80
    [Google Scholar]
  190. 190. 
    Karunaratne MSA, Reed RC. 2003. Interdiffusion of the platinum-group metals in nickel at elevated temperatures. Acta Mater. 51:102905–19
    [Google Scholar]
  191. 191. 
    Li W, Wang C. 2020. Doping effects on the stacking fault energies of the γ′ phase in Ni-based superalloys. Chin. Phys. B 29:226401
    [Google Scholar]
  192. 192. 
    Karunaratne MS, Carter P, Reed R. 2000. Interdiffusion in the face-centred cubic phase of the Ni-Re, Ni-Ta and Ni-W systems between 900 and 1300°C. Mater. Sci. Eng. A 281:1–2229–33
    [Google Scholar]
  193. 193. 
    Heckl A, Neumeier S, Göken M, Singer RF. 2011. The effect of Re and Ru on γ/γ′ microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys. Mater. Sci. Eng. A 528:93435–44
    [Google Scholar]
  194. 194. 
    Eggeler YM, Kubacka D, Pichler P, Wu M, Spiecker E. 2021. Intrinsic nano-diffusion-couple for studying high temperature diffusion in multi-component superalloys. Scr. Mater. 192:120–24
    [Google Scholar]
  195. 195. 
    Bürger D, Dlouhý A, Yoshimi K, Eggeler G. 2020. On the stress and temperature dependence of low temperature and high stress shear creep in Ni-base single crystal superalloys. Mater. Sci. Eng. A 795:139961
    [Google Scholar]
  196. 196. 
    Bürger D, Dlouhý A, Yoshimi K, Eggeler G. 2020. How nanoscale dislocation reactions govern low- temperature and high-stress creep of Ni-base single crystal superalloys. Crystals 10:2134
    [Google Scholar]
  197. 197. 
    Kontis P. 2021. Interactions of solutes with crystal defects: a new dynamic design parameter for advanced alloys. Scr. Mater. 194:113626
    [Google Scholar]
  198. 198. 
    Unocic RR, Viswanathan GB, Sarosi PM, Karthikeyan S, Li J, Mills MJ 2008. Mechanisms of creep deformation in polycrystalline Ni-base disk superalloys. Mater. Sci. Eng. A 483–484:25–32
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-102419-011433
Loading
/content/journals/10.1146/annurev-matsci-102419-011433
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error