1932

Abstract

We review recent applications of positive muon spin relaxation (μSR) spectroscopy as an active probe of ion diffusion in energy storage materials. μSR spectroscopy allows the study of ionic diffusion in solid-state materials on a time scale between 10−5 and 10−8 s where most long-range and consecutive short-range jumps of ions between interstitial sites occur. μSR also allows one to probe and model ionic diffusion in materials that contain magnetic ions, since both electronic and nuclear contributions to the muon depolarization can be separated, making μSR an excellent technique for the microscopic study of the ionic motions in crystalline materials. We highlight a series of battery materials for which μSR has provided insight into intrinsic ionic conduction and magnetic properties without interference of external factors, such as the presence of magnetic ions, macroscopic particle morphologies, or elaborate measurement setups.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-110519-110507
2020-07-01
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-110519-110507.html?itemId=/content/journals/10.1146/annurev-matsci-110519-110507&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    West AR. 1999. Basic Solid State Chemistry, Vol. 2 Chichester, UK: Wiley and Sons
    [Google Scholar]
  2. 2. 
    Chadwick AV. 2003. Ionic conduction and diffusion in solids. Digital Encyclopedia of Applied Physics Hoboken, NJ: Wiley-VCH
    [Google Scholar]
  3. 3. 
    Allnatt AR, Chadwick AV. 1967. Thermal diffusion in crystalline solids. Chem. Rev. 67:681–705
    [Google Scholar]
  4. 4. 
    Kuhn A, Narayanan S, Spencer L, Goward G, Thangadurai V, Wilkening M 2011. Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy. Phys. Rev. B 83:94302
    [Google Scholar]
  5. 5. 
    Narayanan S, Epp V, Wilkening M, Thangadurai V 2012. Macroscopic and microscopic Li+ transport parameters in cubic garnet-type Li6.5La2.5Ba0.5ZrTaO12 as probed by impedance spectroscopy and NMR. RSC Adv 2:2553–61
    [Google Scholar]
  6. 6. 
    Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP 2018. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559:556–63
    [Google Scholar]
  7. 7. 
    Hayamizu K, Matsuda Y, Matsui M, Imanishi N 2015. Lithium ion diffusion measurements on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-gradient spin-echo NMR method. Solid State Nucl. Magn. Reson. 70:21–27
    [Google Scholar]
  8. 8. 
    Sugiyama J, Umegaki I, Uyama T, McFadden RML, Shiraki S et al. 2017. Lithium diffusion in spinel Li4Ti5O12 and LiTi2O4 films detected with 8Li β–NMR. Phys. Rev. B 96:094402
    [Google Scholar]
  9. 9. 
    Kuwata N, Nakane M, Miyazaki T, Mitsuishi K, Kawamura J 2018. Lithium diffusion coefficient in LiMn2O4 thin films measured by secondary ion mass spectrometry with ion-exchange method. Solid State Ion 320:266–71
    [Google Scholar]
  10. 10. 
    Yamanaka T, Minato T, Okazaki K, Abe T, Nishio K, Ogumi Z 2018. Evolution and migration of lithium-deficient phases during electrochemical delithiation of large single crystals of LiFePO4. ACS Appl. Energy Mater. 1:1140–45
    [Google Scholar]
  11. 11. 
    Chen S, He T, Su Y, Lu Y, Bao L et al. 2017. Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 9:29732–43
    [Google Scholar]
  12. 12. 
    Zhang J, Li Z, Gao R, Hu Z, Liu X 2015. High rate capability and excellent thermal stability of Li+-conductive Li2ZrO3-coated LiNi1/3Co1/3Mn1/3O2 via a synchronous lithiation strategy. J. Phys. Chem. C 119:20350–56
    [Google Scholar]
  13. 13. 
    Hitz GT, Wachsman ED, Thangadurai V 2013. Highly Li-stuffed garnet-type Li7 + xLa3Zr 2 − xYxO12. J. Electrochem. Soc. 160:1248–55
    [Google Scholar]
  14. 14. 
    Huang Z, Wang Z, Guo H, Li X 2016. Influence of Mg2+ doping on the structure and electrochemical performances of layered LiNi0.6Co0.2 − xMn0.2MgxO2 cathode materials. J. Alloys Compd. 671:479–85
    [Google Scholar]
  15. 15. 
    Churikov AV, Ivanishchev AV, Ivanishcheva IA, Sycheva VO, Khasanova NR, Antipov EV 2010. Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim. Acta 55:2939–50
    [Google Scholar]
  16. 16. 
    Weidman P, Ahn D, Raj R 2014. Diffusive relaxation of Li in particles of silicon oxycarbide measured by galvanostatic titrations. J. Power Sourc. 249:219–30
    [Google Scholar]
  17. 17. 
    Markevich E, Levi MD, Aurbach D 2005. Comparison between potentiostatic and galvanostatic intermittent titration techniques for determination of chemical diffusion coefficients in ion-insertion electrodes. J. Electroanal. Chem. 580:231–37
    [Google Scholar]
  18. 18. 
    Tang X, Song X, Shen P, Jia D 2005. Capacity intermittent titration technique (CITT): a novel technique for determination of Li+ solid diffusion coefficient of LiMn2O4. Electrochim. Acta 50:5581–87
    [Google Scholar]
  19. 19. 
    Miwa K, Asahi R. 2018. Molecular dynamics simulations with machine learning potential for Nb-doped lithium garnet-type oxide Li7 − xLa3(Zr2 − xNbx)O12. Phys. Rev. Mater. 2:105404
    [Google Scholar]
  20. 20. 
    Klenk MJ, Boeberitz SE, Dai J, Jalarvo NH, Peterson VK, Lai W 2017. Lithium self-diffusion in a model lithium garnet oxide Li5La3Ta2O12: a combined quasi-elastic neutron scattering and molecular dynamics study. Solid State Ion 312:1–7
    [Google Scholar]
  21. 21. 
    Cui S, Wei Y, Liu T, Deng W, Hu Z et al. 2016. Optimized temperature effect of Li-ion diffusion with layer distance in Li(NixMnyCoz)O2 cathode materials for high performance Li-ion battery. Adv. Energy Mater. 6:1501309
    [Google Scholar]
  22. 22. 
    Rui XH, Ding N, Liu J, Li C, Chen CH 2010. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim. Acta 55:2384–90
    [Google Scholar]
  23. 23. 
    Zhu Y, Xu Y, Liu Y, Luo C, Wang C 2013. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5:780–87
    [Google Scholar]
  24. 24. 
    Takai S, Yoshioka K, Iikura H, Matsubayashi M, Yao T, Esaka T 2014. Tracer diffusion coefficients of lithium ion in LiMn2O4 measured by neutron radiography. Solid State Ion 256:93–96
    [Google Scholar]
  25. 25. 
    Sacci RL, Lehmann ML, Diallo SO, Cheng YQ, Daemen LL et al. 2017. Lithium transport in an amorphous LixSi anode investigated by quasi-elastic neutron scattering. J. Phys. Chem. C 121:11083–88
    [Google Scholar]
  26. 26. 
    Baker PJ, Franke I, Pratt FL, Lancaster T, Prabhakaran D et al. 2011. Probing magnetic order in LiMPO4 (M = Ni, Co, Fe) and lithium diffusion in LixFePO4. Phys. Rev. B 84:1–8
    [Google Scholar]
  27. 27. 
    Cox SFJ. 1987. Implanted muon studies in condensed matter science. J. Phys. Condens. Matter 20:3187–319
    [Google Scholar]
  28. 28. 
    Wilkening M, Heitjans P. 2012. From micro to macro: access to long-range Li+ diffusion parameters in solids via microscopic 6, 7Li spin-alignment echo NMR spectroscopy. Chem. Phys. Chem. 13:53–65
    [Google Scholar]
  29. 29. 
    Månsson M, Sugiyama J. 2013. Muon-spin relaxation study on Li- and Na-diffusion in solids. Phys. Scr. 88:068509
    [Google Scholar]
  30. 30. 
    Nuccio L, Schulz LL, Drew AJ. 2014. Muon spin spectroscopy: magnetism, soft matter and the bridge between the two. J. Phys. D Appl. Phys. 47:473001
    [Google Scholar]
  31. 31. 
    Rossi B, Hall DB. 1941. Variation in the rate of decay of mesotrons with momentum. Phys. Rev. 59:223–28
    [Google Scholar]
  32. 32. 
    Morishima K, Kuno M, Nishio A, Kitagawa N, Manabe Y et al. 2017. Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray muons. Nature 552:386–90
    [Google Scholar]
  33. 33. 
    Yan BH, Paul AK, Kanungo S, Reehuis M, Hoser A et al. 2014. Lattice-site-specific spin dynamics in double perovskite Sr2CoOsO6. Phys. Rev. Lett. 112:147202
    [Google Scholar]
  34. 34. 
    Fak B, Kermarrec E, Messio L, Bernu B, Lhuillier C et al. 2012. Kapellasite: a kagome quantum spin liquid with competing interactions. Phys. Rev. Lett. 109:037208
    [Google Scholar]
  35. 35. 
    Khasanov R, Guguchia Z, Amato A, Morenzoni E, Dong XL et al. 2017. Pressure-induced magnetic order in FeSe: a muon spin rotation study. Phys. Rev. B 95:180504 R )
    [Google Scholar]
  36. 36. 
    Frandsen BA, Liu L, Cheung SC, Guguchia Z, Khasanov R et al. 2016. Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning. Nat. Commun. 7:12519
    [Google Scholar]
  37. 37. 
    Blundell SJ. 1999. Spin-polarized muons in condensed matter physics. Contemp. Phys. 40:175–92
    [Google Scholar]
  38. 38. 
    Ferdani DW, Pering SR, Ghosh D, Kubiak P, Walker AB et al. 2019. Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells. Energy Environ. Sci. 12:2264–72
    [Google Scholar]
  39. 39. 
    Amores M, Baker PJ, Cussen EJ, Corr SA 2018. Na1.5La1.5TeO6: Na+ conduction in a novel Na-rich double perovskite. Chem. Commun. 54:10040–43
    [Google Scholar]
  40. 40. 
    Stone NJ. 2005. Table of nuclear magnetic dipole and electric quadrupole moments. At. Data Nucl. Data Tables 90:75–176
    [Google Scholar]
  41. 41. 
    Strominger D, Hollander JM, Seaborg GT 1958. Table of isotopes. At. Data Nucl. Data Tables 30:585–904
    [Google Scholar]
  42. 42. 
    Dalmas de Réotier P, Yaouanc A 1997. Muon spin rotation and relaxation in magnetic materials. J. Phys. Condens. Matter 9:9113–66
    [Google Scholar]
  43. 43. 
    Mukai K, Sugiyama J, Ikedo Y, Nozaki H, Shimomura K et al. 2007. Magnetism and lithium diffusion in LixCoO2 by a muon-spin rotation and relaxation (μ+SR) technique. J. Power Sourc. 174:711–15
    [Google Scholar]
  44. 44. 
    Amores M, Ashton TE, Baker PJ, Cussen EJ, Corr SA 2016. Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy. J. Mater. Chem. A 4:1729–36
    [Google Scholar]
  45. 45. 
    Blundell SJ. 2004. Muon-spin rotation studies of electronic properties of molecular conductors and superconductors. Chem. Rev. 104:5717–35
    [Google Scholar]
  46. 46. 
    Prokscha T, Morenzoni E, Deiters K, Foroughi F, George D et al. 2008. The new μE4 beam at PSI: a hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam. Nucl. Instrum. Methods Phys. Res. A 595:317–31
    [Google Scholar]
  47. 47. 
    Laveda JV, Johnston B, Paterson GW, Baker PJ, Tucker MG et al. 2017. Structure-property insights into nanostructured electrodes for Li-ion batteries from local structural and diffusional probes. J. Mater. Chem. A 6:127–37
    [Google Scholar]
  48. 48. 
    Hayano RS, Uemura YJ, Imazato J, Nishida N, Yamazaki T, Kubo R 1979. Zero-and low-field spin relaxation studied by positive muons. Phys. Rev. B 20:850–59
    [Google Scholar]
  49. 49. 
    Abragam A. 1961. The Principles of Nuclear Magnetism Oxford, UK: Clarendon
    [Google Scholar]
  50. 50. 
    Keren A. 1994. Generalization of the Abragam relaxation function to a longitudinal field. Phys. Rev. B 50:10039–42
    [Google Scholar]
  51. 51. 
    Sugiyama J, Mukai K, Ikedo Y, Nozaki H, Månsson M, Watanabe I 2009. Li diffusion in LixCoO2 probed by muon-spin spectroscopy. Phys. Rev. Lett. 103:147601
    [Google Scholar]
  52. 52. 
    Grey CP, Dupre N. 2004. NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem. Rev. 104:4493–512
    [Google Scholar]
  53. 53. 
    Sugiyama J, Ikedo Y, Mukai K, Nozaki H, Månsson M et al. 2010. Low-temperature magnetic properties and high-temperature diffusive behavior of LiNiO2 investigated by muon-spin spectroscopy. Phys. Rev. B 82:224412
    [Google Scholar]
  54. 54. 
    Sugiyama J, Mukai K, Harada M, Nozaki H, Miwa K et al. 2013. Reactive surface area of the Lix(Co1/3Ni1/3Mn1/3)O2 electrode determined by μ+SR and electrochemical measurements. Phys. Chem. Chem. Phys. 15:10402
    [Google Scholar]
  55. 55. 
    Prosini PP, Lisi M, Zane D, Pasquali M 2002. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ion 148:45–51
    [Google Scholar]
  56. 56. 
    Månsson M, Nozaki H, Wikberg JM, Pra K, Sassa Y et al. 2014. Lithium diffusion and magnetism in battery cathode material LixNi1/3Co1/3Mn1/3O2. J. Phys. Conf. Ser. 551:012037
    [Google Scholar]
  57. 57. 
    Shao-Horn Y, Croguennec L, Delmas C, Nelson EC, O'Keefe MA 2003. Atomic resolution of lithium ions in LiCoO2. Nat. Mater. 2:464–67
    [Google Scholar]
  58. 58. 
    Fernández Pulido Y, Blanco C, Anseán D, García VM, Ferrero F, Valledor M 2017. Determination of suitable parameters for battery analysis by electrochemical impedance spectroscopy. Measurement 106:1–11
    [Google Scholar]
  59. 59. 
    Fergus JW. 2010. Recent developments in cathode materials for lithium ion batteries. J. Power Sourc. 195:939–54
    [Google Scholar]
  60. 60. 
    Spinner N, Mustain WE. 2013. Nanostructural effects on the cycle life and Li+ diffusion coefficient of nickel oxide anodes. J. Electroanal. Chem. 711:8–16
    [Google Scholar]
  61. 61. 
    Kang B, Ceder G. 2009. Battery materials for ultrafast charging and discharging. Nature 458:190–93
    [Google Scholar]
  62. 62. 
    Cao Q, Zhang HP, Wang GJ, Xia Q, Wu YP, Wu HQ 2007. A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochem. Commun. 9:1228–32
    [Google Scholar]
  63. 63. 
    Chen Y, Rangasamy E, Liang C, An K 2015. Origin of high Li+ conduction in doped Li7La3Zr2O12 garnets. Chem. Mater. 27:5491–94
    [Google Scholar]
  64. 64. 
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB 1980. LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Mat. Res. Bull. 15:783–89
    [Google Scholar]
  65. 65. 
    Park SH, Shin HS, Myung ST, Yoon CS, Amine K, Sun YK 2005. Synthesis of nanostructured Li[Ni1/3Co1/3Mn1/3]O2 via a modified carbonate process. Chem. Mater. 17:6–8
    [Google Scholar]
  66. 66. 
    Kim UH, Jun DW, Park KJ, Zhang Q, Kaghazchi P et al. 2018. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ. Sci. 11:1271–79
    [Google Scholar]
  67. 67. 
    Chernova NA, Ma M, Xiao J, Whittingham MS, Breger J, Grey CP 2007. Layered LixNiyMnyCo1 − 2yO2 cathodes for lithium ion batteries: understanding local structure via magnetic properties. Chem. Mater. 19:4682–93
    [Google Scholar]
  68. 68. 
    Wikberg JM, Månsson M, Dahbi M, Kamazawa K, Sugiyama J 2012. Magnetic order and frustrated dynamics in Li(Ni0.8Co0.1Mn0.1)O2: a study by μ+SR and SQUID magnetometry. Phys. Proc. 30:202–5
    [Google Scholar]
  69. 69. 
    Kim UH, Jun DW, Park KJ, Zhang Q, Kaghazchi P et al. 2018. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ. Sci. 11:1271–79
    [Google Scholar]
  70. 70. 
    Chatterji T, Henggeler W, Delmas C 2005. Muon spin rotation investigation of the S = 1/2 triangular lattice LiNiO2. J. Phys. Condens. Matter 17:1341–50
    [Google Scholar]
  71. 71. 
    Bonda M, Holzapfel M, de Brion S, Darie C, Feher T et al. 2008. Effect of magnesium doping on the orbital and magnetic order in LiNiO2. Phys. Rev. B 78:104409
    [Google Scholar]
  72. 72. 
    Wills AS, Raju NP, Greedan JE 1999. Low-temperature structure and magnetic properties of the spinel LiMn2O4: a frustrated antiferromagnet and cathode material. Chem. Mater. 11:1510–18
    [Google Scholar]
  73. 73. 
    Lee YJ, Wang F, Grey CP 1998. 6Li and 7Li MAS NMR studies of lithium manganate cathode materials. J. Am. Chem. Soc. 120:12601–13
    [Google Scholar]
  74. 74. 
    Jiang C, Tang Z, Deng S, Hong Y, Wang S, Zhang Z 2017. High-performance carbon-coated mesoporous LiMn2O4 cathode materials synthesized from a novel hydrated layered-spinel lithium manganate composite. RSC Adv 7:3746–51
    [Google Scholar]
  75. 75. 
    Ariza MJ, Jones DJ, Roziére J, Lord JS, Ravot D 2003. Muon spin relaxation study of spinel lithium manganese oxides. J. Phys. Chem. B 107:6003–11
    [Google Scholar]
  76. 76. 
    Ariza MJ, Jones DJ, Roziére J, Lord JS 2004. Muon spectroscopy for studying magnetism and protons and lithium dynamics in spinel manganese oxides. J. Phys. Chem. Solids 65:597–602
    [Google Scholar]
  77. 77. 
    Kaiser CT, Verhoeven VWJ, Gubbens PCM, Mulder FM, de Schepper I et al. 2000. Li mobility in the battery cathode material Lix[Mn1.96Li0.04]O4 studied by muon-spin relaxation. Phys. Rev. B 62:9236–39
    [Google Scholar]
  78. 78. 
    Nishimura S, Kobayashi G, Ohoyama K, Kanno R, Yashima M, Yamada A 2008. Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 7:707–11
    [Google Scholar]
  79. 79. 
    Ellis B, Perry LK, Ryan DH, Nazar LF 2006. Small polaron hopping in LixFePO4 solid solutions: coupled lithium-ion and electron mobility. J. Am. Chem. Soc. 128:11416–22
    [Google Scholar]
  80. 80. 
    Sugiyama J, Nozaki H, Harada M, Kamazawa K, Ofer O et al. 2011. Magnetic and diffusive nature of LiFePO4 investigated by muon spin rotation and relaxation. Phys. Rev. B 84:054430
    [Google Scholar]
  81. 81. 
    Sugiyama J, Nozaki H, Harada M, Kamazawa K, Ikedo Y et al. 2012. Diffusive behavior in LiMPO4 with M = Fe, Co, Ni probed by muon-spin relaxation. Phys. Rev. B 85:54111
    [Google Scholar]
  82. 82. 
    Zeng G, Caputo R, Carriazo D, Luo L, Niederberger M 2013. Tailoring two polymorphs of LiFePO4 by efficient microwave-assisted synthesis: a combined experimental and theoretical study. Chem. Mater. 25:3399–407
    [Google Scholar]
  83. 83. 
    Ashton TE, Laveda JV, Maclaren DA, Baker PJ, Porch A et al. 2014. Muon studies of Li+ diffusion in LiFePO4 nanoparticles of different polymorphs. J. Mater. Chem. A 2:6238–45
    [Google Scholar]
  84. 84. 
    Adams DJ. 2016. Quantum mechanical theory diffusion in solids. An application to H in silicon and Li in LiFePO4. Solid State Ion 290:116–20
    [Google Scholar]
  85. 85. 
    Umegaki I, Kawauchi S, Sawada H, Nozaki H, Higuchi Y et al. 2017. Li-ion diffusion in Li intercalated graphite C6Li and C12Li probed by μ+SR. Phys. Chem. Chem. Phys. 19:19058–66
    [Google Scholar]
  86. 86. 
    Tapia-Ruiz N, Laveda JV, Smith RI, Corr SA, Gregory DH 2015. Ultra-rapid microwave synthesis of Li3 − xyMxN (M = Co, Ni and Cu) nitridometallates. Inorg. Chem. Front. 2:1045–50
    [Google Scholar]
  87. 87. 
    Shodai T, Okada S, Tobishima S, Yamaki J 1996. Study of Li(3 − x)M(x)N (M:Co,Ni or Cu) system for use as anode material in lithium rechargeable cells. Solid State Ion 86–88:785–89
    [Google Scholar]
  88. 88. 
    Powell AS, Stoeva Z, Lord JS, Smith RI, Gregory DH, Titman JJ 2013. Insight into lithium transport in lithium nitridometallate battery materials from muon spin relaxation. Phys. Chem. Chem. Phys. 15:816–23
    [Google Scholar]
  89. 89. 
    Powell AS, Lord JS, Gregory DH, Titman JJ 2009. Muon spin relaxation studies of lithium nitridometallate battery materials: muon trapping and lithium ion diffusion. J. Phys. Chem. C 113:20758–63
    [Google Scholar]
  90. 90. 
    El-Shinawi H, Paterson GW, MacLaren D, Cussen EJ, Corr SA 2017. Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets. J. Mater. Chem. A 5:319–29
    [Google Scholar]
  91. 91. 
    Xie J, Imanishi N, Matsumura T, Hirano A, Takeda Y, Yamamoto O 2008. Orientation dependence of Li-ion diffusion kinetics in LiCoO2 thin films prepared by RF magnetron sputtering. Solid State Ion 179:362–70
    [Google Scholar]
  92. 92. 
    Nozaki H, Harada M, Ohta S, Watanabe I, Miyake Y et al. 2014. Li diffusive behavior of garnet-type oxides studied by muon-spin relaxation and QENS. Solid State Ion 262:585–88
    [Google Scholar]
  93. 93. 
    Buschmann H, Dölle J, Berendts S, Kuhn A, Bottke P et al. 2011. Structure and dynamics of the fast lithium ion conductor Li7La3Zr2O12. Phys. Chem. Chem. Phys. 13:19378–92
    [Google Scholar]
  94. 94. 
    Dorai A, Kuwata N, Takekawa R, Kawamura J, Kataoka K, Akimoto J 2018. Diffusion coefficient of lithium ions in garnet-type Li6.5La3Zr1.5Ta0.5O12 single crystal probed by 7Li pulsed field gradient-NMR spectroscopy. Solid State Ion 327:18–26
    [Google Scholar]
  95. 95. 
    Matsuda Y, Itami Y, Hayamizu K, Ishigaki T, Matsui M et al. 2016. Phase relation, structure and ionic conductivity of Li7 − x − 3yAlyLa3Zr2 − xTaxO12. RSC Adv 6:78210–18
    [Google Scholar]
  96. 96. 
    Kataoka K, Akimoto J. 2018. High ionic conductor member of garnet-type oxide Li6.5La3Zr1.5Ta0.5O12. ChemElectroChem 5:2551–57
    [Google Scholar]
  97. 97. 
    Hayamizu K, Seki S, Haishi T 2017. Lithium ion micrometer diffusion in a garnet-type cubic Li7La3Zr2O12 (LLZO) studied using 7Li NMR spectroscopy. J. Chem. Phys. 146:024701
    [Google Scholar]
  98. 98. 
    Kim JW, Travis JJ, Hu E, Nam K, Kim SC et al. 2014. Unexpected high power performance of atomic layer deposition coated Li[Ni1/3Mn1/3Co1/3]O2 cathodes. J. Power Sourc. 254:190–97
    [Google Scholar]
  99. 99. 
    Meng W, Yunbo C, Feng W, Lin C, Yuefeng S 2010. The electrochemical performance of yttrium oxide coated LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion batteries. Int. Conf. Adv. Technol. Des. Manuf450–53
    [Google Scholar]
  100. 100. 
    Wu H, Chan G, Choi JW, Ryu I, Yao Y et al. 2012. High rate capability of LiNi1/3Mn1/3Co1/3O2 electrode for Li-ion batteries. Nat. Nanotechnol. 7:310–15
    [Google Scholar]
  101. 101. 
    Zhan X, Gao S, Cheng YT 2019. Influence of annealing atmosphere on Li2ZrO3-coated LiNi0.6Co0.2Mn0.2O2 and its high-voltage cycling performance. Electrochim. Acta 300:36–44
    [Google Scholar]
  102. 102. 
    Li X, Liu J, Banis MN, Lushington A, Li R et al. 2014. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 7:768–78
    [Google Scholar]
  103. 103. 
    Tian J, Su Y, Wu F, Xu S, Chen F et al. 2016. High-rate and cycling-stable nickel-rich cathode materials with enhanced Li+ diffusion pathway. ACS Appl. Mater. Interfaces 8:582–87
    [Google Scholar]
  104. 104. 
    Amin R, Chiang Y. 2016. Characterization of electronic and ionic transport in Li1 − xNi0.33Mn0.33Co0.33O2 (NMC 333) and Li1 − xNi0.50Mn0.20Co0.30O2 (NMC 523) as a function of Li content. J. Electrochem. Soc. 163:1512–17
    [Google Scholar]
  105. 105. 
    Gu YJ, Zhang QG, Chen YB, Liu HQ, Ding JX et al. 2015. Reduction of the lithium and nickel site substitution in Li1 + xNi0.5Co0.2Mn0.3O2 with Li excess as a cathode electrode material for Li-ion batteries. J. Alloys Compd. 630:316–22
    [Google Scholar]
  106. 106. 
    Sun S, Du C, Qu D, Zhang X, Tang Z 2015. Li2ZrO3-coated LiNi0.6Co0.2Mn0.2O2 for high-performance cathode material in lithium-ion battery. Ionics 21:2091–100
    [Google Scholar]
  107. 107. 
    Johnson ID, Ashton TE, Blagovidova E, Smales GJ, Lübke M et al. 2018. Mechanistic insights of Li+ diffusion within doped LiFePO4 from muon spectroscopy. Sci. Rep. 8:4114
    [Google Scholar]
  108. 108. 
    Gao F, Tang Z. 2008. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochim. Acta 53:5071–75
    [Google Scholar]
  109. 109. 
    Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ 2006. Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J. Power Sourc. 159:717–20
    [Google Scholar]
  110. 110. 
    Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O 2009. Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering. Electrochim. Acta 54:4631–37
    [Google Scholar]
  111. 111. 
    Tang X, Li L, Lai Q, Song X, Jiang J 2009. Investigation on diffusion behavior of Li+ in LiFePO4 by capacity intermittent titration technique (CITT). Electrochim. Acta 54:2329–34
    [Google Scholar]
  112. 112. 
    Li J, Armstrong BL, Kiggans J, Daniel C, Wood DL 2013. Lithium ion cell performance enhancement using aqueous LiFePO4 cathode dispersions and polyethyleneimine dispersant. J. Electrochem. Soc. 160:201–6
    [Google Scholar]
  113. 113. 
    Sugiyama J, Mukai K, Nozaki H, Harada M, Kamazawa K et al. 2012. Lithium diffusion in lithium-transition-metal oxides detected by μ+SR. Phys. Procedia 30:105–8
    [Google Scholar]
  114. 114. 
    Sugiyama J, Mukai K, Ikedo Y, Nozaki H, Månsson M, Watanabe I 2010. A novel tool for detecting Li diffusion in solids containing magnetic ions; μ+SR study on LixCoO2. J. Phys. Conf. Ser. 225:012052
    [Google Scholar]
  115. 115. 
    Sugiyama J, Nozaki H, Umegaki I, Mukai K, Miwa K et al. 2015. Li-ion diffusion in Li4Ti5O12 and LiTi2O4 battery materials detected by muon spin spectroscopy. Phys. Rev. B 92:1–9
    [Google Scholar]
  116. 116. 
    Sugiyama J, Nozaki H, Umegaki I, Harada M, Higuchi Y et al. 2014. Structural, magnetic, and diffusive nature of olivine-type NaxFePO4. J. Phys. Conf. Ser. 551:012012
    [Google Scholar]
  117. 117. 
    Umegaki I, Nozaki H, Harada M, Månsson M, Sakurai H et al. 2018. Na diffusion in quasi one-dimensional ion conductor NaMn2O4 observed by μ+SR. JPS Conf. Proc. 21:011018
    [Google Scholar]
  118. 118. 
    Ikedo Y, Sugiyama J, Ofer O, Månsson M, Sakurai H et al. 2010. Comparative μ+SR study of the zigzag chain compounds NaMn2O4 and LiMn2O4. J. Phys. Conf. Ser. 225:012017
    [Google Scholar]
  119. 119. 
    Lord JS, Cottrell SP, Williams WG 2000. Muon sites and diffusion in doped lithium oxide. Physica B 289:491–94
    [Google Scholar]
  120. 120. 
    Sugiyama J, Nozaki H, Umegaki I, Mukai K, Cottrell SP et al. 2018. μ+SR study on Li ionic conductors. JPS Conf. Proc. 21:14–17
    [Google Scholar]
  121. 121. 
    Moreau P, Guyomard D, Gaubicher J, Boucher F 2010. Structure and stability of sodium intercalated phases in olivine FePO4. Chem. Mater. 22:4126–28
    [Google Scholar]
  122. 122. 
    Delmas C, Braconnier J, Fouassier C, Hagenmuller P 1981. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion 3–4:165–69
    [Google Scholar]
  123. 123. 
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB 1981. LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Solid State Ion 3:171–74
    [Google Scholar]
  124. 124. 
    Shacklette LW, Jew TR, Townsend L 1980. Rechargeable electrodes from sodium cobalt bronzes. J. Electrochem. Soc. 135:2669–74
    [Google Scholar]
  125. 125. 
    Berthelot R, Carlier D, Delmas C 2010. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 10:74–80
    [Google Scholar]
  126. 126. 
    Liu X, Wang X, Iyo A, Yu H, Li D, Zhou H 2014. High stable post-spinel NaMn2O4 cathode of sodium ion battery. J. Mater. Chem. A 2:14822–26
    [Google Scholar]
  127. 127. 
    Månsson M, Prša K, Sassa Y 2014. Na-ion dynamics in quasi-1D compound NaV2O4. J. Phys. Conf. Ser. 551:12035
    [Google Scholar]
  128. 128. 
    Sugiyama J. 2013. Ion diffusion in solids probed by muon-spin spectroscopy. J. Phys. Soc. Jpn. 82:SA023
    [Google Scholar]
  129. 129. 
    Morenzoni E, Glückler H, Prokscha T, Weber HP, Forgan EM et al. 2000. Low energy μSR at PSI: present and future. Physica B 289–90:653–57
    [Google Scholar]
  130. 130. 
    Nakamura J, Nagatomo T, Oishi Y, Ikedo Y, Strasser P et al. 2014. Ultra slow muon microscope at MUSE/J-PARC. J. Phys. Conf. Ser. 502:012042
    [Google Scholar]
  131. 131. 
    Hillier AD, Aramini M, Baker PJ, Berlie A, Biswas PK et al. 2018. Developing the muon facilities at ISIS. JPS Conf. Proc. 21:011055
    [Google Scholar]
  132. 132. 
    Pecher O, Carretero-González J, Griffith KJ, Grey CP 2017. Materials methods: NMR in battery research. Chem. Mater. 29:213–42
    [Google Scholar]
  133. 133. 
    Dong B, Biendicho JJ, Hull S, Smith RI, West AR 2018. In-situ neutron studies of electrodes for Li-ion batteries using a deuterated electrolyte: LiCoO2 as a case study. J. Electrochem. Soc. 165:A793
    [Google Scholar]
  134. 134. 
    Matsubara N, Nocerino E, Forslund OK, Zubayer A, Gratrex Pet al. 2020. First time study of magnetism and ion diffusion in honeycomb layered oxide K2Ni2TeO6 by muon spin rotation. arXiv:2003.05805 [cond-mat.mtrl-sci]
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-110519-110507
Loading
/content/journals/10.1146/annurev-matsci-110519-110507
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error