1932

Abstract

Sodium-glucose cotransporter-2 inhibitors (SGLT2 inhibitors) were originally developed as antidiabetic agents, with cardiovascular (CV) outcome trials demonstrating improved CV outcomes in patients with type 2 diabetes mellitus (T2D). Secondary analyses of CV outcome trials and later dedicated kidney outcome trials consistently reported improved kidney-related outcomes independent of T2D status and across a range of kidney function and albuminuria. Importantly, SGLT2 inhibitors are generally safe and well tolerated, with clinical trials and real-world analyses demonstrating a decrease in the risk of acute kidney injury. The kidney protective effects of SGLT2 inhibitors generally extend across different members of the class, possibly on the basis of hemodynamic, metabolic, anti-inflammatory, and antifibrotic mechanisms. In this review, we summarize the effects of SGLT2 inhibitors on kidney outcomes in diverse patient populations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042921-102135
2023-01-27
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/med/74/1/annurev-med-042921-102135.html?itemId=/content/journals/10.1146/annurev-med-042921-102135&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    FDA 2008. Guidance for industry: diabetes mellitus—evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes Guidance, Cent. Drug. Eval. Res., US Food Drug Adm. Silver Spring, MD: https://www.fda.gov/media/71297/download
  2. 2.
    Zinman B, Wanner C, Lachin JM et al. 2015. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373:2117–28
    [Google Scholar]
  3. 3.
    Neal B, Perkovic V, Mahaffey KW et al. 2017. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377:644–57
    [Google Scholar]
  4. 4.
    Wiviott SD, Raz I, Bonaca MP et al. 2018. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380:347–57
    [Google Scholar]
  5. 5.
    Cannon CP, Pratley R, Dagogo-Jack S et al. 2020. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N. Engl. J. Med. 383:1425–35
    [Google Scholar]
  6. 6.
    Sridhar VS, Rahman HU, Cherney DZI. 2020. What have we learned about renal protection from the cardiovascular outcome trials and observational analyses with SGLT2 inhibitors?. Diabetes Obes. Metab. 22:Suppl. 155–68
    [Google Scholar]
  7. 7.
    Perkovic V, Jardine MJ, Neal B et al. 2019. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380:2295–306
    [Google Scholar]
  8. 8.
    Heerspink HJL, Stefansson BV, Correa-Rotter R et al. 2020. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383:1436–46
    [Google Scholar]
  9. 9.
    Jafar TH. 2021. FDA approval of dapagliflozin for chronic kidney disease: a remarkable achievement?. Lancet 398:283–84
    [Google Scholar]
  10. 10.
    Brenner BM, Cooper ME, de Zeeuw D et al. 2001. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345:861–69
    [Google Scholar]
  11. 11.
    Lewis EJ, Hunsicker LG, Clarke WR et al. 2001. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345:851–60
    [Google Scholar]
  12. 12.
    EMPA-KIDNEY Collab. Group 2022. Design, recruitment, and baseline characteristics of the EMPA-KIDNEY trial. Nephrol. Dial. Transplant. 37:1317–29
    [Google Scholar]
  13. 13.
    Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI. 2018. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int 94:26–39
    [Google Scholar]
  14. 14.
    Cherney DZ, Odutayo A, Aronson R et al. 2019. Sodium glucose cotransporter-2 inhibition and cardiorenal protection: JACC review topic of the week. J. Am. Coll. Cardiol. 74:2511–24
    [Google Scholar]
  15. 15.
    Heerspink HJ, Perkins BA, Fitchett DH et al. 2016. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134:752–72
    [Google Scholar]
  16. 16.
    Skrtic M, Yang GK, Perkins BA et al. 2014. Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia 57:2599–602
    [Google Scholar]
  17. 17.
    Vallon V, Thomson SC. 2017. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60:215–25
    [Google Scholar]
  18. 18.
    Cherney DZI, Dekkers CCJ, Barbour SJ et al. 2020. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol 8:582–93
    [Google Scholar]
  19. 19.
    van Bommel EJM, Muskiet MHA, van Baar MJB et al. 2020. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int 97:202–12
    [Google Scholar]
  20. 20.
    Ott C, Jung S, Korn M et al. 2021. Renal hemodynamic effects differ between antidiabetic combination strategies: randomized controlled clinical trial comparing empagliflozin/linagliptin with metformin/insulin glargine. Cardiovasc. Diabetol. 20:178
    [Google Scholar]
  21. 21.
    Almaimani M, Sridhar VS, Cherney DZI. 2021. Sodium-glucose cotransporter 2 inhibition in non-diabetic kidney disease. Curr. Opin. Nephrol. Hypertens. 30:474–81
    [Google Scholar]
  22. 22.
    Cherney DZI, Zinman B, Inzucchi SE et al. 2017. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 5:610–21
    [Google Scholar]
  23. 23.
    Zaccardi F, Webb DR, Htike ZZ et al. 2016. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes. Metab. 18:783–94
    [Google Scholar]
  24. 24.
    Thomas MC, Cherney DZI. 2018. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 61:2098–107
    [Google Scholar]
  25. 25.
    Cherney DZ, Perkins BA, Soleymanlou N et al. 2014. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc. Diabetol. 13:28
    [Google Scholar]
  26. 26.
    Mazidi M, Rezaie P, Gao HK, Kengne AP. 2017. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J. Am. Heart Assoc. 6:e004007
    [Google Scholar]
  27. 27.
    Cherney DZI, Cooper ME, Tikkanen I et al. 2018. Pooled analysis of Phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin. Kidney Int 93:231–44
    [Google Scholar]
  28. 28.
    Vasilakou D, Karagiannis T, Athanasiadou E et al. 2013. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 159:262–74
    [Google Scholar]
  29. 29.
    Fujita Y, Inagaki N. 2014. Renal sodium glucose cotransporter 2 inhibitors as a novel therapeutic approach to treatment of type 2 diabetes: clinical data and mechanism of action. J. Diabetes Investig. 5:265–75
    [Google Scholar]
  30. 30.
    Vallon V, Platt KA, Cunard R et al. 2011. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol. 22:104–12
    [Google Scholar]
  31. 31.
    Lee PC, Ganguly S, Goh SY. 2018. Weight loss associated with sodium-glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms. Obes. Rev. 19:1630–41
    [Google Scholar]
  32. 32.
    Bolinder J, Ljunggren O, Kullberg J et al. 2012. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J. Clin. Endocrinol. Metab. 97:1020–31
    [Google Scholar]
  33. 33.
    Schork A, Saynisch J, Vosseler A et al. 2019. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc. Diabetol. 18:46
    [Google Scholar]
  34. 34.
    Liu H, Sridhar VS, Boulet J et al. 2022. Cardiorenal protection with SGLT2 inhibitors in patients with diabetes mellitus: from biomarkers to clinical outcomes in heart failure and diabetic kidney disease. Metabolism 126:154918
    [Google Scholar]
  35. 35.
    Liu H, Sridhar VS, Montemayor D et al. 2021. Changes in plasma and urine metabolites associated with empagliflozin in patients with type 1 diabetes. Diabetes Obes. Metab. 23:2466–75
    [Google Scholar]
  36. 36.
    Lawler PR, Liu H, Frankfurter C et al. 2021. Changes in cardiovascular biomarkers associated with the sodium-glucose cotransporter 2 (SGLT2) inhibitor ertugliflozin in patients with chronic kidney disease and type 2 diabetes. Diabetes Care 44:e45–47
    [Google Scholar]
  37. 37.
    Kimura Y, Kuno A, Tanno M et al. 2019. Canagliflozin, a sodium-glucose cotransporter 2 inhibitor, normalizes renal susceptibility to type 1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. J. Diabetes Investig. 10:933–46
    [Google Scholar]
  38. 38.
    Alshnbari AS, Millar SA, O'Sullivan SE, Idris I 2020. Effect of sodium-glucose cotransporter-2 inhibitors on endothelial function: a systematic review of preclinical studies. Diabetes Ther 11:1947–63
    [Google Scholar]
  39. 39.
    Dekkers CCJ, Petrykiv S, Laverman GD et al. 2018. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes. Metab. 20:1988–93
    [Google Scholar]
  40. 40.
    Liu H, Sridhar VS, Lovblom LE et al. 2021. Markers of kidney injury, inflammation, and fibrosis associated with ertugliflozin in patients with CKD and diabetes. Kidney Int. Rep. 6:2095–104
    [Google Scholar]
  41. 41.
    Hesp AC, Schaub JA, Prasad PV et al. 2020. The role of renal hypoxia in the pathogenesis of diabetic kidney disease: a promising target for newer renoprotective agents including SGLT2 inhibitors?. Kidney Int 98:579–89
    [Google Scholar]
  42. 42.
    Yanai H, Katsuyayama H. 2017. A possible mechanism for renoprotective effect of sodium-glucose cotransporter 2 inhibitor: elevation of erythropoietin production. J. Clin. Med. Res. 9:178–79
    [Google Scholar]
  43. 43.
    Sano M, Goto S. 2019. Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation 139:1985–87
    [Google Scholar]
  44. 44.
    Wanner C, Inzucchi SE, Lachin JM et al. 2016. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375:323–34
    [Google Scholar]
  45. 45.
    Perkovic V, de Zeeuw D, Mahaffey KW et al. 2018. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol 6:691–704
    [Google Scholar]
  46. 46.
    Mosenzon O, Wiviott SD, Cahn A et al. 2019. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE–TIMI 58 randomised trial. Lancet Diabetes Endocrinol 7:606–17
    [Google Scholar]
  47. 47.
    Cherney DZI, Cosentino F, Dagogo-Jack S et al. 2021. Ertugliflozin and slope of chronic eGFR: prespecified analyses from the randomized VERTIS CV trial. Clin. J. Am. Soc. Nephrol. 16:1345–54
    [Google Scholar]
  48. 48.
    Cherney DZI, Dagogo-Jack S, McGuire DK et al. 2021. Kidney outcomes using a sustained ≥40% decline in eGFR: a meta-analysis of SGLT2 inhibitor trials. Clin. Cardiol. 44:1139–43
    [Google Scholar]
  49. 49.
    Dagogo-Jack S, Cannon CP, Cherney DZI et al. 2022. Cardiorenal outcomes with ertugliflozin assessed according to baseline glucose-lowering agent: an analysis from VERTIS CV. Diabetes Obes. Metab. 24:1245–54
    [Google Scholar]
  50. 50.
    Cherney DZI, Cosentino F, Pratley RE et al. 2022. The differential effects of ertugliflozin on glucosuria and natriuresis biomarkers: prespecified analyses from VERTIS CV. Diabetes Obes. Metab. 24:1114–22
    [Google Scholar]
  51. 51.
    Neal B, Perkovic V, Mahaffey KW et al. 2017. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377:644–57
    [Google Scholar]
  52. 52.
    Meraz-Munoz AY, Weinstein J, Wald R. 2021. eGFR decline after SGLT2 inhibitor initiation: the tortoise and the hare reimagined. Kidney360 2:1042–47
    [Google Scholar]
  53. 53.
    Bhatt DL, Szarek M, Pitt B et al. 2021. Sotagliflozin in patients with diabetes and chronic kidney disease. N. Engl. J. Med. 384:129–39
    [Google Scholar]
  54. 54.
    Heerspink HJL, Karasik A, Thuresson M et al. 2020. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): a multinational observational cohort study. Lancet Diabetes Endocrinol 8:27–35
    [Google Scholar]
  55. 55.
    Pasternak B, Wintzell V, Melbye M et al. 2020. Use of sodium-glucose co-transporter 2 inhibitors and risk of serious renal events: Scandinavian cohort study. BMJ 369:m1186
    [Google Scholar]
  56. 56.
    Rajasekeran H, Reich HN, Hladunewich MA et al. 2018. Dapagliflozin in focal segmental glomerulosclerosis: a combined human-rodent pilot study. Am. J. Physiol. Ren. Physiol. 314:F412–22
    [Google Scholar]
  57. 57.
    Heerspink HJL, Cherney DZI. 2021. Clinical implications of an acute dip in eGFR after SGLT2 inhibitor initiation. Clin. J. Am. Soc. Nephrol. 16:1278–80
    [Google Scholar]
  58. 58.
    Wheeler DC, Stefansson BV, Batiushin M et al. 2020. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol. Dial Transplant 35:1700–11
    [Google Scholar]
  59. 59.
    Lv J, Zhang H, Wong MG et al. 2017. Effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA 318:432–42
    [Google Scholar]
  60. 60.
    Wheeler DC, Toto RD, Stefansson BV et al. 2021. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int 100:215–24
    [Google Scholar]
  61. 61.
    Wheeler DC, Jongs N, Stefansson BV et al. 2021. Safety and efficacy of dapagliflozin in patients with focal segmental glomerulosclerosis: a prespecified analysis of the DAPA-CKD trial. Nephrol. Dial. Transplant. https://doi.org/10.1093/ndt/gfab335
    [Crossref] [Google Scholar]
  62. 62.
    McMurray JJV, Solomon SD, Inzucchi SE et al. 2019. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381:1995–2008
    [Google Scholar]
  63. 63.
    Packer M, Anker SD, Butler J et al. 2020. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383:1413–24
    [Google Scholar]
  64. 64.
    Anker SD, Butler J, Filippatos G et al. 2021. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385:1451–61
    [Google Scholar]
  65. 65.
    Van Raalte DH, Bjornstad P, Persson F et al. 2019. The impact of sotagliflozin on renal function, albuminuria, blood pressure, and hematocrit in adults with type 1 diabetes. Diabetes Care 42:1921–29
    [Google Scholar]
  66. 66.
    Rosenstock J, Marquard J, Laffel LM et al. 2018. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE trials. Diabetes Care 41:2560–69
    [Google Scholar]
  67. 67.
    Cherney DZI, Bjornstad P, Perkins BA et al. 2021. Kidney effects of empagliflozin in people with type 1 diabetes. Clin. J. Am. Soc. Nephrol. 16:1715–19
    [Google Scholar]
  68. 68.
    Groop P-H, Dandona P, Phillip M et al. 2020. Effect of dapagliflozin as an adjunct to insulin over 52 weeks in individuals with type 1 diabetes: post-hoc renal analysis of the DEPICT randomised controlled trials. Lancet Diabetes Endocrinol 8:845–54
    [Google Scholar]
  69. 69.
    Chertow GM, Vart P, Jongs N et al. 2021. Effects of dapagliflozin in stage 4 chronic kidney disease. J. Am. Soc. Nephrol. 32:2352–61
    [Google Scholar]
  70. 70.
    Cherney DZI, Ferrannini E, Umpierrez GE et al. 2021. Efficacy and safety of sotagliflozin in patients with type 2 diabetes and severe renal impairment. Diabetes Obes. Metab. 23:2632–42
    [Google Scholar]
  71. 71.
    Int. Soc. Nephrol 2013. Summary of recommendation statements. Kidney Int. Suppl. 2011 3:5–14
    [Google Scholar]
  72. 72.
    He L, Liu X, Li Z et al. 2016. Rate of decline of residual kidney function before and after the start of peritoneal dialysis. Perit Dial. Int. 36:334–39
    [Google Scholar]
  73. 73.
    Bargman JM, Thorpe KE, Churchill DN et al. 2001. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J. Am. Soc. Nephrol. 12:2158–62
    [Google Scholar]
  74. 74.
    Lee MJ, Park JT, Park KS et al. 2017. Prognostic value of residual urine volume, GFR by 24-hour urine collection, and eGFR in patients receiving dialysis. Clin. J. Am. Soc. Nephrol. 12:426–34
    [Google Scholar]
  75. 75.
    Krediet RT, Zweers MM, van Westrhenen R et al. 2003. What can we do to preserve the peritoneum?. Perit. Dial. Int. 23:S14–19
    [Google Scholar]
  76. 76.
    Zhang L, Zeng X, Fu P, Wu HM. 2014. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for preserving residual kidney function in peritoneal dialysis patients. Cochrane Database Syst. Rev. 6:CD009120
    [Google Scholar]
  77. 77.
    Ding L, Yang J, Li L, Yang Y 2020. Effects of ACEIs and ARBs on the residual renal function in peritoneal dialysis patients: a meta-analysis of randomized controlled trials. Biomed. Res. Int. 2020:6762029
    [Google Scholar]
  78. 78.
    Balzer MS, Rong S, Nordlohne J et al. 2020. SGLT2 inhibition by intraperitoneal dapagliflozin mitigates peritoneal fibrosis and ultrafiltration failure in a mouse model of chronic peritoneal exposure to high-glucose dialysate. Biomolecules 10:1573
    [Google Scholar]
  79. 79.
    Shentu Y, Li Y, Xie S et al. 2021. Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling. Int. Immunopharmacol. 93:107374
    [Google Scholar]
  80. 80.
    Macha S, Mattheus M, Halabi A et al. 2014. Pharmacokinetics, pharmacodynamics and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in subjects with renal impairment. Diabetes Obes. Metab. 16:215–22
    [Google Scholar]
  81. 81.
    Halden TAS, Kvitne KE, Midtvedt K et al. 2019. Efficacy and safety of empagliflozin in renal transplant recipients with posttransplant diabetes mellitus. Diabetes Care 42:1067–74
    [Google Scholar]
  82. 82.
    Lo C, Toyama T, Oshima M et al. 2020. Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients. Cochrane Database Syst. Rev. 8:CD009966
    [Google Scholar]
  83. 83.
    Sridhar VS, Ambinathan JPN, Gillard P et al. 2021. Cardiometabolic and kidney protection in kidney transplant recipients with diabetes: mechanisms, clinical applications, and summary of clinical trials. Transplantation 106:734–48
    [Google Scholar]
  84. 84.
    Lega IC, Bronskill SE, Campitelli MA et al. 2019. Sodium glucose cotransporter 2 inhibitors and risk of genital mycotic and urinary tract infection: a population-based study of older women and men with diabetes. Diabetes Obes. Metab. 21:2394–404
    [Google Scholar]
  85. 85.
    Toyama T, Neuen BL, Jun M et al. 2019. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: a systematic review and meta-analysis. Diabetes Obes. Metab. 21:1237–50
    [Google Scholar]
  86. 86.
    Hodson DJ, Rorsman P. 2020. A variation on the theme: SGLT2 inhibition and glucagon secretion in human islets. Diabetes 69:864–66
    [Google Scholar]
  87. 87.
    Ferrannini E, Mark M, Mayoux E. 2016. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care 39:1108–14
    [Google Scholar]
  88. 88.
    Lopaschuk GD, Verma S. 2016. Empagliflozin's fuel hypothesis: not so soon. Cell Metab 24:200–2
    [Google Scholar]
  89. 89.
    Bonora BM, Avogaro A, Fadini GP. 2018. Sodium-glucose co-transporter-2 inhibitors and diabetic ketoacidosis: an updated review of the literature. Diabetes Obes. Metab. 20:25–33
    [Google Scholar]
  90. 90.
    Peters AL, Henry RR, Thakkar P et al. 2016. Diabetic ketoacidosis with canagliflozin, a sodium-glucose cotransporter 2 inhibitor, in patients with type 1 diabetes. Diabetes Care 39:532–38
    [Google Scholar]
  91. 91.
    Perkins BA, Rosenstock J, Skyler JS et al. 2019. Exploring patient preferences for adjunct-to-insulin therapy in type 1 diabetes. Diabetes Care 42:1716–23
    [Google Scholar]
  92. 92.
    Danne T, Garg S, Peters AL et al. 2019. International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors. Diabetes Care 42:1147–54
    [Google Scholar]
  93. 93.
    Heerspink HJL, Cherney D, Postmus D et al. 2022. A pre-specified analysis of the Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial on the incidence of abrupt declines in kidney function. Kidney Int 101:174–84
    [Google Scholar]
  94. 94.
    Heerspink HJL, Oshima M, Zhang H et al. 2022. Canagliflozin and kidney-related adverse events in type 2 diabetes and CKD: findings from the randomized CREDENCE trial. Am. J. Kidney Dis. 79:244–56.e1
    [Google Scholar]
  95. 95.
    Neuen BL, Young T, Heerspink HJL et al. 2019. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 7:845–54
    [Google Scholar]
  96. 96.
    Donnan JR, Grandy CA, Chibrikov E et al. 2019. Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: a systematic review and meta-analysis. BMJ Open 9:e022577
    [Google Scholar]
  97. 97.
    Cahn A, Melzer-Cohen C, Pollack R et al. 2019. Acute renal outcomes with sodium-glucose co-transporter-2 inhibitors: real-world data analysis. Diabetes Obes. Metab. 21:340–48
    [Google Scholar]
  98. 98.
    Iskander C, Cherney DZ, Clemens KK et al. 2020. Use of sodium-glucose cotransporter-2 inhibitors and risk of acute kidney injury in older adults with diabetes: a population-based cohort study. CMAJ 192:E351–60
    [Google Scholar]
  99. 99.
    Sridhar VS, Tuttle KR, Cherney DZI. 2020. We can finally stop worrying about SGLT2 inhibitors and acute kidney injury. Am. J. Kidney Dis. 76:454–56
    [Google Scholar]
  100. 100.
    de Boer IH, Caramori ML, Chan JCN et al. 2020. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int 98:S1–115
    [Google Scholar]
/content/journals/10.1146/annurev-med-042921-102135
Loading
/content/journals/10.1146/annurev-med-042921-102135
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error